

Companion Website
Additional material and resources for this book can be found at
http://www.greenfoot.org/book/

For students:
� The Greenfoot software
� The scenarios discussed in this book
� The Greenfoot Gallery—a scenario showcase
� Tutorial videos
� A discussion forum
� Technical support

For teachers:
� A teacher discussion forum
� Additional exercises related to the book
� The “Green Room” containing worksheets and other teaching

resources

Introduction to Programming with Greenfoot

http://www.greenfoot.org/book/

This page intentionally left blank

Introduction to
Programming with
Greenfoot

Object-Oriented Programming in Java™
with Games and Simulations

Michael Kölling

Prentice Hall

Upper Saddle River • Boston • Columbus • San Francisco • New York

Indianapolis • London • Toronto • Sydney • Singapore • Tokyo • Montreal • Dubai

Madrid • Hong Kong • Mexico City • Munich • Paris • Amsterdam • Cape Town

Vice President and Editorial Director, ECS: Marcia J. Horton
Editor in Chief, CS: Michael Hirsch
Executive Editor: Tracy Dunkelberger
Assistant Editor: Melinda Haggerty
Editorial Assistant: Allison Michael
Director of Team-Based Project Management: Vince O’Brien
Senior Managing Editor: Scott Disanno
Production Liaison: Irwin Zucker
Production Editor: Shiny Rajesh, Integra
Senior Operations Specialist: Alan Fischer
Operation Specialist: Lisa McDowell
Marketing Manager: Erin Davis
Marketing Coordinator: Kathryn Ferranti
Art Director: Jayne Conte
Cover Designer: Bruce Kenselaar
Art Editor: Greg Dulles
Media Editor: Daniel Sandin
Composition/Full-Service Project Management: Integra

Copyright © 2010 by Pearson Higher Education. Upper Saddle River, New Jersey, 07458. All rights
reserved. Manufactured in the United States of America. This publication is protected by Copyright and
permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. To obtain permission(s) to use materials from this work, please submit a written request to Pearson
Higher Education, Permissions Department, 1 Lake Street, Upper Saddle River, NJ 07458.

The author and publisher of this book have used their best efforts in preparing this book. These efforts
include the development, research, and testing of the theories and programs to determine their effectiveness.
The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs
or the documentation contained in this book. The author and publisher shall not be liable in any event for
incidental or consequential damages in connection with, or arising out of, the furnishing, performance,
or use of these programs.

Library of Congress Cataloging-in-Publication Data on File

ISBN-13: 978-0-13-603753-8

ISBN-10: 0-13-603753-4

10 9 8 7 6 5 4 3 2 1

www.pearsonhighered.com

To Krümel and Cracker—may their imagination never fade.

—mk

Education is not the filling of a pail, but the lighting of a fire.

—William Butler Yeats

This page intentionally left blank

List of scenarios discussed in this book xi

Acknowledgments xv

Introduction 1

Chapter 1 Getting to know Greenfoot 3

1.1 Getting started 3

1.2 Objects and classes 4

1.3 Interacting with objects 6

1.4 Return types 7

1.5 Parameters 8

1.6 Greenfoot execution 9

1.7 A second example 10

1.8 Understanding the class diagram 10

1.9 Playing with Asteroids 12

1.10 Source code 13

1.11 Summary 15

Chapter 2 The first program: Little Crab 16

2.1 The Little Crab scenario 16

2.2 Making the crab move 18

2.3 Turning 19

2.4 Dealing with screen edges 21

2.5 Summary of programming techniques 25

Chapter 3 Improving the Crab—more sophisticated programming 27

3.1 Adding random behavior 27

3.2 Adding worms 30

3.3 Eating worms 32

Contents

3.4 Creating new methods 33

3.5 Adding a Lobster 36

3.6 Keyboard control 36

3.7 Ending the game 38

3.8 Adding sound 40

3.9 Summary of programming techniques 42

Chapter 4 Finishing the crab game 43

4.1 Adding objects automatically 43

4.2 Creating new objects 45

4.3 Animating images 46

4.4 Greenfoot images 47

4.5 Instance variables (fields) 48

4.6 Assignment 49

4.7 Using actor constructors 50

4.8 Alternating the images 52

4.9 The if/else statement 53

4.10 Counting worms 53

4.11 More ideas 55

4.12 Summary of programming techniques 56

Interlude 1 Sharing your scenarios 57

I1.1 Exporting your scenario 57

I1.2 Export to application 57

I1.3 Export to a web page 58

I1.4 Publishing on the Greenfoot Gallery 59

Chapter 5 Making music: An on-screen piano 61

5.1 Animating the key 62

5.2 Producing the sound 65

5.3 Abstraction: Creating multiple keys 66

5.4 Building the piano 68

5.5 Using loops: The while loop 69

5.6 Using arrays 72

5.7 Summary of programming techniques 76

Chapter 6 Interacting objects: Newton’s Lab 78

6.1 The starting point: Newton’s Lab 79

6.2 Helper classes: SmoothMover and Vector 80

viii | Contents

6.3 The existing Body class 83

6.4 First extension: Creating movement 85

6.5 Using Java library classes 86

6.6 Adding gravitational force 87

6.7 The List type 90

6.8 The for-each loop 91

6.9 Applying gravity 93

6.10 Trying it out 95

6.11 Gravity and music 97

6.12 Summary of programming techniques 99

Chapter 7 Collision detection: Asteroids 101

7.1 Investigation: What is there? 102

7.2 Painting stars 103

7.3 Turning 106

7.4 Flying forward 107

7.5 Colliding with asteroids 109

7.6 Casting 112

7.7 Adding fire power: The proton wave 115

7.8 Growing the wave 115

7.9 Interacting with objects in range 119

7.10 Further development 121

7.11 Summary of programming techniques 122

Interlude 2 The Greeps competition 123

I2.1 How to get started 124

I2.2 Programming your Greeps 125

I2.3 Running the competition 126

I2.4 Technicalities 126

Chapter 8 Creating images and sound 127

8.1 Preparation 127

8.2 Working with sound 129

8.3 Sound recording and editing 130

8.4 Sound file formats and file sizes 131

8.5 Working with images 133

8.6 Image files and file formats 133

8.7 Drawing images 135

8.8 Combining images files and dynamic drawing 137

8.9 Summary 139

Contents | ix

Chapter 9 Simulations 141

9.1 Foxes and rabbits 142

9.2 Ants 145

9.3 Collecting food 146

9.4 Setting up the world 149

9.5 Adding pheromones 149

9.6 Path forming 152

9.7 Summary 152

Chapter 10 Additional scenario ideas 154

10.1 Marbles 154

10.2 Lifts 155

10.3 Boids 156

10.4 Circles 157

10.5 Explosion 158

10.6 Breakout 159

10.7 Platform jumper 160

10.8 Wave 161

10.9 Summary 162

Appendix

A Installing Greenfoot 163

B Greenfoot API 165

C Collision detection 169

D Some Java details 175

Index 185

x | Contents

Leaves and wombats (Chapter 1)

This is a simple example showing wombats moving around on screen, occasionally eating leaves.
The scenario has no specific purpose other than illustrating some important object-oriented
concepts and Greenfoot interactions.

Asteroids 1 (Chapter 1)

This is a simple version of a classic arcade game. You fly a spaceship through space and try to
avoid being hit by asteroids. At this stage, we only use the scenario to make some small changes
and illustrate some basic concepts.

Little Crab (Chapter 2)

This is our first full development. Starting from almost nothing, we develop a simple game
slowly, adding may things such as movement, keyboard control, sound, and many other elements
of typical games.

Piano (Chapter 5)

An on-screen piano that you can really play.

Newton’s Lab (Chapter 6)

Newton’s Lab is a simulation of the motion of stars and planets in space. Gravity plays a central
role here. We also make a variant of this that combines gravity with making music, ending up
with musical output triggered by objects under gravitational movement.

Asteroids 2 (Chapter 7)

We come back to the asteroids example from Chapter 2. This time, we investigate more fully
how to implement it.

Ants (Chapter 9)

A simulation of ant colonies searching for food, communicating via drops of pheromones left on
the ground.

The following scenarios are presented in Chapter 10 and selected aspects of them briefly
discussed. They are intended as inspiration for further projects.

Marbles

A simulation of a marble board game. Marbles have to be cleared of the board within a limited
number of moves. Contains simple physics.

List of scenarios discussed
in this book

xii | List of scenarios discussed in this book

Lifts

A start of a lift simulation. Incomplete at this stage—can be used as a start of a project.

Boids

A demo showing flocking behavior: A flock of birds flies across the screen, aiming to stick
together while avoiding obstacles.

Circles

Make patterns in different colors on the screen with moving circles.

Explosion

A demo of a more sophisticated explosion effect.

Breakout

This is the start of an implementation of the classic Breakout game. Very incomplete, but with
an interesting visual effect.

Platform jumper

A demo of a partial implementation of an ever-popular genre of games: platform jumpers.

Wave

This scenario is a simple demonstration of a physical effect: the propagation of a wave on
a string.

Preface

Greenfoot is a programming environment that can be used by individuals, in schools or in
introductory university courses to learn and teach the principles of programming. It is flexible
enough to be suitable for teenagers as well as older students.

Greenfoot supports the Java Programming Language, so students learn standard object-oriented
programming in Java. The environment is designed specifically to convey object-oriented con-
cepts and principles in a clean, easily accessible manner.

The Greenfoot environment makes creation of graphics and interaction easy. Students can
concentrate on modifying the application logic, and engage and experiment with objects.
Developing simulations and interactive games becomes easy, and feedback is immediate.

The environment is designed to quickly engage students who may have no prior interest or experi-
ence in programming. Achieving simple animation results is quick, sophisticated, professional
looking scenarios are possible.

Accessing Supplementary Materials

The learning aids and supplementary materials that are noted in the book can be accessed
through the Greenfoot Companion Web site or through the publisher’s Web site:

Companion Website: http://www.greenfoot.org/book/
Publisher’s Website: http://www.prenhall.com/kolling

Supplementary Materials Available for Students

The following supplements are available for students:

� The Greenfoot software

� The scenarios discussed in this book

� The Greenfoot Gallery—a scenario showcase

� Tutorial videos

� A discussion forum

� Technical support

Supplementary Materials Available for Instructors

The following supplements are available for instructors:

� A teacher discussion forum

� Additional exercises related to the book

� The “Green Room” containing worksheets and other teaching resources

For more details about Greenfoot and this book, please also see the Introduction following the
Acknowledgments.

Preface | xiii

http://www.greenfoot.org/book/
http://www.prenhall.com/kolling

This page intentionally left blank

This book is the result of more than five years of work by a group of people. First and foremost
involved are the people who contributed to the development of the Greenfoot environment,
which makes this entire educational approach possible. Poul Henriksen started the implementa-
tion of Greenfoot as his Masters project and built the first prototype. He also took on the devel-
opment of this prototype into a production system. For the first year or so, we were a two-man
project, and Poul’s work led to the quality and robustness of the current system.

Bruce Quig and Davin McCall were the next developers to join the project, and Poul, Bruce, and
Davin jointly built most of Greenfoot as it is today. All three are exceptional software develop-
ers, and their contribution to the project cannot be overstated. It is a joy working with them.

Eventually, the whole “BlueJ Group” got involved in the Greenfoot project, including John
Rosenberg and Ian Utting, and this book builds on contributions and joint work of all group members.

Colleagues in the Computing Laboratory at the University of Kent also helped me a great deal,
especially our Head of Department, Simon Thompson, who saw the value of Greenfoot early on
and supported and encouraged its further development.

Another important contribution, without which the development of Greenfoot (and ultimately,
this book) would not have been possible, is the generous support of Sun Microsystems. Emil
Sarpa, Katherine Hartsell, Jessica Orquina, Sarah Hammond, and many others within Sun
believed in the value of our system and provided important support.

Everyone at Pearson Education worked very hard to get this book published on time, with a very
tight schedule, and in sometimes difficult circumstances. Tracy Dunkelberger worked with me
on this book from the beginning. She managed amazingly well to stay positive and excited while
putting up with my repeated missed deadlines, and she still encouraged me to continue writing.
Melinda Haggerty did a whole lot of different things, including managing the reviews.

A special thank you needs to go to the reviewers of this book, who have provided very detailed,
thoughtful, and useful feedback. They are Carolyn Oates, Damianne President, Detlef Rick,
Gunnar Johannesmeyer, Josh Fishburn, Mark Hayes, Marla Parker, Matt Jadud, Todd O’Bryan,
Lael Grant, Jason Green, Mark Lewis, Rodney Hoffman, and Michael Kadri. They helped spot-
ting many errors and pointed out many opportunities for improvement.

My good friend Michael Caspersen also deserves thanks for providing early feedback and
encouragement that was very important to me, partly because it helped improve the book, and
more importantly because it encouraged me to believe that this work might be interesting to
teachers and worthwhile completing.

Acknowledgments

This page intentionally left blank

Welcome to Greenfoot! In this book, we will discuss how to program graphical computer
programs, such as simulations and games, using the Java Programming Language and the
Greenfoot environment.

There are several goals in doing this: One is to learn programming, another is to have fun along
the way. While the examples we discuss in this book are specific to the Greenfoot environment,
the concepts are general: working through this book will teach you general programming prin-
ciples in a modern, object-oriented programming language. However, it will also show you how
to make your own computer game, a biology simulation, or an on-screen piano.

This book is very practically oriented. Chapters and exercises are structured around real, hands-on
development tasks. First, there is a problem that we need to solve, then we look at language con-
structs and strategies that help us solve the problem. This is quite different from many introductory
programming textbooks which are often structured around programming language constructs.

As a result, this book starts with less theory and more practical activity than most programming
books. This is also the reason we use Greenfoot: It is the Greenfoot environment that makes this
possible. Greenfoot allows us to play. And that does not only mean playing computer games; it
means playing with programming: We can create objects, move them around on screen, call
their methods, and observe what they do, all interactively and easily. This leads to a more hands-
on approach to programming than what would be possible without such an environment.

A more practical approach does not mean that the book does not cover the necessary theory and prin-
ciples as well. It’s just that the order is changed. Instead of introducing a concept theoretically first,
and then doing some exercises with it, we often jump right in and use a construct, initially explaining
only as much as necessary to solve the task at hand, then come back to the theoretical background
later. We typically follow a spiral approach: We introduce some aspects of a concept when we first
encounter it, then revisit it later in another context, and gradually deepen our understanding.

The emphasis throughout is to make the work we do interesting, relevant, and enjoyable. There
is no reason why computer programming has to be dry, formal, or boring. Having fun along the
way is okay. We think we can manage making the experience interesting and pedagogically
sound at the same time. This is an approach that has been called serious fun—we do something
interesting, and learn something useful along the way.

This book can be used both as a self-study book and as a textbook in a programming course.
Exercises are worked into the text throughout the book—if you do them all, you will come out
of this as a fairly competent programmer.

Introduction

The projects discussed in this book are easy enough that they can be managed by high school
students, but they are also open and extendable enough that even seasoned programmers can
find interesting and challenging aspects to do. While Greenfoot is an educational environment,
Java is not a toy language. Since Java is our language of choice for this book, the projects
discussed here (and others you may want to create in Greenfoot) can be made as complex and
challenging as you like.

While it is possible to create simple games quickly and easily in Greenfoot, it is equally possible
to build highly sophisticated simulations of complex systems, possibly using artificial intelli-
gence algorithms, agent technology, database connectivity, or anything else you can think of.
Java is a very rich language that opens the whole world of programming, and Greenfoot imposes
no restrictions as to which aspects of the language you can use.

In other words, Greenfoot scales well. It allows easy entry for young beginners, but experienced
programmers can also implement interesting, sophisticated scenarios.

You are limited only by your imagination.

2 | Introduction

This book will show you how to develop computer games and simulations with Greenfoot, a
development environment. In this chapter, we shall take a look at Greenfoot itself, see what it
can do and how to use it. We do this by trying out some existing programs.

Once we are comfortable with using Greenfoot, we shall jump right into writing a game
ourselves.

The best way to read this chapter (and indeed the whole book) is by sitting at your computer
with Greenfoot open on your screen and the book open on your desk. We will regularly ask you
to do things in Greenfoot while you read. Some of the tasks you can skip; however, you will have
to do some in order to progress in the chapter. In any case, you will learn most if you follow
along and do them.

At this stage, we assume that you have already installed the Greenfoot software and the book
scenarios (described in Appendix A). If not, read through that appendix first.

1.1 Getting started
Start Greenfoot and open the scenario leaves-and-wombats from the Greenfoot book scenarios
folder.

CHAPTER

1
topics: the Greenfoot interface, interacting with objects, invoking methods, running

a scenario

concepts: object, class, method call, parameter, return value

Note If you are starting Greenfoot for the first time, you will see a dialog asking what you want

to do. Click Choose a scenario. Otherwise, use Scenario–Open1 from the menu.

1 We use this notation to tell you to select functions from the menu. Scenario–Open refers to the Open item
in the Scenario menu.

Getting to know
Greenfoot

4 | Chapter 1 � Getting to know Greenfoot

Make sure to open the leaves-and-wombats scenario that you find in the book-scenarios folder,
not the somewhat similar wombats scenario from the standard Greenfoot installation.

You will now see the Greenfoot main window, with the scenario open, looking similar to Figure 1.1.

The main window consists of three main areas and a couple of extra buttons. The main areas are:

� The world. The largest area covering most of the screen (a sand-colored grid in this case) is
called the world. This is where the program will run and we will see things happen.

� The class diagram. The area on the right with the beige-colored boxes and arrows is the class
diagram. We shall discuss this in more detail shortly.

� The execution controls. The Act, Run, and Reset buttons and the speed slider at the bottom
are the execution controls. We’ll come back to them in a little while, too.

1.2 Objects and classes
We shall discuss the class diagram first. The class diagram shows us the classes involved in this
scenario. In this case, they are World, WombatWorld, Actor, Leaf, and Wombat.

We shall be using the Java programming language for our projects. Java is an object-oriented
language. The concepts of classes and objects are fundamental in object orientation.

Let us start by looking at the Wombat class. The class Wombat stands for the general concept of
a wombat—it describes all wombats. Once we have a class in Greenfoot, we can create objects

World

Class
diagram

Execution
controls

Figure 1.1
The Greenfoot main

window

1.2 Objects and classes | 5

Figure 1.2
A wombat in

Narawntapu National

Park, Tasmania3

a) b) c)

Figure 1.3
a) The class menu.

b) Dragging a new

object.

c) Placing the object

from it. (Objects are also often referred to as instances in programming—the two terms are
synonyms.)

A wombat, by the way, is an Australian marsupial (Figure 1.2). If you want to find out more
about them, do a Web search—it should give you plenty of results.

Right-click2 on the Wombat class, and you will see the class menu pop up (Figure 1.3a). The
first option in that menu, new Wombat(), lets us create new wombat objects. Try it out.

You will see that this gives you a small picture of a Wombat object, which you can move on
screen with your mouse (Figure 1.3b). Place the wombat into the world by clicking anywhere in
the world (Figure 1.3c).

2 On Mac OS, use ctrl-click instead of right-click if you have a one-button mouse.
3 Image source: Wikipedia, subject to GNU Free Documentation License.

6 | Chapter 1 � Getting to know Greenfoot

Exercise 1.1 Create some more wombats in the world. Create some leaves.

Currently, only the Wombat and Leaf classes are of interest to us. We shall discuss the other
classes later.

1.3 Interacting with objects
Once we have placed some objects into the world, we can interact with these objects by right-
clicking them. This will pop up the object menu (Figure 1.4). The object menu shows us all the
operations this specific object can perform. For example, a wombat’s object menu shows us
what this wombat can do (plus two additional functions, Inspect and Remove, which we shall
discuss later).

In Java, these operations are called methods. It cannot hurt to get used to standard terminology
straightaway, so we shall also call them methods from now on. We can invoke a method by
selecting it from the menu.

Once you have a class in Greenfoot, you can create as many objects from it as you like.

Figure 1.4
The wombat’s object

menu

Concept:

Objects have

methods. Invoking

these performs

an action.

Exercise 1.2 Invoke the move() method on a wombat. What does it do? Try it several

times. Invoke the turnLeft() method. Place two wombats into your world and make them

face each other.

Concept:

Many objects can

be created from

a class.

1.4 Return types | 7

Concept:

The return type of

a method specifies

what a method call

will return.

Figure 1.5
A method result

In short, we can start to make things happen by creating objects from one of the classes provided,
and we can give commands to the objects by invoking their methods.

Let us have a closer look at the object menu. The move and turnLeft methods are listed as:

void move()
void turnLeft()

We can see that the method names are not the only things shown. There is also the word void at
the beginning and a pair of parentheses at the end. These two cryptic bits of information tell us
what data goes into the method call and what data comes back from it.

1.4 Return types
The word at the beginning is called the return type. It tells us what the method returns to us when
we invoke it. The word void means “nothing” in this context: Methods with a void return type
do not return any information. They just carry out their action, and then stop.

Any word other than void tells us that the method returns some information when invoked, and
of what type that information is. In the wombat’s menu (Figure 1.4) we can also see the words
int and boolean. The word int is short for “integer” and refers to whole numbers (numbers
without a decimal point). Examples of integer numbers are 3, 42, -3, and 12000000.

The type boolean has only two possible values: true and false. A method that returns a
boolean will return either the value true or the value false to us.

Methods with void return types are like commands for our wombat. If we invoke the
turnLeft method, the wombat obeys and turns left. Methods with non-void return types are
like questions. Consider the canMove method:

boolean canMove()

When we invoke this method, we see a result similar to that shown in Figure 1.5, displayed in a
dialog box. The important information here is the word true, which was returned by this

Concept:

A method with a

void return type

does not return a

value.

8 | Chapter 1 � Getting to know Greenfoot

Exercise 1.3 Invoke the canMove() method on your wombat. Does it always return

true? Or can you find situations in which it returns false?

Try out another method with a return value:

int getLeavesEaten()

Using this method, we can get the information how many leaves this wombat has eaten.

method call. In effect, we have just asked the wombat “Can you move?” and the wombat has
answered “Yes!” (true).

Exercise 1.4 Using a newly created wombat, the getLeavesEaten() method will

always return zero. Can you create a situation in which the result of this method is not zero?

(In other words: can you make your wombat eat some leaves?)

Methods with non-void return types usually just tell us something about the object (Can it
move? How many leaves has it eaten?), but do not change the object. The wombat is just as it
was before we asked it about the leaves. Methods with void return types are usually commands
to the objects that make it do something.

1.5 Parameters
The other bit in the method menu that we have not yet discussed are the parentheses after the
method name.

int getLeavesEaten()
void setDirection(int direction)

The parentheses after the method name hold the parameter list. This tells us whether the method
requires any additional information to run, and if so, what kind of information.

If we see only a pair of parentheses without anything else within it (as we have in all methods so
far), then the method has an empty parameter list. In other words, it expects no parameters—when
we invoke the method it will just run. If there is anything within the parenthesis, then the method
expects one or more parameters—additional information that we need to provide.

Let us try out the setDirectionmethod. We can see that it has the words int directionwritten
in its parameter list. When we invoke it, we see a dialog box similar to the one shown in Figure 1.6.

The words int direction tell us that this method expects one parameter of type int, which
specifies a direction. A parameter is an additional bit of data we must provide for this method to
run. Every parameter is defined by two words: first the parameter type (here: int) and then a
name, which gives us a hint what this parameter is used for. If a method has a parameter, then we
need to provide this additional information when we invoke the method.

Concept:

Methods with

void return

types represent

commands;

methods with

non-void return

types represent

questions.

Concept:

A parameter is

a mechanism to

pass in additional

data to a method.

Concept:

Parameters and

return values have

types. Examples

of types are int for

numbers, and

boolean for

true/false values.

1.6 Greenfoot execution | 9

Figure 1.6
A method call dialog

Exercise 1.5 Invoke the setDirection(int direction) method. Provide a

parameter value and see what happens. Which number corresponds to which direction?

Write them down. What happens when you type in a number greater than 3? What hap-

pens if you provide input that is not a whole number, such as a decimal number (2.5) or a

word (three)?

In this case, the type int tells us that we now should provide a whole number, and the name
suggests that this number somehow specifies the direction to turn to.

At the top of the dialog is a comment that tells us a little more: the direction parameter
should be between 0 and 3.

Concept:

The specification

of a method,

which shows its

return type, name,

and parameters

is called its

signature.

The setDirection method expects only a single parameter. Later, we shall see cases where
methods expect more than one parameter. In that case, the method will list all the parameters it
expects within the parentheses.

The description of each method shown in the object menu, including the return type, method
name, and parameter list, is called the method signature.

We have now reached a point where you can do the main interactions with Greenfoot objects.
You can create objects from classes, interpret the method signatures, and invoke methods (with
and without parameters).

1.6 Greenfoot execution
There is one other way of interacting with Greenfoot objects: the execution controls.

Tip:

You can place

objects into the

world more quickly

by selecting a

class in the class

diagram, and then

shift-clicking in the

world.

Exercise 1.6 Place a wombat and a good number of leaves into the world, and then

invoke a wombat’s act() method several times. What does this method do? How does it

differ from the move method? Make sure to try different situations, for example, the wombat

facing the edge of the world, or sitting on a leaf.

Exercise 1.7 Still with a wombat and some leaves in the world, click the Act button in the

execution controls near the bottom of the Greenfoot window. What does this do?

10 | Chapter 1 � Getting to know Greenfoot

The act method is a very fundamental method of Greenfoot objects. We shall encounter it
regularly in all the following chapters. All objects in a Greenfoot world have this act method.
Invoking act is essentially giving the object the instruction “Do whatever you want to do now”.
If you tried it out for our wombat, you will have seen that the wombat’s act does something like
the following:

� If we’re sitting on a leaf, eat the leaf.

� Otherwise, if we can move forward, move forward.

� Otherwise, turn left.

The experiments in the exercises above should also have shown you that the Act button in the
execution controls simply calls the act method of the actors in the world. The only difference to
invoking the method via the object menu is that the Act button invokes the act method of all
objects in the world, whereas using the object menu affects only the one chosen object.

The Run button just calls act over and over again for all objects, until you click Pause.

Let us try out what we have discussed in the context of another scenario.

Concept:

Objects that can

be placed into the

world are known

as actors.

1.7 A second example
Open another scenario, named asteroids1, from the chapter01 folder of the book scenarios. It
should look similar to Figure 1.7 (except that you will not see the rocket or the asteroids on your
screen yet).

1.8 Understanding the class diagram
Let us first have a closer look at the class diagram (Figure 1.8). At the top, you see the two
classes called World and Space, connected by an arrow.

The World class is always there in all Greenfoot scenarios—it is built into Greenfoot. The class
under it, Space in this case, represents the specific world for this particular scenario. Its name
can be different in each scenario, but every scenario will have a specific world here.

The arrow shows an is-a relationship: Space is a World (in the sense of Greenfoot worlds:
Space, here, is a specific Greenfoot world). We also sometimes say that Space is a subclass
of World.

We do not usually need to create objects of world classes—Greenfoot does that for us. When we
open a scenario, Greenfoot automatically creates an object of the world subclass. The object is
then shown on the main part of the screen. (The big black image of space is an object of the
Space class.)

Exercise 1.8 What is the difference between clicking the Act button and invoking the

act() method? (Try with several wombats in the world.)

Exercise 1.9 Click the Run button. What does it do?

Concept:

A subclass
is a class that

represents a

specialization

of another. In

Greenfoot, this

is shown with an

arrow in the class

diagram.

1.8 Understanding the class diagram | 11

Figure 1.8
A class diagram

Figure 1.7
The asteroids1

scenario

12 | Chapter 1 � Getting to know Greenfoot

Below this, we see another group of six classes, linked by arrows. Each class represents its own
objects. Reading from the bottom, we see that we have rockets, bullets, and asteroids, which are
all “movers”, while movers and explosions are actors.

Again, we have subclass relationships: Rocket, for example, is a subclass of Mover, and Mover
and Explosion are subclasses of Actor. (Conversely, we say that Mover is a superclass of
Rocket and Actor is a superclass of Explosion.)

Subclass relationships can go over several levels: Rocket, for example, is also a subclass of
Actor (because it is a subclass of Mover, which is a subclass of Actor). We shall discuss more
about the meaning of subclasses and superclasses later.

The class Vector, shown at the bottom of the diagram under the heading Other classes is
a helper class used by the other classes. We cannot place objects of it into the world.

1.9 Playing with Asteroids
We can start playing with this scenario by creating some actor objects (objects of subclasses of
Actor) and placing them into the world. Here, we create objects only of the classes that have no
further subclasses: Rocket, Bullet, Asteroid, and Explosion.

Let us start by placing a rocket and two asteroids into space. (Remember: you can create objects
by right-clicking on the class, or selecting the class and shift-clicking.)

When you have placed your objects, click the Run button. You can then control the spaceship
with the arrow keys on your keyboard, and you can fire a shot by using the space bar. Try getting
rid of the asteroids before you crash into them.

Exercise 1.10 If you have played this game for a while, you will have noticed that

you cannot fire very quickly. Let us tweak our spaceship firing software a bit so

that we can shoot a bit quicker. (That should make getting the asteroids a bit easier!)

Place a rocket into the world, then invoke its setGunReloadTime method (through the

object menu), and set the reload time to 5. Play again (with at least two asteroids) to

try it out.

Exercise 1.11 Once you have managed to remove all asteroids (or at any other point in

the game), stop the execution (press Pause) and find out how many shots you have fired.

You can do this using a method from the rocket’s object menu. (Try destroying two aster-

oids with as few shots as possible.)

Exercise 1.12 You will have noticed that the rocket moves a bit as soon as you place it

into the world. What is its initial speed?

Exercise 1.13 Asteroids have an inherent stability. Each time they get hit by a bullet, their

stability decreases. When it reaches zero, they break up. What is their initial stability value

after you create them? By how much does the stability decrease from a single hit by a bullet?

1.10 Source code | 13

Concept:

Every class is

defined by source
code. This code

defines what

objects of this class

can do. We can

look at the source

code by opening

the class’s editor.

(Hint: Just shoot an asteroid once, and then check the stability again. Another hint: To shoot

the asteroid, you must run the game. To use the object menu, you must pause the game first.)

Exercise 1.14 Make a very big asteroid.

1.10 Source code
The behavior of each object is defined by its class. The way we can specify this behavior is by
writing source code in the Java programming language. The source code of a class is the code
that specifies all the details about the class and its objects. Selecting Open editor from the
class’s menu will show us an editor window (Figure 1.9) that contains the class’s source code.

The source code for this class is fairly complex, and we do not need to understand it all at this
stage. However, if you study the rest of this book and program your own games or simulations,
you will learn over time how to write this code.

At this point, it is only important to understand that we can change the behavior of the objects by
changing the class’s source code. Let us try this out.

Figure 1.9
The editor window of

class Rocket

14 | Chapter 1 � Getting to know Greenfoot

Tip:

You can open an

editor for a class

by double-clicking

the class in the

class diagram.

Figure 1.10
Classes after editing

We have seen before that the default firing speed of the rocket was fairly slow. We could change
this for every rocket individually by invoking a method on each new rocket, but we would have
to do this over and over again, every time we start playing. Instead, we can change the code of
the rocket so that its initial firing speed is changed (say, to 5), so that all rockets in the future
start with this improved behavior.

Open the editor for the Rocket class. About 25 lines from the top, you should find a line that reads

gunReloadTime = 20;

This is where the initial gun reloading time gets set. Change this line so that it reads

gunReloadTime = 5;

Be sure to change nothing else. You will notice very soon that programming systems are very
picky. A single incorrect or missing character can lead to errors. If, for example, you remove the
semicolon at the end of the line, you would run into an error fairly soon.

Close the editor window (our change is complete) and look at the class diagram again. It has
now changed: Several classes now appear striped (Figure 1.10). The striped look indicates that a
class has been edited and now must be compiled. Compilation is a translation process: The
class’s source code is translated into a machine code that your computer can execute.

Classes must always be compiled after their source code has been changed, before new objects
of the class can be created. (You will also have noticed that several classes need recompilation
even though we have changed only a single class. This is often the case because classes depend
on each other. When one changes, several need to be translated again.)

We can compile the classes by clicking the Compile All button in the bottom–right corner of
Greenfoot’s main window. Once the classes have been compiled, the stripes disappear, and we
can create objects again.

Exercise 1.15 Make the change to the Rocket class source code as described above.

Close the editor and compile the classes. Try it out: rockets should now be able to fire

quickly right from the start.

Concept:

Computers do not

understand source

code. It needs

to be translated

to machine code

before it can

be executed.

This is called

compilation.

1.11 Summary | 15

1.11 Summary
In this chapter, we have seen what Greenfoot scenarios can look like and how to interact with them.
We have seen how to create objects and how to communicate with these objects by invoking their
methods. Some methods were commands to the object, while other methods returned information
about the object. Parameters are used to provide additional information to methods, while return
values pass information back to the caller.

Objects were created from their classes, and source code controls the definition of the class (and
with this, the behavior and characteristics of all the class’s objects).

We have seen that we can change the source code using an editor. After editing the source,
classes need to be recompiled.

We will spend most of the rest of the book discussing how to write Java source code to create
scenarios that do interesting things.

Concept summary

� Greenfoot scenarios consist of a set of classes.

� Many objects can be created from a class.

� Objects have methods. Invoking these performs an action.

� The return type of a method specifies what a method call will return.

� A method with a void return type does not return a value.

� Methods with void return types represent commands; methods with non-void return types

represent questions.

� A parameter is a mechanism to pass in additional data to a method.

� Parameters and return values have types. Examples of types are int for numbers, and boolean
for true/false values.

� The specification of a method, which shows its return type, name, and parameters, is called

its signature.

� Objects that can be placed into the world are known as actors.

� A subclass is a class that represents a specialization of another. In Greenfoot, this is shown

with an arrow in the class diagram.

� Every class is defined by source code. This code defines what objects of this class can do.

We can look at the source code by opening the class’s editor.

� Computers do not understand source code. It needs to be translated to machine code before

it can be executed. This is called compilation.

We shall come back to the asteroids game in Chapter 7, where we will discuss how to write
this game.

In the previous chapter, we discussed how to use existing Greenfoot scenarios: We have created
objects, invoked methods, and played a game.

Now, we shall start to make our own game.

2.1 The Little Crab scenario
The scenario we use for this chapter is called little-crab. You will find this scenario in the book
projects for this book.

The scenario you see should look similar to Figure 2.1.

CHAPTER

The first program: Little Crab2
topics: writing code: movement, turning, reacting to the screen edges

concepts: source code, method call, parameter, sequence, if-statement

Exercise 2.1 Start Greenfoot and open the little-crab scenario. Place a crab into the

world and run the program (click the Run button). What do you observe? (Remember: If the

class icons on the right appear striped, you have to compile the project first.)

On the right, you see the classes in this scenario (Figure 2.2). We notice that there is the usual
Greenfoot Actor class, a class called Animal, and the Crab class.

The hierarchy (denoted by the arrows) indicates an is-a relationship (also called
inheritance): A crab is an animal, and an animal is an actor. (It follows then, that a crab also
is an actor.)

Initially, we will work only with the Crab class. We will talk a little more about the Actor and
Animal classes later on.

If you have done the exercise above, then you know the answer to the question “What do you
observe?” It is: “nothing”.

2.1 The Little Crab scenario | 17

Figure 2.1
The Little Crab

scenario

Figure 2.2
The Little Crab actor

classes

The crab does not do anything when Greenfoot runs. This is because there is no source code in
the definition of the Crab class that specifies what the crab should do.

In this chapter, we shall work on changing this. The first thing we shall do is to make the crab
move.

2.2 Making the crab move
Let us have a look at the source code of class Crab. Open the editor to display the Crab source.
(You can do this by selecting the Open editor function from the class’s popup menu, or you can
just double-click the class.)

The source code you see is shown in Code 2.1.

18 | Chapter 2 � The first program: Little Crab

Code 2.1
The original version

of the Crab class

import greenfoot.*; // (World, Actor, GreenfootImage, and Greenfoot)

/**
* This class defines a crab. Crabs live on the beach.
*/
public class Crab extends Animal
{

public void act()
{

// Add your action code here.
}

}

This is a standard Java class definition. That is, this text defines what the crab can do.
We will look at it in detail a little later. For now, we will concentrate on getting the crab
to move.

Within this class definition, we can see what is called the act method. It looks like this:

public void act()
{

// Add your action code here.
}

The first line is the signature of the method. The last three lines—the two curly brackets and
anything between them—is called the body of the method. Here, we can add some code that
determines the actions of the crab. We can replace the gray text in the middle with a command.
One such command is

move();

Note that it has to be written exactly as shown, including the parentheses and the semicolon. The
act method should then look like this:

public void act()
{

move();
}

2.3 Turning | 19

Exercise 2.2 Change the act method in your crab class to include the move() instruc-

tion, as shown above. Compile the scenario (by clicking the Compile All button) and place

a crab into the world. Try clicking the Act and Run buttons.

Exercise 2.3 Place multiple crabs into the world. Run the scenario. What do you

observe?

Concept:

A method call is

an instruction that

tells an object to

perform an action.

The action is

defined by a

method of the

object.

You will see that the crab can now move across the screen. The move() instruction makes the
crab move a little bit to the right. When we click the Act button in the Greenfoot main window,
the act method is executed once. That is, the instruction that we have written inside the act
method (move()) executes.

Clicking the Run button is just like clicking the Act button several times, very quickly. So the
act method is executed over and over again, until we click Pause.

Terminology

The instruction move() is called a method call. A method is an action that an object knows

how to do (here, the object is the crab) and a method call is an instruction telling the crab to

do it. The parentheses are part of the method call. Instructions like this end with a semicolon.

Concept:

Additional informa-

tion can be passed

to some methods

within the paren-

theses. The value

passed is called a

parameter.

2.3 Turning
Let us see what other instructions we can use. The crab also understands a turn instruction.
Here is what it looks like:

turn(5);

The number 5 in the instruction specifies how many degrees the crab should turn. This is called
a parameter. We can also use other numbers, for example:

turn(23);

The degree value is specified out of 360 degrees, so any value between 0 and 359 can be used.
(Turning 360 degrees would turn all the way around, so it is the same as turning 0 degrees, or not
turning at all.)

If we want to turn instead of moving, we can replace the move() instruction with a turn(5)
instruction. The act method then looks like this:

public void act()
{

turn(5);
}

Exercise 2.4 Replace move() with turn(5) in your scenario. Try it out. Also, try values

other than 5 and see what it looks like. Remember: Every time you change your source

code, you must compile again.

Exercise 2.5 How can you make the crab turn left?

Concept:

Multiple instruc-

tions are executed

in sequence,

one after the other,

in the order in

which they are

written.

20 | Chapter 2 � The first program: Little Crab

Code 2.2
Making the crab

move and turn

import greenfoot.*; // (World, Actor, GreenfootImage, and Greenfoot)

/**
* This class defines a crab. Crabs live on the beach.
*/
public class Crab extends Animal
{

public void act()
{

move();
turn(5);

}
}

The next thing we can try is to both move and turn. The act method can hold more than one
instruction—we can just write multiple instructions in a row.

Code 2.2 shows the complete Crab class, as it looks when we move and turn. In this case, at
every act step, the crab will move and then turn (but these actions will happen so quickly after
each other that it appears as if they happen at the same time).

Exercise 2.6 Use a move() and turn(N) instruction in your crab’s act method.

Try different values for N.

Terminology

The number within the parentheses in the turn instruction—that is, the 5 in turn(5)—is

called a parameter. A parameter is an additional bit of information that we have to provide

when we call some methods.

Some methods, like move, expect no parameters. They are happy to just execute as soon as

we write the move() instruction. Other methods, such as turn, want more information: How

much should I turn? In this case, we have to provide that information in the form of a parameter

value within the parentheses, for instance, turn(17).

2.4 Dealing with screen edges | 21

Concept:

When a class is

compiled, the com-

piler checks to see

whether there are

any errors. If an

error is found, an

error message is

displayed.

Side note: Errors

When we write source code, we have to be very careful—every single character counts.
Getting one small thing wrong will result in our program not working. Usually, it will not
compile.

This will happen to us regularly: When we write programs, we inevitably make mistakes, and
then we have to correct them. Let us try that out now.

If, for example, we forget to write the semicolon after the move() instruction, we will be told
about it when we try to compile.

Exercise 2.7 Open your editor to show the crab’s source code, and remove the semi-

colon after move(). Then compile. Also experiment with other errors, such as misspelling

move or making other random changes to the code. Make sure to change it all back after

this exercise.

Exercise 2.8 Make various changes to cause different error messages. Find at least five

different error messages. Write down each error message and what change you introduced

to provoke this error.

Tip:

When an error

message appears

at the bottom of

the editor window,

a question mark

button appears to

the right of it.

Clicking this button

displays some

additional informa-

tion about the

error message.

As we can see with this exercise, if we get one small detail wrong, Greenfoot will open the
editor, highlight a line, and display a message at the bottom of the editor window. This
message attempts to explain the error. The messages, however, vary considerably in their
accuracy and usefulness. Sometimes they tell us fairly accurately what the problem is, but
sometimes they are cryptic and hard to understand. The line that is highlighted is often the
line where the problem is, but sometimes it is the line after the problem. When you see, for
example, a “; expected” message, it is possible that the semicolon is in fact missing on
the line above the highlighted line.

We will learn to read these messages a little better over time. For now, if you get a message and
you are unsure what it means, look very carefully at your code and check that you have typed
everything correctly.

2.4 Dealing with screen edges
When we made the crabs move and turn in the previous sections, they got stuck when they
reached the edge of the screen. (Greenfoot is designed so that actors cannot leave the world and
fall off its edge.)

Now, we shall improve this behavior so that the crab notices that it has reached the world edge
and turns around. The question is, How can we do that?

22 | Chapter 2 � The first program: Little Crab

Exercise 2.9 Open the editor for the Animal class. Switch to Documentation view. Find

the list of methods for this class (the “Method Summary”). How many methods does this

class have?

Above, we have used the move and turn methods, so there might also be a method that helps
us with our new goal. (In fact, there is.) But how do we find out what methods we have got
available?

The move and turn methods we have used so far come from the Animal class. A crab is an
animal (signified by the arrow that goes from Crab to Animal in the class diagram), therefore
it can do whatever an animal can do. Our Animal class knows how to move and turn—that is
why our crab can also do it. This is called inheritance: The Crab class inherits all the abilities
(methods) from the Animal class.

The question now is, what else can our animals do?

To investigate this, we can open the editor for the Animal class. The editor can display two
different views: It can show the source code (as we have seen for the Crab class) or it can show
the documentation. The view can be switched using a popup selection menu in the top right cor-
ner of the editor window. We now want to look at the Animal class in the Documentation view
(Figure 2.3).

Method
summary View

switch

Figure 2.3
Documentation view

(with method sum-

mary) of the Animal
class

Concept:

A subclass

inherits all the

methods from its

superclass. That

means that it has

and can use all

methods that its

superclass

defines.

2.4 Dealing with screen edges | 23

If we look at the method summary, we can see all the methods that the Animal class
provides. Among them are three methods that are especially interesting to us at the moment.
They are:

boolean atWorldEdge()
Test if we are close to one of the edges of the world.

void move()
Move forward in the current direction.

void turn(int angle)
Turn “angle” degrees toward the right (clockwise).

Here we see the signatures for three methods, as we first encountered them in Chapter 1. Each
method signature starts with a return type and is followed by the method name and the parameter
list. Below it, we see a comment describing what the method does. We can see that the three
method names are atWorldEdge, move, and turn.

The move and turn methods are the ones we used in the previous sections. If we look at their
parameter lists, we can see what we observed before: move has no parameters (the parentheses
are empty), and turn expects one parameter of type int (a whole number) for the angle. (Read
Section 1.5 again if you are unsure about parameter lists.)

We can also see that the move and turn methods have void as their return type. This
means that neither method returns a value. We are commanding or instructing the object
to move or to turn. The animal will just obey the command but not respond with an answer
to us.

The signature for atWorldEdge is a little different. It is

boolean atWorldEdge()

This method has no parameters (there is nothing within the parentheses), but it specifies a return
value: boolean. We have briefly encountered the boolean type in Section 1.4—it is a type that
can hold two possible values: true or false.

Calling methods that have return values (where the return type is not void) is not like issuing a
command, but asking a question. If we use the atWorldEdge() method, the method will
respond with either true (Yes!) or false (No!). Thus, we can use this method to check whether
we are at the edge of the world.

Exercise 2.10 Create a crab. Right-click it, and find the boolean atWorldEdge()
method (it is in the inherited from Animal submenu, since the crab inherited this method

from the Animal class). Call this method. What does it return?

Exercise 2.11 Let the crab run to the edge of the screen (or move it there manually),

and then call the atWorldEdge() method again. What does it return now?

Concept:

Calling a method

with a void return
type issues a

command.

Calling a

method with a

non-void return
type asks a

question.

Concept:

An if-statement
can be used to

write instructions

that are executed

only when a certain

condition is true.

24 | Chapter 2 � The first program: Little Crab

Code 2.3
Turning around at the

edge of the world

import greenfoot.*; // (World, Actor, GreenfootImage, and Greenfoot)

/**
* This class defines a crab. Crabs live on the beach.
*/
public class Crab extends Animal
{

public void act()
{

if (atWorldEdge())
{

turn(17);
}
move();

}
}

The if-statement is a part of the Java language that makes it possible to execute commands only
if some condition is true. For example, here we want to turn only if we are near the edge of the
world. The code we have written is:

if (atWorldEdge())
{

turn(17);
}
move();

The general form of an if-statement is this:

if (condition)
{

instruction;
instruction;
...

}

In place of the condition can be any expression that is either true or false (such as our
atWorldEdge() method call), and the instructions will be executed only if the condition is
true. There can be one or more instructions.

If the condition is false, the instructions are just skipped, and execution continues under the closing
curly bracket of the if-statement.

Note that our move() method call is outside the if-statement, so it will be executed in any case.
In other words: If we are at the edge of the world, we turn and then move; if we are not at the
edge of the world, we just move.

We can now combine this method with an if-statement to write the code shown in Code 2.3.

2.5 Summary of programming techniques | 25

Exercise 2.12 Try it out! Type in the code discussed above and see if you can make

your crabs turn at the edge of the screen. Pay close attention to the opening and closing

brackets—it is easy to miss one or have too many.

Exercise 2.13 Experiment with different values for the parameter to the turn method.

Find one that looks good.

Exercise 2.14 Place the move() statement inside the if-statement, rather than after it. Find

out what is the effect and explain the behavior you observe. (Then, fix it again by moving it

back where it was.)

Tip:

In the Greenfoot

editor, when you

place the cursor

behind an opening

or closing bracket,

Greenfoot will

mark the matching

closing or opening

bracket. This can

be used to check

whether your

brackets match up

as they should.

Note: Indentation

In all the code examples you have seen so far (for instance, Code 2.3), you may have noticed

some careful indentation being used. Every time a curly bracket opens, the following lines are

indented one level more than the previous ones. When a curly bracket closes, the indentation

goes back one level, so that the closing curly bracket is directly below the matching opening

bracket. This makes it easy to find the matching bracket.

We use four spaces for one level of indentation. The Tab key will insert spaces in your editor for

one level of indentation as well.

Taking care with indentation in your own code is very important. If you do not indent carefully,

some errors (particularly misplaced or mismatched curly brackets) are very hard to spot.

Proper indentation makes code much easier to read, and thus avoid potential errors.

2.5 Summary of programming techniques
In this book, we are discussing programming from a very example-driven perspective. We intro-
duce general programming techniques as we need them to improve our scenarios. We shall sum-
marize the important programming techniques at the end of each chapter to make it clear what
you really need to take away from the discussion in order to progress well.

In this chapter, we have seen how to call methods (such as move()), with and without parame-
ters. This will form the basis for all further Java programming. We have also learnt to identify
the body of the act method—this is where we start writing our instructions.

You have encountered some error messages. This will continue throughout all your program-
ming endeavors. We all make mistakes, and we all encounter error messages. This is not a sign
of a bad programmer—it is a normal part of programming.

We have encountered a first glimpse of inheritance: Classes inherit the methods from their
superclasses. The Documentation view of a class gives us a summary of the methods available.

And, very importantly, we have seen how to make decisions: We have used an if-statement for
conditional execution. This went hand in hand with the appearance of the type boolean, a value
that can be true or false.

26 | Chapter 2 � The first program: Little Crab

Concept summary

� A method call is an instruction that tells an object to perform an action. The action is defined

by a method of the object.

� Additional information can be passed to some methods within the parentheses. The value

passed is called a parameter.

� Multiple instructions are executed in sequence, one after the other, in the order in which they

are written.

� When a class is compiled, the compiler checks to see whether there are any errors. If an error

is found, an error message is displayed.

� A subclass inherits all the methods from its superclass. That means that it has, and can use, all

methods that its superclass defines.

� Calling a method with a void return type issues a command. Calling a method with a non-void
return type asks a question.

� An if-statement can be used to write instructions that are executed only when a certain

condition is true.

In the previous chapter, we looked at the basics of starting to program our first game. There were
many new things that we had to look at. Now, we will add more interesting behavior. Adding
code will get a little easier from now on, since we have seen many of the fundamental concepts.

The first thing we shall look at is adding some random behavior.

3.1 Adding random behavior
In our current implementation, the crab can walk across the screen, and it can turn at the edge
of our world. But when it walks, it always walks exactly straight. That is what we want to
change now. Crabs don’t always go in an exact straight line, so let us add a little random
behavior: The crab should go roughly straight, but every now and then it should turn a little
off course.

We can achieve this in Greenfoot by using random numbers. The Greenfoot environment itself
has a method to give us a random number. This method, called getRandomNumber, expects a
parameter that specifies the limit of the number. It will then return a random number between
0 (zero) and the limit. For example,

Greenfoot.getRandomNumber(20)

will give us a random number between 0 and 20. The limit—20—is excluded, so the number is
actually in the range 0–19.

The notation used here is called dot notation. When we called methods that were defined in our
own class or inherited, it was enough to write the method name and parameter list. When the
method is defined in another class, we need to specify the class or object that has the method,
followed by a period (dot), followed by the method name and parameter. Since the
getRandomNumber method is not in the Crab or Animal class, but in a class called
Greenfoot, we have to write “Greenfoot.” in front of the method call.

topics: random behavior, keyboard control, sound

concepts: dot notation, random numbers, defining methods, comments

Concept:

When a method

we wish to call is

not in our own

class or inherited,

we need to specify

the class or object

that has the

method before the

method name,

followed by a dot.

This is called dot
notation.

CHAPTER

Improving the Crab—more
sophisticated programming3

28 | Chapter 3 � Improving the Crab—more sophisticated programming

Let us say we want to program our crab so that there is a 10 percent chance at every step that the
crab turns a little bit off course. We can do the main part of this with an if-statement:

if (something-is-true)
{

turn(5);
}

Now we have to find an expression to put in place of something-is-true that returns true in
exactly 10 percent of the cases.

We can do this using a random number (using the Greenfoot.getRandomNumber method)
and a less-than operator. The less-than operator compares two numbers and returns true if the
first is less than the second. “Less than” is written using the symbol “<”. For example:

2 < 33

is true, while

162 < 42

is false.

Exercise 3.1 Before reading on, try to write down, on paper, an expression using the

getRandomNumber method and the less-than operator that, when executed, is true exactly

10 percent of the time.

Exercise 3.2 Write down another expression that is true 7 percent of the time.

Concept:

Methods that

belong to classes

(as opposed to

objects) are

marked with the

keyword static in

their signature.

They are also

called class
methods.

Note: Static methods

Methods may belong to objects or classes. When methods belong to a class, we write

class-name.method-name (parameters);

to call the method. When a method belongs to an object, we write

object.method-name (parameters);

to call it.

Both kinds of methods are defined in a class. The method signature tells us whether a given

method belongs to objects of that class, or to the class itself.

Methods that belong to the class itself are marked with the keyword static at the beginning

of the method signature. For example, the signature of Greenfoot’s getRandomNumber
method is

static int getRandomNumber(int limit);

This tells us that we must write the name of the class itself (Greenfoot) before the dot in the

method call.

We will encounter calls to methods that belong to other objects in a later chapter.

3.1 Adding random behavior | 29

Note

Java has a number of operators to compare two values. They are:

< less than >= greater than or equal

> greater than == equal

<= less than or equal != not equal

If we want to express the chance in percent, it is easiest to deal with random numbers out of 100.
An expression that is true 10 percent of the time, for example, could be

Greenfoot.getRandomNumber(100) < 10

Since the call to Greenfoot.getRandomNumber(100) gives us a new random number
between 0 and 99 every time we call it, and since these numbers are evenly distributed, they will
be below 10 in 10 percent of all cases.

We can now use this to make our crab turn a little in 10 percent of its steps (Code 3.1).

Code 3.1
Random course

changes—first try

import greenfoot.*; // (World, Actor, GreenfootImage, and Greenfoot)

/**
* This class defines a crab. Crabs live on the beach.
*/
public class Crab extends Animal
{

public void act()
{

if (atWorldEdge())
{

turn(17);
}

if (Greenfoot.getRandomNumber(100) < 10)
{

turn(5);
}

move();
}

}

Exercise 3.3 Try out the random course changes shown above in your own version.

Experiment with different probabilities for turning.

This is a pretty good start, but it is not quite nice yet. First of all, if the crab turns, it always turns the
same amount (5 degrees), and secondly, it always turns right, never left. What we would really like

30 | Chapter 3 � Improving the Crab—more sophisticated programming

Exercise 3.4 Try out the code shown above. What do you observe? Does the crab turn

different amounts when it turns?

Exercise 3.5 We still have the problem that the crab turns only right. That’s not normal

behavior for a crab, so let’s fix this. Modify your code so that the crab turns either right or left

by up to 45 degrees each time it turns.

Exercise 3.6 Try running your scenario with multiple crabs in the world. Do they all turn

at the same time, or independently? Why?

The project little-crab-2 (included in the book scenarios) shows an implementation of what we
have done so far, including the last exercises.

3.2 Adding worms
Let us make our world a little more interesting by adding another kind of animal.

Crabs like to eat worms. (Well, that is not true for all kinds of crab in the real world, but there are
some that do. Let’s just say our crab is one of those that like to eat worms.) So let us now add a
class for worms.

We can add new actor classes to a Greenfoot scenario by selecting New subclass from one of the
existing actor classes (Figure 3.1). In this case, our new class Worm is a specific kind of animal,
so it should be a subclass of class Animal. (Remember, being a subclass is an is-a relationship:
A worm is an animal.)

When we are creating a new subclass, we are prompted to enter a name for the class and to select
an image (Figure 3.2).

In our case, we name the class “Worm”. By convention, class names in Java should always start
with a capital letter. They should also describe what kind of object they represent, so “Worm” is
the obvious name for our purpose.

Then, we should assign an image to the class. There are some images associated with the scenario,
and a whole library of generic images to choose from. In this case, we have prepared a worm image
and made it available in the scenario images, so we can just select the image named worm.png.

to see is that the crab turns a small, but random amount to either its left or its right. (We will discuss
this now. If you feel confident enough, try to implement this on your own first before reading on.)

The simple trick to the first problem—always turning the same amount, in our case 5 degrees—
is to replace the fixed number 5 in our code with another random number, like this:

if (Greenfoot.getRandomNumber(100) < 10)
{

turn(Greenfoot.getRandomNumber(45));
}

In this example, the crab still turns in 10 percent of its steps. And when it turns, it will turn a random
amount, between 0 and 44 degrees.

3.2 Adding worms | 31

Figure 3.1
Creating new

subclasses

Figure 3.2
Creating a new class

32 | Chapter 3 � Improving the Crab—more sophisticated programming

Exercise 3.7 Add some worms to your world. Also add some crabs. Run the

scenario. What do you observe? What do the worms do? What happens when a crab

meets a worm?

We now know how to add new classes to our scenario. The next task is to make these classes
interact: When a crab finds a worm, it should eat it.

3.3 Eating worms
We now want to add new behavior to the crab: When the crab runs into a worm, it eats it. Again,
we first check what methods we have already inherited from the Animal class. When we open
the editor for class Animal again, and switch to the Documentation view, we can see the
following two methods:

boolean canSee (java.lang.Class clss)
Return true if we can see an object of class ‘clss’ right where we are.

void eat (java.lang.Class clss)
Try to eat an object of class ‘clss’.

Using these methods, we can implement this behavior. The first method checks whether
the crab can see a worm. (It can see it only when it runs right into it—our animals are very
short-sighted.) This method returns a boolean—true or false, so we can use it in an
if-statement.

The second method eats a worm. Both methods expect a parameter of type java.lang.Class.
This means that we are expected to specify one of our classes from our scenario. Here is some
sample code:

if (canSee(Worm.class))
{

eat(Worm.class);
}

In this case, we specify Worm.class as the parameter to both method calls (the canSee
method and the eat method). This declares which kind of object we are looking for,
and which kind of object we want to eat. Our complete act method at this stage is shown in
Code 3.2.

Try this out. Place a number of worms into the world (remember: shift-clicking into the world is
a shortcut for quickly placing several actors), place a few crabs, run the scenario, and see what
happens.

Once done, we can click Ok. The class is now added to our scenario, and we can compile and
then add worms to our world.

3.4 Creating new methods | 33

Code 3.2
First version of eating

a worm

public void act()
{

if (atWorldEdge())
{

turn(17);
}

if (Greenfoot.getRandomNumber(100) < 10)
{

turn(Greenfoot.getRandomNumber(90)-45);
}
move();

if (canSee(Worm.class))
{

eat(Worm.class);
}

}

Advanced note: Packages

(The notes labeled “Advanced note” are inserted for deeper information for those readers really

interested in the details. They are not crucial to understand at this stage, and could safely be

skipped.)

In the definition of the canSee and eat methods, we have seen a parameter type with the

name java.lang.Class. What is going on here?

Many types are defined by classes. Many of those classes are in the standard Java class

library. You can see the documentation of the Java class library by choosing Java Library

Documentation from Greenfoot’s Help menu.

The Java class library contains thousands of classes. To make these a little easier to work with,

they have been grouped into packages (logically related groups of classes). When a class

name includes dots, such as java.lang.Class, only the last part is the name of the class

itself, and the former parts form the name of the package. So here we are looking at the class

named “Class” from the package “java.lang”.

Try to find that class in the Java library documentation.

3.4 Creating new methods
In the previous few sections, we have added new behavior to the crab—turning at the edge of the
world, occasional random turns, and eating worms. If we continue to do this in the way we have
done so far, the act method will become longer and longer, and eventually really hard to under-
stand. We can improve this by chopping it up into smaller pieces.

We can create our own additional methods in the Crab class for our own purposes. For exam-
ple, instead of just writing some code that looks for a worm and eats it into the act method, we
can add a new method for this purpose. To do this, we first have to decide on a name for this
method. Let us say we call it lookForWorm. We can then create a new method by adding the
following code:

/**
* Check whether we have stumbled upon a worm.
* If we have, eat it. If not, do nothing.
*/

public void lookForWorm()
{

if (canSee(Worm.class))
{

eat(Worm.class);
}

}

The first four lines are a comment. A comment is ignored by the computer—it is written for
human readers. We use a comment to explain to other human readers what the purpose of this
method is.

When we define this method, the code does not immediately get executed. In fact, by just defining
this method, it does not get executed at all. We are just defining a new possible action (“looking for
a worm”) that can be carried out later. It will only be carried out when this method is called. We
can add a call to this method inside the act method:

lookForWorm();

Note that the call has the parentheses for the (empty) parameter list. The complete source code
after this restructuring is shown in Code 3.3.

34 | Chapter 3 � Improving the Crab—more sophisticated programming

Concept:

Comments are

written into the

source code as

explanations for

human readers.

They are ignored

by the computer.

Code 3.3
Splitting code into

separate methods

public void act()
{

if (atWorldEdge())
{

turn(17);
}

if (Greenfoot.getRandomNumber(100) < 10)
{

turn(5);
}

move();
lookForWorm();

}

Concept:

A method defini-
tion defines a new

action for objects

of this class. The

action is not imme-

diately executed,

but the method

can be called with

a method call later

to execute it.

3.4 Creating new methods | 35

/**
* Check whether we have stumbled upon a worm.
* If we have, eat it. If not, do nothing.
*/
public void lookForWorm()
{

if (canSee(Worm.class))
{

eat(Worm.class);
}

}

Code 3.3
continued
Splitting code into

separate methods

Note that this code change does not change the behavior of our crab at all. It just makes the code
easier to read in the long run. As we add more code to the class, methods tend to become longer
and longer. Longer methods are harder to understand. By separating our code into a number of
shorter methods, we make the code easier to read.

Exercise 3.8 Create another new method named randomTurn (this method has no

parameters and returns nothing). Select the code that does the random turning, and move

it from the act method to the randomTurn method. Then call this new randomTurn
method from your act method. Make sure to write a comment for this method.

Exercise 3.9 Create yet another method named turnAtEdge (it also has no parameters

and returns nothing). Move the code that checks whether we are at the edge of the world (and

does the turn if we are) into the turnAtEdgemethod. Call the turnAtEdgemethod from your

act method. Your act method should now look like the version shown in Code 3.4.

Code 3.4
The new act method

after creating

methods for the

subtasks

public void act()
{

turnAtEdge();
randomTurn();
move();
lookForWorm();

}

By convention, method names in Java always start with a lowercase letter. Method names
cannot contain spaces (or many other punctuation characters). If the method name logically
consists of multiple words, we use capitals in the middle of the method name to mark the start
of each word.

36 | Chapter 3 � Improving the Crab—more sophisticated programming

Exercise 3.10 Add a new class to your scenario. The class should be a subclass of

Animal, called Lobster (with a capital ‘L’), and it should use the prepared image lobster.png.

Exercise 3.11 What do you expect lobsters to do when you place them into the world as

they are? Compile your scenario and try it out.

We now want to program our new lobsters to eat crabs. This is quite easy to do, since the behav-
ior is very similar to the behavior of crabs. The only difference is that lobsters look for crabs,
while crabs look for worms.

Exercise 3.12 Copy the complete act method from the Crab class into the Lobster
class. Also copy the complete lookForWorm, turnAtEdge, and randomTurn methods.

Exercise 3.13 Change the Lobster code so that it looks for crabs, rather than worms.

You can do that by changing every occurrence of “Worm” in the source code to “Crab”. For

instance, where Worm.class is mentioned, change it to Crab.class. Also change the

name lookForWorm to lookForCrab. Make sure to update your comments.

Exercise 3.14 Place a crab, three lobsters, and many worms into the world. Run the

scenario. Does the crab manage to eat all worms before it is caught by a lobster?

You should now have a version of your scenario where both crabs and lobsters walk around
randomly, looking for worms and crabs, respectively.

Now, let us turn this program into a game.

3.6 Keyboard control
To get game-like behavior, we need to get a player involved. The player (you!) should be able to
control the crab with the keyboard, while the lobsters continue to run randomly by themselves,
as they already do.

The Greenfoot environment has a method that lets us check whether a key on the keyboard has been
pressed. It is called isKeyDown, and, like the getRandomNumber method that we encountered in
section 3.1, it is a method in the Greenfoot class. The method signature is

static boolean isKeyDown(String key)

We can see that the method is static (it is a class method) and the return type is boolean. This
means that the method returns either true or false, and can be used as a condition in an if-statement.

3.5 Adding a Lobster
We are now at a stage where we have a crab that walks more or less randomly through our world,
and eats worms if it happens to run into them.

To make it a little more interesting, let us add another creature: a lobster.

Lobsters, in our scenario, like to chase crabs.

3.6 Keyboard control | 37

We also see that the method expects a parameter of type String. A String is a piece of text (such
as a word or a sentence), written in double quotes. The following are examples of Strings:

“This is a String”
“name”
“A”

In this case, the String expected is the name of the key that we want to test. Every key on the key-
board has a name. For those keys that produce visible characters, that character is their name, for
example, the A-key is called “A”. Other keys have names too. For instance, the left cursor key is
called “left”. Thus, if we want to test whether the left cursor key has been pressed, we can write

if (Greenfoot.isKeyDown(“left”))
{

...// do something
}

Note that we need to write “Greenfoot.” in front of the call to isKeyDown, since this method
is defined in the Greenfoot class.

If, for example, we want our crab to turn left by 4 degrees whenever the left cursor key is being
pressed, we can write

if (Greenfoot.isKeyDown(“left”))
{

turn(-4);
}

The idea now is to remove the code from the crab that does the random turning and also the code
that turns automatically at the world edge and replace them with the code that lets us control the
crab’s turn with our keyboard.

Exercise 3.15 Remove the random turning code from the crab.

Exercise 3.16 Remove the code from the crab that does the turn at the edge of the world.

Exercise 3.17 Add code into the crab’s actmethod that makes the crab turn left whenever

the left cursor key is pressed. Test.

Exercise 3.18 Add another—similar—bit of code to the crab’s act method that makes

the crab turn right whenever the right cursor key is pressed.

Exercise 3.19 If you have not done so in the first place, make sure that the code that

checks the key-presses and does the turning is not written directly in the act method, but is

instead in a separate method, maybe called checkKeypress. This method should be

called from the act method.

Tip:

Greenfoot automat-

ically saves classes

and scenarios

when their windows

are closed. To keep

a copy of interim

stages of scenar-

ios, use Save A
Copy As from the

Scenario menu.

Try solving the tasks by yourself first. If you get stuck, have a look on the next page. Code 3.5
shows the crab’s complete act and checkKeypress methods after this change. The solution is
also available in the book scenarios, as little-crab-3. This version includes all the changes we
have discussed so far.

38 | Chapter 3 � Improving the Crab—more sophisticated programming

Concept:

The API
Documentation
lists all classes

and methods avail-

able in Greenfoot.

We often need to

look up methods

here.

You are now ready to have a first try at playing your game! Place a crab, some worms, and a few
lobsters into the world, and see whether you can get all the worms before the lobsters catch you.
(Obviously, the more lobsters you place, the harder it gets...)

3.7 Ending the game
One simple improvement we can make is to end execution of the game when the crab is caught
by a lobster. Greenfoot has a method to do this—we just need to find out what it is called.

To find out what the available methods in Greenfoot are, we can look at the documentation of
the Greenfoot classes.

In Greenfoot, choose Greenfoot Class Documentation from the Help menu. This will show the
documentation for all the Greenfoot classes in a Web browser (Figure 3.3).

This documentation is also called the Greenfoot API (for application programmers’ interface).
The API shows all available classes and, for each class, all the available methods. You can see
that Greenfoot offers five classes: Actor, Greenfoot, GreenfootImage, MouseInfo, and
World.

Code 3.5
The Crab’s “act”
method: Controlling

the crab with the

keyboard

/**
* Act - do whatever the crab wants to do.
*/

public void act()
{

checkKeypress();
move();
lookForWorm();

}

/**
* Check whether a control key on the keyboard has been pressed.
* If it has, react accordingly.
*/
public void checkKeypress()
{

if (Greenfoot.isKeyDown(“left”))
{

turn(-4);
}
if (Greenfoot.isKeyDown(“right”))
{

turn(4);
}

}

3.7 Ending the game | 39

Figure 3.3
The Greenfoot API in

a browser window

The method we are looking for is in the Greenfoot class.

Exercise 3.20 Open the Greenfoot API in your browser. Select the Greenfoot class.

In its documentation, find the section titled “Method Summary”. In this section, try to

find a method that stops the execution of the running scenario. What is this method

called?

Exercise 3.21 Does this method expect any parameters? What is its return type?

We can see the documentation of the Greenfoot classes by selecting them in the list on the
left. For each class, the main panel in the browser displays a general comment, details
of its constructors, and a list of its methods. (Constructors will be discussed in a later
chapter.)

If we browse through the list of available methods in the class Greenfoot, we can find a
method named stop. This is the method that we can use to stop execution when the crab gets
caught.

40 | Chapter 3 � Improving the Crab—more sophisticated programming

We can make use of this method by writing

Greenfoot.stop();

into our source code.

Exercise 3.22 Add code to your own scenario that stops the game when a lobster catches

the crab. You will need to decide where this code needs to be added. Find the place in your

code that gets executed when a lobster eats a crab, and add this line of code there.

We will use this class documentation frequently in the future to look up details of methods we
need to use. We will know some methods by heart after a while, but there are always methods we
need to look up.

3.8 Adding sound
Another improvement to our game is the addition of sounds. Again, a method in the Greenfoot
class helps us with this.

Exercise 3.23 Open the Greenfoot Class Documentation (from the Help menu), and

look at the documentation of class Greenfoot. Find the details of the method that can be

used to play a sound. What is its name? What parameters does it expect?

By looking through the documentation, we can see that the Greenfoot class has a method
called playSound. It expects the name of a sound file (as String) as a parameter, and returns
nothing.

Note

You may like to look at the structure of a Greenfoot scenario in your file system. If you look into

the folder containing the book scenarios, you can find a folder for each Greenfoot scenario. For

the crab example, there are several different versions (little-crab, little-clab-2,

little-crab-3, etc.). Inside each scenario folder are several files for each scenario class, and

several other support files. There are also two media folders: images holds the scenario images

and sounds stores the sound files.

You can see the available sounds by looking into this folder, and you can make more sounds

available by storing them here.

In our crab scenario, two sound files are already included. They are called slurp.wav
and au.wav.

3.8 Adding sound | 41

Exercise 3.24 Add playing of sounds to your scenario: When a crab eats a worm, play

the “slurp.wav” sound. When a lobster eats the crab, play the “au.wav” sound. To do this,

you have to find the place in your code where this should happen.

The little-crab-4 version of this scenario shows the solution to this. It is a version of the project
that includes all the functionality we have discussed so far: worms, lobsters, keyboard control,
and sound (Figure 3.4).

Figure 3.4
The crab game with

worms and lobsters

We can now easily play one of the sounds by using the following method call:

Greenfoot.playSound(“slurp.wav”);

Try it out!

42 | Chapter 3 � Improving the Crab—more sophisticated programming

Exercise 3.25 If you have a microphone on your computer, make your own sounds to

use when the worms or the crab get eaten. Record the sounds with any sound recording

program, store them in the scenario’s sounds folder, and use them in your code.

3.9 Summary of programming techniques
In this chapter we have seen more examples of using an if-statement—this time for turning at
random times and reacting to key presses. We have also seen how to call methods from another
class, namely the getRandomNumber, isKeyDown, and playSound methods from the
Greenfoot class. We did this by using dot notation, with the class name in front of the dot.

Altogether, we have now seen examples of calling methods from three different places. We can
call methods that are defined in the current class itself (called local methods), method that were
defined in a superclass (inherited methods), and static methods from other classes. The last of
these uses dot notation. (There is one additional version of a method call: calling methods on
other objects—we will encounter that a little later.)

Another important aspect that we explored was how to read the API documentation of an existing
class to find out what methods it has and how to call them.

About sound recording

You can also make your own sounds. Both the sounds included are recorded by simply speaking

into the computer’s microphone. Use one of the many free sound recording programs1, record

your sound, and save (or export) it as a sound file, in either WAV, AIFF, or AU format. Making your

own sounds is further discussed in Chapter 8.

1 Using an Internet search, you should be able to find several free programs that can record and save
sounds. One good program is Audacity (http://audacity.sourceforge.net), but there are many others.

Concept summary

� When a method we wish to call is not in our own class or inherited, we need to specify the class or

object that has the method before the method name, followed by a dot. This is called dot notation.

� Methods that belong to classes (as opposed to objects) are marked with the keyword static in

their signature. They are also called class methods.

� A method definition defines a new action for objects of this class. The action is not immedi-

ately executed, but the method can be called with a method call later to execute it.

� Comments are written into the source code as explanations for human readers. They are

ignored by the computer.

� The API Documentation lists all classes and methods available in Greenfoot. We often need to

look up methods here.

http://audacity.sourceforge.net

topics: world initialization, setting images, animating images

concepts: constructors, state, instance variables (fields), assignment, new (creating

objects programmatically)

In this chapter, we will finish the crab game. “Finish” here means that this is where we stop
discussing this project in this book. Of course, a game is never finished—you can always think
of more improvements that you can add. We will suggest some ideas at the end of this chapter.
First, however, we will discuss a number of improvements in detail.

4.1 Adding objects automatically
We are now getting close to having a playable little game. However, a few more things need to
be done. The first problem that should be addressed is the fact that we always have to place the
actors (the crab, lobsters, and worms) manually into the world. It would be better if that
happened automatically.

There is one thing that happens automatically every time we successfully compile: The world itself
is created. The world object, as we see it on screen (the sand-colored square area), is an instance of
the CrabWorld class. World instances are treated in a special way in Greenfoot: While we have to
create instances of our actors ourselves, the Greenfoot system always automatically creates one
instance of our world class and displays that instance on screen.

Let us have a look at the CrabWorld’s source code (Code 4.1). (If you do not have your own
crab game at this stage, use little-crab-4 for this chapter.)

In this class, we see the usual import statement in the first line. (We will discuss this statement
in detail later—for now it is enough to know that this line will always appear at the top of our
Greenfoot classes.)

Then follows the class header, and a comment (the block of lines in a blue-ish color starting with
asterisks—we have encountered them already in the last chapter). Comments usually start with
a /** symbol and end with */.

CHAPTER

Finishing the crab game4

44 | Chapter 4 � Finishing the crab game

Concept:

A constructor of

a class is a special

kind of method

that is executed

automatically

whenever a

new instance is

created.

Code 4.1
Source code of the

CrabWorld class

import greenfoot.*; // (Actor, World, Greenfoot, GreenfootImage)

public class CrabWorld extends World
{

/**
* Create the crab world (the beach). Our world has a size
* of 560x560 cells, where every cell is just 1 pixel.
*/
public CrabWorld()
{

super(560, 560, 1);
}

}

Next comes the interesting part:

public CrabWorld()
{

super(560, 560, 1);
}

This is called the constructor of this class. A constructor looks quite similar to a method, but
there are some differences:

� A constructor has no return type specified between the keyword “public” and the name.

� The name of a constructor is always the same as the name of the class.

A constructor is a special kind of method that is always automatically executed whenever an
instance of this class is created. It can then do what it wants to do to set up this new instance into
a starting state.

In our case, the constructor sets the world to the size we want (560 by 560 cells) and a resolution
(1 pixel per cell). We will discuss world resolution in more detail later in this book.

Since this constructor is executed every time a world is created, we can use it to automatically
create our actors. If we insert code into the constructor to create an actor, that code will be
executed as well. For example,

public CrabWorld()
{

super(560, 560, 1);
addObject(new Crab(), 150, 100);

}

This code will automatically create a new crab, and place it at location x=150, y=100 into the
world. The location 150,100 is 150 cells from the left edge of the world, and 100 cells from
the top. The origin—the 0,0 point—of our coordinate system is at the top left of the world
(Figure 4.1).

4.2 Creating new objects | 45

0

0

y

xFigure 4.1
The coordinate

system of the

world

We are using two new things here: the addObject method, and the new statement to create the
new crab.

The addObject method is a method of the World class. We can look it up by looking at the
class documentation for class World. There, we see that it has the following signature:

void addObject(Actor object, int x, int y)

Reading the signature from start to finish, this tells us the following:

� The method does not return a result (void return type).

� The name of the method is addObject.

� The method has three parameters, named object, x, and y.

� The type of the first parameter is Actor, the type of the other two is int.

This method can be used to add a new actor into the world. Since the method belongs to the
World class and CrabWorld is a World (it inherits from the World class), this method is
available in our CrabWorld class, and we can just call it.

4.2 Creating new objects
The addObject method allows us to add an actor object to the world. However, in order to add
an object, we must first have an object to add.

The Java keyword new allows us to create new objects of any of the existing classes. For example,
the expression

new Crab()

creates a new instance of class Crab. The expression to create new objects always starts with
the keyword new, followed by the name of the class we wish to create and a parameter list
(which is empty in our example). The parameter list allows us to pass parameters to the con-
structor. Since we did not specify a constructor for our Crab class, the default parameter list
is empty.

Concept:

Java objects can

be created pro-

grammatically

(from within your

code) by using the

new keyword.

46 | Chapter 4 � Finishing the crab game

Figure 4.2
Two slightly different

images for the crab

You should now have a version of your crab project that places the crab, lobsters, and worms
into the world automatically, whenever you compile your scenario. (If you have trouble, look
into the little-crab-5 scenario in the book projects—it includes this code and the remaining
changes from this chapter.)

4.3 Animating images
The next thing we shall discuss in relation to the crab scenario is animation of the crab image.
To make the movement of the crab look a little better, we plan to change the crab so that it moves
its legs while it is walking.

Animation is achieved with a simple trick: We have two different images of the crab (in our
scenario, they are called crab.png and crab2.png), and we simply switch the crab’s image
between these two versions fairly quickly. The position of the crab’s legs in these images is
slightly different (Figure 4.2).

When we create a new object, we have to do something with it. We can now use it in place of the
actor parameter of the addObject method to add this object to the world.

addObject(new Crab(), 150, 100);

The remaining two parameters specify the x and y coordinates of the position where we wish to
add the object.

Exercise 4.1 Add code to the CrabWorld constructor of your own project to create a

crab automatically, as discussed above.

Exercise 4.2 Add code to automatically create three lobsters in the CrabWorld. You

can choose arbitrary locations for them in the world.

Exercise 4.3 Add code to create 10 worms at arbitrary locations in the CrabWorld.

Exercise 4.4 Move all the code that creates the objects into a separate method, called

populateWorld, in the CrabWorld class. You need to declare the populateWorld method

yourself (it takes no parameters and returns nothing) and call it from the constructor. Try it out.

Exercise 4.5 Use random numbers for the coordinates of the worms. You can do this by

replacing your coordinate values with calls to get random numbers from the Greenfoot class.

b) crab with legs ina) crab with legs out

4.4 Greenfoot images | 47

Concept:

Greenfoot actors

maintain their

visible image by

holding an object

of type

GreenfootImage.

The effect of this (switching back and forth between these images) will be that the crab looks as
if it is moving its legs.

In order to do this, we have to introduce two new concepts: variables and Greenfoot images.

4.4 Greenfoot images
Greenfoot provides a class called GreenfootImage that helps in using and manipulating
images. We can obtain an image by constructing a new GreenfootImage object—using Java’s
new keyword—with the file name of the image file as a parameter to the constructor. For exam-
ple, to get access to the crab2.png image, we can write

new GreenfootImage(“crab2.png”)

The file we name here must exist in the scenario’s images folder.

All Greenfoot actors have images. By default, actors get their image from their class. We assign
an image to the class when we create it, and every object created from that class will receive,
upon creation, a copy of that same image. That does not mean, however, that all objects of the
same class must always keep the same image. Every individual actor can decide to change its
image at any time.

Exercise 4.6 Check the documentation of the Actor class. There are two methods that

allow us to change an actor’s image. What are they called, and what are their parameters?

What do they return?

If you did the exercise above, you will have seen that one method to set an actor’s image expects
a parameter of type GreenfootImage. This is the method we shall use. We can create a
GreenfootImage object from an image file as described above, and then use the actor’s
setImage method to use it for the actor. Here is a code snippet to do this:

setImage(new GreenfootImage(“crab2.png”));

Note that we do two things in this line: We call the setImage method, which expects an image
as a parameter:

setImage(some-image);

And in the place of the image to use, we write

new GreenfootImage(“crab2.png”)

This creates the image object from the named image file (crab2.png). When the whole line is
executed, the inner part of the code—the creation of the GreenfootImage object—is executed
first. Following that, the setImage method call is executed, and the image object we just
created is passed as a parameter.

48 | Chapter 4 � Finishing the crab game

Concept:

Instance variables
(also called fields)

can be used to

store information

(objects or values)

for later use.

Code 4.2
The Crab class with

two instance variables

import greenfoot.*; // (Actor, World, Greenfoot, GreenfootImage)

// comment omitted

public class Crab extends Animal
{

private GreenfootImage image1;
private GreenfootImage image2;

// methods omitted

}

For our purpose, it is better to separate the creation of the image object and the setting of the
image. The reason for this is that we want to switch the image back and forth many times while
the crab is walking. That means, we want to set the image many times, but we still need to create
each of our two images only once.

Thus, we shall first create the images and store them, and later we shall use the stored images
(without creating them again) over and over to alternate our displayed image.

To store the two images in our crab object, we need a new construct that we have not used before:
a variable.

4.5 Instance variables (fields)
Often, our actors need to remember some information. In programming languages, this is
achieved by storing the information in a variable.

Java supports different kinds of variables. The first one we shall look at here is called an instance
variable, or field. (These two terms are synonymous.) We shall see other kinds of variables later.

An instance variable is a bit of memory that belongs to the object (the instance of the class,
hence the name). Anything stored in it will be remembered as long as the object exists and can
be accessed later.

An instance variable is declared in a class by writing the keyword private followed by the type
of the variable and the variable name:

private variable-type variable-name;

The type of the variable defines what we want to store in it. In our case, since we want to store
objects of type GreenfootImage in our variable, the type should be GreenfootImage. The
variable name gives us a chance to give a name to the variable that we can use later to refer to it.
It should describe what this variable is used for.

Let us look at our Crab class as an example (Code 4.2).

4.6 Assignment | 49

In this example, we have declared two variables in our Crab class. Both are of type
GreenfootImage, and they are called image1 and image2.

We will always write instance variable declarations at the top of our class, before the constructors
and methods. Java does not enforce this, but it is a good practice so that we can always find
variable declarations easily when we need to see them.

Exercise 4.7 Before adding this code, right-click a crab object in your world and select

Inspect from the crab’s popup menu. Make a note of all the variables that are shown in the

crab object.

Exercise 4.8 Why do you think the crab has any variables at all, even though we have

not declared any in our Crab class?

Exercise 4.9 Add the variable declarations shown on Code 4.2 above to your version of

the Crab class. Make sure that the class compiles.

Exercise 4.10 After adding the variables, inspect your crab object again. Take a note of

the variables and their values (shown in the white boxes).

Note that the declaration of these two GreenfootImage variables does not give us two
GreenfootImage objects. It just gives us some empty space to store two objects (Figure 4.3).
In this figure, the instance variables are depicted as two white boxes.

Crab

image1

image2

Figure 4.3
A crab object with

two empty instance

variables

Next, we have to create the two image objects and store them into the variables. The creation of
the objects has already been seen above. It was achieved with the code snippet

new GreenfootImage(“crab2.png”)

To store the object into the variable, we need a Java construct knows as an assignment.

4.6 Assignment
An assignment is a statement that enables us to store something into a variable. It is written with
an equals symbol:

variable = expression;

50 | Chapter 4 � Finishing the crab game

Concept:

When an object is

assigned to a vari-

able, the variable

contains

a reference to

that object.

Concept:

An assignment
statement assigns

an object or a

value to a variable.

Figure 4.4
A crab object with

two variables, point-

ing to image objects

On the left of the equals symbol is the name of the variable we want to store into, on the right
is the thing that we want to store. Since the equals symbol stands for assignment, it is also
called the assignment symbol. We usually read it as “becomes”, like this: “variable becomes
expression”.

In our crab example, we write

image1 = new GreenfootImage(“crab.png”);
image2 = new GreenfootImage(“crab2.png”);

These two lines of code will create the two images we wish to use and store them into our two
variables image1 and image2. Following these statements, we have three objects (one crab
and two images), and the crab’s variables contain references to the images. This is shown in
Figure 4.4.

The next question regarding the creation of these images is where to put the code that creates the
images and stores them into the variables. Since this should be done only once when the crab
object is created, and not every time we act, we cannot put it into the act method. Instead, we
put this code into a constructor.

4.7 Using actor constructors
At the beginning of this chapter, we have seen how to use the constructor of the world class to
initialize the world. In a similar manner, we can use a constructor of an actor class to initialize
the actor. The code in the constructor is executed once when the actor is created. Code 4.3 shows
a constructor for the Crab class that initializes the two instance variables by creating images and
assigning them to the variables.

4.7 Using actor constructors | 51

Code 4.3
Initializing the

variables in the

constructor

import greenfoot.*; // (Actor, World, Greenfoot, GreenfootImage)

// comment omitted

public class Crab extends Animal
{

private GreenfootImage image1;
private GreenfootImage image2;

/**
* Create a crab and initialize its two images.
*/
public Crab()
{

image1 = new GreenfootImage(“crab.png”);
image2 = new GreenfootImage(“crab2.png”);
setImage(image1);

}

// methods omitted
}

The same rules described for the World constructor apply to the Crab constructor:

� The signature of a constructor does not include a return type.

� The name of the constructor is the same as the name of the class.

� The constructor is automatically executed when a crab object is created.

The last rule—that the constructor is automatically executed—ensures that the image objects
are automatically created and assigned when we create a crab. Thus, after creating the crab, the
situation will be as depicted in Figure 4.4.

The last line of the constructor sets the first of the two created images as the crab’s current
image:

setImage(image1);

This demonstrates how the name of the variable (image1) can be used now to refer to the image
object stored in it.

Exercise 4.11 Add this constructor to your Crab class. You will not yet see any change

in the behavior of the crab, but the class should compile, and you should be able to create

crabs.

52 | Chapter 4 � Finishing the crab game

Code 4.4
Alternating between

two images

if (getImage() == image1)
{

setImage(image2);
}
else
{

setImage(image1);
}

4.8 Alternating the images
We have now reached a stage where the crab has two images available to do the animation. But
we have not done the animation itself yet. This is now relatively simple.

To do the animation, we need to alternate between our two images. In other words, at every step,
if we are currently showing image1, we now want to show image2, and vice versa. Here is
some pseudo-code to express this:

if (our current image is image1) then
use image2 now

else
use image1 now

Pseudo-code, as used here, is a technique expressing a task in a structure that is partly like real
Java code, and partly plain English. It often helps in working out how to write our real code. We
can now show the same in real Java code (Code 4.4).

Exercise 4.12 Inspect your crab object again. Take a note again of the variables and

their values. Compare those to the notes you took previously.

Concept:

We can test

whether two things

are equal by using

a double equals

symbol: ==.

In this code segment, we notice several new elements:

� The method getImage can be used to receive the actor’s current image.

� The operator = = (two equal signs) can be used to compare one value with another. The result
is either true or false.

� The if statement has an extended form that we have not seen before. This form has an else
keyword after the first body of the if statement, followed by another block of statements. We
investigate this new form of the if statement in the next section.

Pitfall It is a common mistake to get the assignment operator (=) and the operator to check

equality (==) mixed up. If you want to check whether two values or variables are equal, you

must write two equal symbols.

4.10 Counting worms | 53

4.9 The if/else statement
Before moving on, let us investigate the if statement again in some more detail. As we have just
seen, an if statement can be written in the form

if (condition)
{

statements;
}
else
{

statements;
}

This if statement contains two blocks (pairs of curly brackets surrounding a list of statements):
the if-clause and the else-clause (in this order).

When this if statement is executed, first the condition is evaluated. If the condition is true, the
if-clause is executed, and then execution continues below the else-clause. If the condition is
false, the if-clause is not executed, instead we execute the else-clause. Thus, one of the two
statement blocks is always executed, but never both.

The else part with the second block is optional—leaving it off leads to the shorter version of the
if statement we have seen earlier.

We have now seen everything we need to finalize this task. It is time to get our hands on the
keyboard again to try it out.

Concept:

The if/else
statement exe-

cutes a segment

of code when a

given condition is

true, and a differ-

ent segment of

code when it is

false.

Exercise 4.13 Add the image switching code, as shown in Code 4.4, to the act method

of your own Crab class. Try it out. (If you get an error, fix it. This should work.) Also try click-

ing the Act button instead of the Run button in Greenfoot—this allows us to observe the

behavior more clearly.

Exercise 4.14 In Chapter 3, we discussed using separate methods for subtasks, rather

than writing more code directly into the act method. Do this with the image switching code:

Create a new method called switchImage, move your image switching code to it, and call

this method from within your act method.

Exercise 4.15 Call the switchImage method interactively from the crab’s popup

menu. Does it work?

4.10 Counting worms
The final thing we shall discuss with the crabs is counting. We want to add functionality so that
the crab counts how many worms it has eaten, and if it has eaten eight worms, we win the game.
We also want to play a short “winning sound” when this happens.

54 | Chapter 4 � Finishing the crab game

To make this happen, we shall need a number of additions to our crab code. We need

� an instance variable to store the current count of worms eaten;

� an assignment that initializes this variable to 0 at the beginning;

� code to increment our count each time we eat a worm; and

� code that checks whether we have eaten eight worms, and stops the game and plays the sound
if we have.

Let us do the tasks in this order in which we have listed them here.

We can define a new instance variable by following the pattern introduced in Section 4.5. Below
our two existing instance variable definitions, we add the line

private int wormsEaten;

The word private is used at the beginning of all our instance variable definitions. The following
two words are the type and the name of our variable. The type int indicates that we want to store
integers (whole numbers) in this variable, and the name wormsEaten indicates what we intend to
use it for.

Next, we add the following line to the end of our constructor:

wormsEaten = 0;

This initializes the wormsEaten variable to 0 when the crab is created. Strictly speaking, this is
redundant, since instance variables of type int are initialized to 0 automatically. However,
sometimes we want the initial value to be something other than 0, so writing our own initializa-
tion statement is a good practice.

The last bit is to count the worms and check whether we have reached eight. We need to do
this every time we eat a worm, so we find our lookForWorm method, where we have our
code that does the eating of the worms. Here, we add a line of code to increment the worm
count:

wormsEaten = wormsEaten + 1;

In this assignment, the right-hand side of the assignment symbol is evaluated first
(wormsEaten+1). Thus, we read the current value of wormsEaten and add 1 to it. Then we
assign the result back to the wormsEaten variable. As a result, the variable will be incre-
mented by 1.

Following this, we need an if statement that checks whether we have eaten eight worms yet, and
plays the sound and stops execution if we have.

Code 4.5 shows the complete lookForWorm method with this code. The sound file used here
(fanfare.wav) is included in the sounds folder in your scenario, so it can just be played.

Exercise 4.16 Add the code discussed above into your own scenario. Test it, and make

sure that it works.

4.11 More ideas | 55

Code 4.5
Counting worms

and checking

whether we win

/**
* Check whether we have stumbled upon a worm.
* If we have, eat it. If not, do nothing. If we have
* eaten eight worms, we win.
*/
public void lookForWorm()
{

if (canSee(Worm.class))
{

eat(Worm.class);
Greenfoot.playSound(“slurp.wav”);

wormsEaten = wormsEaten + 1;
if (wormsEaten == 8)
{

Greenfoot.playSound(“fanfare.wav”);
Greenfoot.stop();

}
}

}

Exercise 4.17 As a further test, open an object inspector for your crab object (by selecting

Inspect from the crab’s popup menu) before you start playing the game Leave the inspector

open and keep an eye on the wormsEaten variable while you play.

4.11 More ideas
The scenario little-crab-5, in the book scenarios folder, shows a version of the project that
includes all the extensions discussed here.

We will leave this scenario behind now and move on to a different example, although there are
many obvious things (and probably many more less obvious things) you can do with this project.
Ideas include

� using different images for the background and the actors;

� using more different kinds of actors;

� not moving forward automatically, but only when the up-arrow key is pressed;

� building a two-player game by introducing a second keyboard-controlled class that listens to
different keys;

� making new worms pop up when one is eaten (or at random times); and

� many more that you can come up with yourselves.

56 | Chapter 4 � Finishing the crab game

Exercise 4.18 The crab image changes fairly quickly while the crab runs, which makes

our crab look a little hyperactive. Maybe it would look nicer if the crab image changed only

on every second or third act cycle. Try to implement this. To do this, you could add a

counter that gets incremented in the act method. Every time it reaches 2 (or 3), the image

changes, and the counter is reset to 0.

4.12 Summary of programming techniques
In this chapter, we have seen a number of new programming concepts. We have seen how
constructors can be used to initialize objects—constructors are always executed when a new
object is created. We have seen how to use instance variables—also called fields—and
assignment statements to store information, and how to access that information later. We
have used the new statement to programmatically create new objects, and finally, we have
seen the full version of the if statement, which includes an else part that is executed when the
condition is not true.

With all these techniques together, we can now write quite a good amount of code already.

Concept summary

� A constructor of a class is a special kind of method that is executed automatically whenever a

new instance is created.

� Java objects can be created programmatically (from within your code) by using the new
keyword.

� Greenfoot actors maintain their visible image by holding an object of type GreenfootImage.

These are stored in an instance variable inherited from class Actor.

� Instance variables (also called fields) can be used to store information (objects or values) for

later use.

� An assignment statement assigns an object or a value to a variable.

� When an object is assigned to a variable, the variable contains a reference to that object.

� We can test whether two things are equal by using a double equals symbol: ==.

� The if/else statement executes a segment of code when a given condition is true, and a

different segment of code when it is false.

INTERLUDE

Sharing your scenarios1
In this section, we will not introduce new programming techniques, but rather go on a quick
detour to discuss how you can share what you have created with others. The “others” may be
your friend sitting next to you, or another Greenfoot programmer on the other side of the world.
In these times of the global Internet this does not make much difference anymore.

I1.1 Exporting your scenario
When you have finished writing a scenario—maybe a game or a simulation—you may want to
enable others to use it. Those users should have the opportunity to start (and restart) the game,
but they do not need access to the class diagram or the source code. They should not modify the
game, instead they just use it.

In Greenfoot, this is done by exporting the scenario. You can export your scenario by selecting
Export from the Scenario menu. This will show a dialog that lets you choose from three
export options: Application, Webpage, and Publish.

I1.2 Export to application
The first export option is an export to an application. An application is a stand-alone program
that users can execute locally on their computer.

To do this, choose Application in the export dialog. You can then choose a location and a name
for the executable scenario that you are about to create (Figure I1.1).

For a scenario to work well when exported, it is important that it automatically creates all the
actors you want to see on the screen at the start of the game. The user will not be able to create
objects interactively. This means that usually your world should have a “populate” method, like
the one we created for the crab game.

Using this function will create an executable jar file. This is a file with a “.jar” suffix (short for
Java Archive), which can be executed on many different operating systems (as long as Java has
been installed on that machine). Just double-click the jar file to execute it.

When the application runs, the scenario will look just like it did in Greenfoot, except that the
class diagram and the Compile button are not present. The user can run the scenario, but not
edit or compile.

Concept:

A jar file is a

single file with

the suffix jar that

contains all Java

classes that

belong to an

application.

58 | Interlude 1 � Sharing your scenarios

Figure I1.2
Export to a web

page

Figure I1.1
Exporting a scenario

to an application

The “Lock scenario” option disables the moving of actors in the world before starting the appli-
cation, as well as removing the Act button and the execution speed slider. If you have a game,
you typically want to lock the scenario, whereas for a simulation or other more experimental
scenarios you may want to leave it unlocked to allow users to experiment more.

I1.3 Export to a web page
The second option is to export your scenario to a web page (Figure I1.2). The options in the
export dialog are as before, but this function creates a web page (in HTML format) and converts
your scenario to an applet that will run in that web page.

You can execute your scenario by opening the generated web page in a web browser.

I1.4 Publishing on the Greenfoot Gallery | 59

If you have access to a web server, you can now publish this page on the web. If you do not have
access to a web server, then the next option may be for you.

I1.4 Publishing on the Greenfoot Gallery
The last export option you have is to publish your scenario to the Greenfoot Gallery. The
Greenfoot Gallery is a public web site (at the address http://greenfootgallery.org) that allows
Greenfoot users to upload their Greenfoot scenarios for the world to see and play.

The export dialog (Figure I1.3) shows the site address at the top. Click here to open the web site
and see what is there. It is probably best if you have a look through the site first.

Figure I1.3
Publish to the

Greenfoot Gallery

http://greenfootgallery.org

60 | Interlude 1 � Sharing your scenarios

Concept summary

� A jar file is a single file with the suffix jar that contains all Java classes that belong to an

application.

� An applet is a version of a Java program that can run on a web page inside a web browser.

In the Gallery, everyone can view and execute scenarios, but if you want to rate them, leave
comments, or upload your own scenarios, you need to create an account on the site. This is
quick and easy.

After creating an account, you can easily upload your own scenario to the Greenfoot Gallery,
using the dialog shown in Figure I1.3. The dialog allows you to add an icon, a description, and
tags that identify your scenario.

If you choose to publish the source code (using the Publish source code checkbox), your
full source code will be copied to the Gallery site, where everybody else can then download it,
read it, and make their own versions of your scenario.

Your published scenarios can be changed and improved later just by exporting again with the
same title.

Publishing your scenarios to the Gallery can be a good way to get feedback from other users:
comments on what works and what doesn’t, and suggestions what you could add to the program.
The Gallery is also a good place to get ideas for further functionality, or to learn how to do
things. Just look for scenarios with source code, download the source, and check how other
programmers have implemented their classes.

Concept:

An applet is a

version of a Java

program that can

run on a web page

inside a web

browser.

topics: sound

concepts: abstraction, loops, arrays, OO structure

In this chapter we shall start on a new scenario: a piano that we can play with our computer
keyboard. Figure 5.1 shows what it could look like once we’re finished.

We start again with opening a scenario from the book scenarios: piano-1. This is a version of
our scenario that has the resources in it that we will need (the images and the sound files),
but not much else. We shall use this as the base scenario to start writing the code to build the
piano.

CHAPTER

Making music:
An on-screen piano5

Exercise 5.1 Open the scenario piano-1 and examine the code for the two existing

classes, Piano and Key. Make sure you know what code is present and what it does.

Figure 5.1
The goal for this

chapter: an

on-screen piano

62 | Chapter 5 � Making music: An on-screen piano

5.1 Animating the key
When you examine the existing code, you see that not much is there at present: The
Piano class only specifies the size and resolution of the world, and the Key class contains
only method stubs (empty methods) for the constructor and the act method (shown in
Code 5.1).

Exercise 5.2 Create an object of class Key and place it into the world. Create several of

them and place them next to each other.

Code 5.1
The initial Key class import greenfoot.*; // (World, Actor, GreenfootImage, and Greenfoot)

public class Key extends Actor
{

/**
* Create a new key.
*/

public Key()
{
}

/**
* Do the action for this key.
*/

public void act()
{
}

}

We can start experimenting by creating an object of class Key and placing it into the world. You
see that its image is that of a simple white key, and it does nothing at all when we run the scenario.

Our first task will be to animate the piano key: When we press a key on the keyboard, we would
like the piano key on screen to change so that it appears to be pressed down. The scenario as it is
already contains two image files named white-key.png and white-key-down.png, which we can
use to show these two states. (It also contains two more image files, black-key.png and black-
key-down.png, which we shall use later for the black keys.) The white-key.png image is the one
that we currently see when we create a key.

We can create the effect of the key being pressed quite easily by switching between the two
images when a specific key on the keyboard is pressed. Code 5.2 shows a f irst attempt
at this.

5.1 Animating the key | 63

Exercise 5.3 Implement this version of the act method in your own scenario. Test it—

make sure it works.

Code 5.2
First version of

the act method:

changing images

public void act()
{

if (Greenfoot.isKeyDown(“g”)) {
setImage (“white-key-down.png”);

}
else {

setImage (“white-key.png”);
}

}

In this code, we have chosen an arbitrary key on the computer keyboard (the “g” key) to react to.
Which key we use at this stage does not really matter—eventually we want to attach different
piano keys to several of our keyboard keys. When the key is pressed on the keyboard, we show
the “down” image; when it is not being pressed, we show the “up” image.

While this version works, it has a problem: The image is set not only once when it changes, but con-
tinuously. Every time the act method executes, the image is set to either one of the two images,
even though it might already show the correct image. For example, if the “g” key is not being
pressed, the image will be set to white-key.png, even if this was already the displayed image.

This problem does not seem too serious at first. After all, setting the image when it is not needed
is merely unnecessary, but not incorrect. There are several reasons why we want to fix this,
though. One reason is that it is good practice to not waste processor resources by doing
unnecessary work. Another reason is that we will add sound for the key soon, and then it does
matter. When we press a key, it makes a big difference whether the key’s sound is heard once, or
over and over again.

So, let us improve our code by ensuring that the image is only set when it actually changes. To
do this, we add a boolean field to our class to remember whether the key is currently down or
not. We call this field isDown, and its declaration looks as follows:

private boolean isDown;

We will store true in this field while the piano key is down, and false while it isn’t.

We can then check whether our keyboard key has just now been pressed: If our isDown field is
false, but the “g” key on the keyboard is being pressed, it must have been pressed just a
moment ago. Conversely, if our isDown field is true (we think the key is down), but the “g”
key on the keyboard is not down, then it must have been released just now. In these two
situations, we can then change the image. Code 5.3 shows the complete act method
implementing this idea.

Concept:

Logic operators,

such as && (AND)

and ! (NOT), can

be used to

combine multiple

boolean expres-

sions into

one boolean

expression.

64 | Chapter 5 � Making music: An on-screen piano

Code 5.3
Only set the image

when it needs to

change

public void act()
{

if (!isDown && Greenfoot.isKeyDown(“g”)) {
setImage (“white-key-down.png”);
isDown = true;

}
if (isDown && !Greenfoot.isKeyDown(“g”)) {

setImage (“white-key.png”);
isDown = false;

}
}

In both cases, we make sure to set the isDown field to the new state if we detect a change.

This code makes use of two new symbols: the exclamation mark (!) and the double amper-
sand (&&).

Both are logical operators. The exclamation mark means NOT, while the double ampersand
means AND.

Thus, the following lines from the act method

if (!isDown && Greenfoot.isKeyDown(“g”)) {
setImage (“white-key-down.png”);
isDown = true;

}

can be read a little more informally (attention: not Java code!) as

if ((not isDown) and Greenfoot.isKeyDown(“g”)) ...

The same code, even more informally, can be read as

if (the-piano-key-is-not-currently-down and the-keyboard-key-is-down) {
change the image to show the “down” image;
remember that the piano key is down now;

}

Have a look at Code 5.3 again, and make sure you understand the code shown there.

A full list of all available logic operators is given in Appendix D.

Exercise 5.4 Implement the new version of the act method in your own scenario. It will

not appear to do anything different than before, but it is a necessary preparation for what

we shall do next. Don’t forget that you also have to add the boolean isDown field at the

beginning of your class.

5.2 Producing the sound | 65

5.2 Producing the sound
The next thing we shall do is to ensure that pressing the key makes a sound. To do this, we add a
new method to the Key class, called play. We can add this method in the editor, below the act
method. For a start, we can write the comment, signature, and an empty body for the new method:

/**
* Play the note of this key.
*/
public void play()
{

}

While this code does not do anything (the method body is empty), it should compile.

The implementation for this method is quite simple: We just want to play a single sound file. The
piano-1 scenario, which you used to start this project, has a collection of sound files included (in
the sounds subfolder), each of which contains the sound of a single piano key. The names of the
sound files are 2a.wav, 2b.wav, 2c.wav, 2c#.wav, 2d.wav, 2d#.wav, 2e.wav, and so on. Of these,
let us just pick a more or less random note—say 3a.wav, a middle a—to play for our test key.

To actually play this note, we can use the playSound method from the Greenfoot class again:

Greenfoot.playSound(“3a.wav”);

This is the only code needed in the play method. The complete method implementation is
shown in Code 5.4.

Code 5.4
Playing the note for

the key

/**
* Play the note of this key.
*/

public void play()
{

Greenfoot.playSound(“3a.wav”);
}

Exercise 5.5 Implement the play method in your own version of the scenario. Make

sure that the code compiles.

Exercise 5.6 Test your method. You can do this by creating an object of class Key, right-

clicking the object and invoking the play method from the object’s popup menu.

We are almost there now. We can produce the key’s sound by interactively invoking the play
method, and we can run the scenario and press a keyboard key (“g”) to create the appearance of
the piano key being pressed.

66 | Chapter 5 � Making music: An on-screen piano

Exercise 5.7 Add code to your Key class so that the key’s note is played when the asso-

ciated keyboard key is pressed. To do this, you need to figure out where the call to the play
method should be added. Test.

All we need to do now is to play the sound when the keyboard key is pressed.

To play the sound programmatically (from your code), we can just call our own play method,
like this:

play();

Exercise 5.8 What happens when you create two keys, run the scenario and press the

“g” key? Do you have any ideas what we need to do to make them react to different

keyboard keys?

All the changes described this far are available in the book scenarios as piano-2. If you had
problems that you could not solve, or if you just want to compare your solution with ours, have
a look at this version.

5.3 Abstraction: Creating multiple keys
We have reached a stage where we can create a piano key that reacts to one key of our com-
puter keyboard and plays a single piano note. The problem now is obvious: When we create
multiple keys, they all react to the same keyboard key, and all produce the same note. We need
to change that.

The current limitation comes from the fact that we hard-coded the keyboard key name (“g”) and
the sound file name (“3a.wav”) into our class. That means, we used these names directly, with-
out a chance to change them short of changing the source code and recompiling.

When writing computer programs, writing code that can solve one very specific task—such as
finding the square root of 1,764 or playing a middle-a piano key sound—is well and good, but
not incredibly useful. Generally, we would like to write code that can solve a whole class of
problem (such as finding the square root of any number, or playing a whole range of piano key
sounds). If we do this, our program becomes much more useful.

To achieve this, we use a technique called abstraction. Abstraction occurs in computing in many
different forms and contexts—this is one of them.

We shall use abstraction to turn our Key class from a class that can create objects that play a
middle-a when the “g” key is pressed on the keyboard into one that can create objects that can
play a range of notes when different keyboard keys are pressed.

The main idea to achieving this is to use a variable for the name of the keyboard key we react to,
and another variable for the name of the sound file we then want to play.

Concept:

Abstraction
occurs in many

different forms in

programming. One

of them is the

technique to write

code that can

solve a whole class

of problems, rather

than a single spe-

cific problem.

5.3 Abstraction: Creating multiple keys | 67

Code 5.5 shows the start of a solution to this. Here, we use two additional fields—key and
sound—to store the name of the key and the sound file we want to use. We also add two para-
meters to the constructor, so that these bits of information can be passed in when the key object
is being created, and we make sure that we store these parameter values into the fields in the
constructor body.

We have now made an abstraction of our Key class. Now, when we create a new Key object, we
can specify which keyboard key it should react to, and which sound file it should play. Of course,
we haven’t written the code yet that actually uses these variables—that remains to be done.

We will leave this as an exercise for you.

Code 5.5
Generalizing for

multiple keys: making

the key and note

variable

public class Key extends Actor
{

private boolean isDown;
private String key;
private String sound;

/**
* Create a new key linked to a given keyboard key, and
* with a given sound.
*/

public Key(String keyName, String soundFile)
{

key = keyName;
sound = soundFile;

}

// methods omitted.
}

Exercise 5.9 Implement the changes discussed above. That is, add fields for the key

and the sound file, and add a constructor with two parameters that initializes those fields.

Exercise 5.10 Modify your code so that your key object reacts to the key and plays the

sound file specified on construction. Test! (Construct multiple keys with different sounds.)

We have now reached a point where we can create a set of keys to play a range of notes.
(Currently, we have only white keys, but we can already build half a piano with this.) This
version of the project is in the book scenarios as piano-3.

Constructing all the keys, however, is a bit tedious. Currently, we have to create every piano key
by hand, typing in all the parameters. What’s worse: every time we make a change to the source
code, we have to start all over again. It is time to write some code to create the keys for us.

68 | Chapter 5 � Making music: An on-screen piano

5.4 Building the piano
We would now like to write some code in the Piano class that creates and places the piano keys
for us. Adding a single key (or a few keys) is quite straight forward: By adding the following line
to the Piano’s constructor, a key is created and placed into the world each time we re-initialize
the scenario:

addObject (new Key (“g”, “3a.wav”), 300, 180);

Remember that the expression

new Key (“g”, “3a.wav”)

creates a new key object (with a specified key and sound file), while the statement

addObject (some-object, 300, 180);

inserts the given object into the world at the specified x and y coordinates. The exact coordinates
300 and 180 are picked somewhat arbitrarily at this stage.

Exercise 5.11 Add code to your Piano class so that it automatically creates a piano key

and places in into the world.

Exercise 5.12 Change the y-coordinate at which the key is placed, so that the piano key

appears exactly at the top of the piano (i.e., the top of the piano key should line up with the

top of the piano itself). Hint: The key image is 280 pixels high and 63 pixels wide.

Exercise 5.13 Write code to create a second piano key that plays a middle-g (sound file

name 3g.wav) when the “f” key is pressed on the keyboard. Place this key exactly to the left

of the first key (without any gap or overlap).

Earlier in this book, we have discussed the value of using separate methods for separate tasks.
Creating all the keys is a logically distinct task, so let us place the code for it into a separate
method. It will do exactly the same thing, but the code is clearer to read.

Exercise 5.14 In the Piano class, create a new method named makeKeys(). Move

your code that creates your keys into this method. Call this method from the Piano’s con-

structor. Make sure to write a comment for your new method.

We could now go ahead and insert a whole list of addObject statements to create all the
keys we need for our keyboard. That is, however, not the best way of achieving what we want
to do.

5.5 Using loops: The while loop | 69

5.5 Using loops: The while loop
Programming languages offer you a specific construct to do a similar task repeatedly: a loop.

A loop is a programming language construct that allows us to express commands such as “Do
this statement 20 times” or “Call these two methods 3 million times” easily and concisely (with-
out writing 3 million lines of code). Java has several different kinds of loop. The one we shall
investigate now is called a while loop.

A while loop has the following form:

while (condition)
{

statement;
statement;
...

}

The Java keyword while is followed by a condition in parentheses and a block (a pair of curly
brackets) containing one or more statements. These statements will be executed over and over,
as long is the condition is true.

A very common pattern is a loop that executes some statements a given number of times. To do
this, we use a loop variable as a counter. It is common practice to name a loop variable i, so we
shall do this as well. Here is an example that executes the body of the while loop 100 times:

int i = 0;
while (i < 100)
{

statement;
statement;
...
i = i + 1;

}

There are several things worth noting in this code. First, it uses a concept that we have not
encountered before: a local variable.

A local variable is a variable similar to a field. We can use it to store values in it, such as an inte-
ger number, or object references.

It differs from fields in several respects:

� A local variable is declared inside a method body, not at the beginning of the class;

� It has no visibility modifier (private or public) in front of it; and

� It exists only until the current method finishes running, then it will be erased.1

Concept:

A loop is a state-

ment in program-

ming languages

that can execute a

section of code

multiple times.

Concept:

A local variable is

a variable that is

declared inside a

method body. It is

used for temporary

storage.

1 Strictly speaking, this is not exactly correct. Local variables can also be declared inside other blocks,
such as inside if statements or the body of a loop. They exist only until execution exits the block they
were declared in. The statement above is, however, correct if the local variable was declared at the begin-
ning of a method.

A local variable is declared by just writing the type of a variable, followed by its name:

int i;

After declaring the variable, we can assign a value. Here are these two statements together:

int i;
i = 0;

Java allows a shortcut to write these two statements in one line, declaring the variable and
assigning a value:

int i = 0;

This line has exactly the same effect as the two-line version. This is the variant we have used in
the code pattern for the while loop above.

Look at the pattern for the loop again—we should now be able to roughly understand what it
does. We use a variable i and initialize it to 0. Then we repeatedly execute the body of the
while loop, counting up i every time we do so. We continue this as long as i is less than 100.
When we reach 100, we stop the loop. Execution will then continue with the code following the
loop body.

There are two further details worth pointing out:

� We use the statement i = i + 1; at the end of the loop body to increment our loop variable
by 1 every time we have executed the loop. This is important. It is a common error to forget
to increment the loop counter. The variable would then never change, the condition would
always remain true, and the loop would continue looping forever. This is called an infinite
loop, and is the cause of many errors in programs.

� Our condition says that we execute the loop while i is less than (<) 100, not less than or equal
(<=). So the loop will not be executed when i is equal to 100. At first glance, one might think
that this means that the loop executes only 99 times, not 100 times. But this is not so. Because
we started counting at 0, not at 1, we do execute 100 times (counting from 0 to 99). It is very
common to start counting from 0 in computer programs—we will see some advantages of
doing so soon.

Now that we know about a while loop, we can use this construct to create all our piano keys.

Our piano will have 12 white keys. We can now create 12 keys by placing our statement to create
a key inside the body of a loop that executes 12 times:

int i = 0;
while (i < 12)
{

addObject (new Key (“g”, “3a.wav”), 300, 140);
i = i + 1;

}

70 | Chapter 5 � Making music: An on-screen piano

Exercise 5.15 Replace the code in your own makeKeys method with the loop shown

here. Try it out. What do you observe?

5.5 Using loops: The while loop | 71

Trying out this code, it first looks as if only one key was created. This is deceptive, however. We
do indeed get 12 keys, but since they have all been inserted at exactly the same coordinates, they
are all lying right on top of each other, and we cannot see them very well. Try moving the keys
in the piano world with your mouse pointer and you will see that they are all there.

Exercise 5.16 How can you change your code so that the keys do not all appear at

exactly the same place? Can you change your code so that they get placed exactly next to

each other?

The reason the keys all appeared on top of each other is that we inserted them all at the fixed
location 300,140 into the world. We now want to insert every key at a different location. This is
now actually quite easy to do: We can make use of our loop variable i to achieve this.

Exercise 5.17 How many times does our loop body execute? What are the values of

i during each of the executions?

We can now replace the fixed x-coordinate 300 with an expression that includes the variable i:

addObject (new Key (“g”, “3a.wav”), i*63, 140);

(The asterisk “*” is the operator for multiplication. Appendix D lists other operators that you
can use with integer numbers.)

We have chosen i*63, because we know that the image of each key is 63 pixels wide. The values
for i, as the loop executes, are 0, 1, 2, 3, and so on. So the keys will be placed at x-coordinates 0,
63, 126, 189, and so on.

When we try this we notice that the left-most key is not placed very well. Since object placement in
Greenfoot refers to the center point of an object, the center of the first key is placed at x-coordinate 0,
which places the key half out of the screen. To fix this, we just add a fixed offset to each key coordi-
nate. The offset is chosen so that the keys as a whole appear in the middle of our piano:

addObject (new Key (“g”, “3a.wav”), i*63 + 54, 140);

The y-coordinate can remain constant, since we want all keys at the same height.

Exercise 5.18 Challenge exercise. (Do this exercise only if you are fairly confident about

your programming. If you are just beginning, you may like to skip this exercise.)

Using fixed numbers in your code, such as the 140 or 63 in the statement above, is usually

not the best solution, since it makes your code vulnerable to breaking when things change.

For example, if we replace the key images with nicer images that have a different size, our

code would not place them correctly.

Concept:

An array is an

object that holds

multiple variables.

These can be

accessed using an

index.

Our code now places our white keys nicely—that’s a good step forward. The most obvious prob-
lem now is that all piano keys react to the same keyboard key and play the same note. Fixing this
again requires a new programming construct: an array.

5.6 Using arrays
Currently, our 12 keys are created, and placed at appropriate locations on the screen, but they all
react to the “g” key, and they all play the same note. This is despite the fact that we have
prepared our keys to accept different keyboard keys and sound files in the constructor. However,
since all our keys are created by the same line of source code (executed in a loop), they are all
created with “g” and “3a.wav” as parameters.

The solution is similar to the change we made in regards to the x-coordinate: We should use
variables for the keyboard key and the sound file name, and assign different values to them
each time the loop executes.

This is more problematic than in the case with the x-coordinate, though. The correct keys and
sound file names cannot be computed as easily. So where do we get the values from?

Our answer is: We will store them in an array.

An array is an object that can hold many variables, and thus can store many values. We can show
this in a diagram. Assume we have a variable named “name” of type String. To this variable,
we assign the String “Fred”:

String name;
name = “Fred”;

Figure 5.2 illustrates this example.

This case is very simple. The variable is a container that can hold a value. The value is stored in
the variable.

In case of an array, we get a separate object—the array object—that holds many variables. We
can then store a reference to that array object in our own variable (Figure 5.3).

72 | Chapter 5 � Making music: An on-screen piano

We can avoid using those numbers directly by calling the getWidth() and getHeight()
methods of the key’s image. To do this, first assign the key object to a local variable of type

Key when you create it, and then use key.getImage().getWidth() in place of the 63.

Do a similar thing with the height.

Replacing the 54 requires you to also use the getWidth() method of the piano’s image.

After doing this, our code will always place the keys nicely, even if their size changes.

“Fred”String name

Figure 5.2
A simple String
variable

Concept:

Individual

elements in an

array are

accessed using

square brackets

([]) and an index

to specify the

array element.

5.6 Using arrays | 73

String [] names

String[]

"a"

0

"b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l"

1 2 3 4 5 6 7 8 9 10 11

Figure 5.3
An array of Strings

The Java code to create this situation is as follows:

String[] names;
names = { “a”,“b”,“c”,“d”,“e”,“f”,“g”,“h”,“i”,“j”,“k”,“l” };

In the variable declaration, the pair of square brackets ([]) indicates that the type of the variable
is an array. The word before the brackets indicates the element type of the array, that is, the type
that each entry in the array should have. Thus String[] denotes an array of Strings, while
int[] denotes an array of integers.

The expression

{ “a”,“b”,“c”,“d”,“e”,“f”,“g”,“h”,“i”,“j”,“k”,“l” }

creates the array object and fills it with the Strings “a” to “l”. This array object is then assigned
to our variable names. We can see from the diagram that, when an array object is assigned to a
variable, the variable then contains a pointer to that object.

Once we have our array variable in place, we can access individual elements in the array by using
an index—a position number in the array object. In Figure 5.3, the index of each individual String
is shown above each array element. Note that counting again starts at 0, so the String “a” is at
position 0, “b” is at position 1, and so on.

In Java, we access array elements by attaching the index in square brackets to the array name.
For example,

names[3]

accesses the element in the names array at index 3—the String “d”.

For our piano project, we can now prepare two arrays: one with the names of the keyboard keys
(in order) for our piano keys, and one with the names of the sound files for those piano keys.
We can declare fields in the Piano class for those arrays and store the filled arrays. Code 5.6
illustrates this.

Note that the values in the whiteKeys array are the keys on the middle row of my computer
keyboard. Keyboards are slightly different on different systems and in different countries, so you
may have to change these to match your own keyboard. The other slightly odd thing here is the
String “\\”. The backslash character (\) is called an escape character and has a special meaning
in Java Strings. To create a String that contains the backslash as a normal character, you have to
type it twice. So typing the String “\\” in your Java source code actually creates the String “\”.

74 | Chapter 5 � Making music: An on-screen piano

Now we have arrays available listing the keys and sound file names that we want to use for our
piano keys. We can now adapt our loop in the makeKeys method to make use of the array
elements to create appropriate keys. Code 5.7 shows the resulting source code.

Code 5.7
Creating piano keys

with keyboard keys

and notes from

arrays

/**
* Create the piano keys and place them in the world.
*/

private void makeKeys()
{

int i = 0;
while (i < whiteKeys.length)
{

Key key = new Key(whiteKeys[i], whiteNotes[i] + “.wav”);
addObject(key, 54 + (i*63), 140);
i = i + 1;

}
}

A number of things are worth noting:

� We have moved the creation of the new key out of the addObject method call into a sepa-
rate line, and assigned the key object initially to a local variable, called key. This was just
done for clarity: The line got very long and busy, and it was quite hard to read. Splitting it
into two steps makes it easier to read.

� The parameters for the Key constructor access whiteKeys[i] and whiteNotes[i]. That is,
we use our loop variable i as the array index to access all the different key strings and note file
names in turn.

� We use a plus symbol (+) with whiteKeys[i] and a String (“.wav”). The variable
whiteKeys[i] is also a String, so the plus symbol is used with two String operands. When

Code 5.6
Creating arrays for

keys and notes

public class Piano extends World
{

private String[] whiteKeys =
{ “a”, “s”, “d”, “f”, “g”, “h”, “j”, “k”, “l”, “;”, “’”,
“\\” };

private String[] whiteNotes =
{ “3c”, “3d”, “3e”, “3f”, “3g”, “3a”, “3b”, “4c”, “4d”, “4e”,
“4f”, “4g” };

// constructor and methods omitted.

}

Concept:

The plus symbol

(+), when used

with Strings,

stands for String
concatenation.

It merges two

Strings together

into one.

5.6 Using arrays | 75

Exercise 5.19 Make the changes discussed above in your own scenario. Make sure that

all keys work. If your keyboard layout is different, adapt the whiteKeys array to match your

keyboard.

Exercise 5.20 The sounds folder of the piano scenario contains more notes than the

ones we are using here. Change the piano so that the keys are one octave lower than they

are now. That is, use the sound “2c” instead of “3c” for the first key, and move up from there.

Exercise 5.21 If you like, you can make your keys produce entirely different sounds. You

can record you own sounds using sound recording software, or you can find sound files on

the Internet. Move the sound files into the sounds folder, and make your keys play them.

The version we have now is in the book scenarios as piano-4.

The missing part now is quite obvious: We have to add the black keys.

There is nothing really new in this. We essentially have to do very similar things again as we did
for the white keys. We will leave this as an exercise for you to do. However, doing it all in one
chunk is quite a substantial job. In general, when approaching a larger task, it is a good idea to
break it down into several smaller steps. Thus, we will break this task down into a sequence of
exercises that approaches the solution one step at a time.

+ is used with Strings, it performs string concatenation. String concatenation is an operation
that sticks two Strings together and turns them into a single String. In other words, here, we
append the String “.wav” to the whiteNotes[i] value. This is because the name stored in
the array is of the form “3c”, while the file name on disk is “3c.wav”. We could have stored
the full file name in the array, but since the suffix is the same for all notes files, this seemed
unnecessary. Just adding it here saves us some typing.

� We have also replaced the 12 in the condition of the while loop with whiteKeys.length.
The .length attribute of an array will return the number of elements in this array. In our case,
we do have 12 elements, so leaving the 12 in place would have worked. However, using the
length attribute is safer. Should we one day decide to use more or fewer keys, our loop will still
do the right thing, without the need to change the condition.

With these changes, our piano should now be playable with the middle row of keys on our key-
board, and it should produce different notes for different keys.

Exercise 5.22 Currently, our Key class can only produce white keys. This is because we

have hard-coded the file names of the key images (“white-key.png” and “white-

key-down.png”). Use abstraction to modify the Key class so that it can show either white or

black keys. This is similar to what we did with the key name and sound file name: Introduce

two fields and two parameters for the two image file names, and then use the variables

instead of the hard-coded file names. Test by creating some black and some white keys.

Concept:

The type String is

defined by a

normal class. It

has many useful

methods, which

we can look up in

the Java library

documentation.

76 | Chapter 5 � Making music: An on-screen piano

Exercise 5.23 Modify your Piano class so that it adds two black keys at an arbitrary

location.

Exercise 5.24 Add two more arrays to the Piano class for the keyboard keys and notes

of the black keys.

Exercise 5.25 Add another loop in the makeKeys method in the Piano class that

creates and places the black keys. This is made quite tricky by the fact that black keys

are not as evenly spaced as white keys—they have gaps (see Figure 5.1). Can you come

up with a solution to this? Tip: Create a special entry in your array where the gaps are,

and use that to recognize the gaps. (Read the note below these exercises first before you

start. This is a hard task! You may want to look at the solution in piano-5 if you cannot

figure it out.)

Exercise 5.26 The full implementation of this project, piano-5, also includes another

short method to show a line of text on the screen. Study it, and make some changes:

Change the wording of the text; change its color; and move the text so that it is horizontally

centered.

Note: The String class

The type String that we have used many times before is defined by a class. Find this class in

the Java library documentation and have a look at its methods. There are many, and some of

them are often very useful.

You will see methods to create substrings, to find out the length of a string, to convert the case,

and much more.

Especially interesting for Exercise 5.25 above may be the equals method that allows you to

compare the string with another string. It will return true if the two strings are the same.

This is as far as we go with this project. The piano is more or less complete now. We can play
simple tunes, and we can even play chords (multiple keys at the same time).

Feel free to extend this if you like. How about adding a second set of sounds, and then adding
a switch on screen that allows you to switch from the piano sounds to your alternate sounds?

5.7 Summary of programming techniques
In this chapter, we have seen two very fundamental and important concepts for more sophisti-
cated programming: loops and arrays. Loops allow us to write code that executes a sequence of
statements many times over. The loop construct we have discussed is called a while loop. Java
has other loops as well, which we will encounter shortly. We will use loops in many of our
programs, so it is essential to understand them.

5.7 Summary of programming techniques | 77

Concept summary

� Logic operators, such as && (AND) and ! (NOT), can be used to combine multiple boolean

expressions into one boolean expression.

� Abstraction occurs in many different forms in programming. One of them is the technique to

write code that can solve a whole class of problems, rather than a single specific problem.

� A loop is a statement in programming languages that can execute a section of code multiple

times.

� A local variable is a variable that is declared inside a method body. It is used for temporary

storage.

� An array is an object that holds multiple variables. These can be accessed using an index.

� Individual elements in an array are accessed using square brackets ([]) and an index to

specify the array element.

� The plus symbol (+), when used with Strings, stands for String concatenation. It merges two

Strings together into one.

� The type String is defined by a normal class. It has many useful methods, which we can look

up in the Java library documentation.

Within the loop, we often use the loop counter to perform calculations or to generate different
values in every loop iteration.

The other major new concept we used was an array. An array can provide many variables (all of
the same type) in one single object. Often, loops are used to process an array if we need to do
something to each of its elements. Elements are accessed using square brackets.

Another very fundamental technique we encountered was abstraction. In this case, it appeared
through the use of constructor parameters to create code that could handle a whole class of
problems instead of a single specific problem.

We have also encountered a few new operators: We have seen the AND and NOT operators for
boolean expressions (&& and !), and we have seen that the plus operator (+) performs string
concatenation when applied to Strings. The String class is documented in the Java API docu-
mentation and has many useful methods.

In this chapter, we shall investigate more sophisticated interactions between objects in a world. As a
start, we shall investigate one of the most universal interactions between objects anywhere: Gravity.

In this scenario, we are dealing with celestial bodies (such as stars and planets). We shall simulate
the motion of these bodies through space, using Newton’s law of universal gravitation. (We now
know that Newton’s formulas are not quite accurate, and that Einstein’s theory of general relativity
describes the motions of planets more precisely, but Newton is still good enough for our simple
simulation. Both are shown in Figure 6.1.)

If you are a little worried about dealing with physics and formulas, don’t worry. We do not need
to go very deep into it, and the formula we shall use is really quite simple. At the end, we shall
turn this scenario into an artistic experiment with sound and visual effects. If you are more

CHAPTER

Interacting objects:
Newton’s Lab6

topics: objects interacting with each other, using helper classes, using classes

from the Java library

concepts: collection, list, for-each loop, standard class library

Figure 6.1
Isaac Newton and

Albert Einstein.

Newton: Portrait by Godfrey Kneller, 1689. Einstein: Portrait by Ferdinand Schmutzer, 1921

6.1 The starting point: Newton’s Lab | 79

technically interested, you can work more on the physics. If your interest is more artistic, you
can concentrate on this aspect instead.

6.1 The starting point: Newton’s Lab
We shall start this project by investigating a partly implemented version of this scenario. Open
the Newtons-Lab-1 scenario from the book-scenarios folder. You will see that a world subclass
already exists (called Space). We also have classes SmoothMover, Body, and Vector
(Figure 6.2).

Exercise 6.1 Open the Newtons-Lab-1 scenario. Try it out (i.e., place some bodies into

space). What do you observe?

When you try to run this scenario, you will notice that you can place objects (of type Body) into
space, but these bodies do not move, and they do not act in any interesting way yet.

Before we get into extending the implementation, let us investigate the scenario a little more
closely.

By right-clicking on the title of the world (the word “space” near the top), we can see and invoke
the public methods of the Space class (Figure 6.3).

Figure 6.2
The Newton’s Lab

scenario

Exercise 6.2 Invoke the different public methods of the Space object. What do they do?

80 | Chapter 6 � Interacting objects: Newton’s Lab

Exercise 6.4 Invoke the sunPlanetMoon method from the public methods of Space.

Find out and write down the mass of the Sun, the planet, and the Moon.

Figure 6.3
The World methods

in Newton’s Lab

Exercise 6.5 Have a look at the source code of the Space class and see how the public

methods here are implemented.

6.2 Helper classes: SmoothMover and Vector
In this scenario, we are using two general purpose helper classes: SmoothMover and Vector.
These are classes that add functionality to a given scenario, and can be used in different scenar-
ios for similar purposes. (These two classes are in fact used in a number of different existing
projects.)

The SmoothMover class provides smoother movement for actors by storing the actor’s coordi-
nates as decimal numbers (of type double), rather than integers. Fields of type double can
store numbers with decimal fractions (such as 2.4567), and thus are more precise than integers.

For displaying the actor on screen, the coordinates will still be rounded to integers, since the
location for painting on screen must always be a whole pixel. Internally, however, the location is
held as a decimal number.

A SmoothMover can, for example, have the x-coordinate 12.3. If we now move this actor along
the x-coordinate in increments of 0.6, its successive locations will be

12.3, 12.9, 13.5, 14.1, 14.7, 15.3, 15.9, 16.5, 17.1, . . .

Exercise 6.3 When you have a star or planet in your world, right-click it to see what

public methods it has. What are they?

6.2 Helper classes: SmoothMover and Vector | 81

and so on. We will see the actor on screen at rounded x-coordinates. It will be painted at the fol-
lowing x-coordinates

12, 13, 14, 14, 15, 15, 16, 17, 17, . . .

and so on. Altogether, even though it is still rounded to integers for display, the effect is
smoother movement than dealing exclusively with int fields.

The second bit of functionality that the SmoothMover adds is a movement vector. Every object
of a subclass of SmoothMover holds a vector that indicates a current direction and speed of
movement. We can think of a vector as an (invisible) arrow with a given direction and length
(Figure 6.4).

Side note: Abstract classes

If you right-click the SmoothMover class, you will notice that you cannot create objects of this

class. No constructor is shown.

When we examine the source code of that class, we can see the keyword abstract in the

class header. We can declare classes as abstract to prevent creation of instances of these

classes. Abstract classes serve only as superclasses for other classes, not for creating objects

directly.

Figure 6.4
A SmoothMover
object with a

movement vector

The SmoothMover class has methods to change its movement by modifying its movement
vector, and a move method that moves the actor according to its current vector.

Exercise 6.6 Place an object of class Body into the world. By examining the object’s

popup menu, find out what methods this object inherits from class SmoothMover. Write

them down.

Exercise 6.7 Which of the method names appears twice? How do the two versions

differ?

Concept:

Overloading is the

use of the same

method name

for two different

methods or

constructors.

82 | Chapter 6 � Interacting objects: Newton’s Lab

The second helper class, Vector, implements the vector itself, and is used by the
SmoothMover class. Note that Vector is not listed in the Actor group of classes. It is not an
actor—it will never appear in the world on its own. Objects of this class are only ever created
and used by other actor objects.

Vectors can be represented in two different ways: either as a pair of distances in their x and y
coordinates (dx, dy) or as a pair of values specifying the direction and its length (direction,
length). The direction is usually specified as the angle from the horizontal.

Figure 6.5 shows the same vector with both possible specifications. We see that either the (dx, dy)
pair or the (direction, length) pair can describe the same vector.

Exercise 6.8 Familiarize yourself with the methods of the SmoothMover and Vector
classes by opening the editor, and studying their definition in Documentation view.

(Remember: you can switch to Documentation view using the menu in the top right corner of

the editor.) You can also read the source code, if you like, but this is not strictly necessary

at this stage.

Exercise 6.9 Place a Body object into the world. Which of the methods inherited from

SmoothMover can you call interactively (through the object’s menu)? Which can you not

call at this stage?

dx

dy

direction

length

Figure 6.5
Two possible ways

to specify a vector

Terminology: Overloading

It is perfectly legal in Java to have two methods that have the same name, as long as their

parameter lists are different. This is called overloading. (The name of the method is

overloaded—it refers to more than one method.)

When we call an overloaded method, the runtime system figures out which of the two methods

we mean by examining the parameters we supply.

We also say that the two methods have different signatures.

The first representation, using the x and y offsets, is called a Cartesian representation. The
second, using the direction and length, is a polar representation. You will see these two names
used in the source code of the Vector class.

For our purposes, sometimes the Cartesian representation is easier to use, and sometimes the
polar representation is easier. Therefore, our vector class is written in a way that it can deal with
both. It will do the necessary conversions internally automatically.

6.3 The existing Body class | 83

6.3 The existing Body class

Exercise 6.10 Open the source code of the Body class and examine it.

Looking at the source code of the Body class, two aspects are worth discussing a bit further. The
first is the fact that the class has two constructors (Code 6.1). This is another example of overloading:
It is perfectly legal to have two constructors in a class if they have different parameter lists.

In our case, one constructor has no parameters at all, and the other has four parameters.

Terminology

A constructor without any parameters is also called a default constructor.

Code 6.1
Constructors of class

Body

public class Body extends SmoothMover
{

// some code omitted

private double mass;

/**
* Construct a Body with default size, mass, movement and color.
*/
public Body()
{

this (20, 300, new Vector(90, 1.0), defaultColor);
}

/**
* Construct a Body with a specified size, mass, movement and
* color.
*/

public Body(int size, double mass, Vector movement, Color color)
{

this.mass = mass;
addForce(movement);
GreenfootImage image = new GreenfootImage (size, size);
image.setColor (color);
image.fillOval (0, 0, size-1, size-1);
setImage (image);

}

// more code omitted
}

The default constructor makes it easy for us to create bodies interactively without having to
specify all the details. The second constructor allows creation of a body with custom size, mass,
movement, and color. This constructor is used, for example, in the Space class to create the Sun,
planet, and Moon.

The second constructor initializes the state of the actor using all its parameter values that have
been passed in. The first constructor looks more mysterious. It has only one line of code:

this (20, 300, new Vector(90, 1.0), defaultColor);

The line looks almost like a method call, except that it uses the keyword this instead of a
method name. Using this call, the constructor executes the other constructor (the one with the
four parameters), and provides default parameters for all the four values. Using the this
keyword in this way (like a method name) is only possible within constructors to call another
constructor as part of the initialization.

There is a second use of the this keyword:

this.mass = mass;

Here we have another example of overloading: The same name is used for two variables (a param-
eter and an instance field). When we assign these values, we need to specify which of these two
variables named mass we mean on each side of the assignment.

When we write mass without any qualification, then the closest definition of a variable with
that name is used—in this case, the parameter. When we write this.mass, we specify that we
mean the mass field of the current object. Thus, this line of code assigns the parameter named
mass to the field named mass.

Concept:

The keyword this
is used to call one

constructor from

another, or to refer

to the current

object.

84 | Chapter 6 � Interacting objects: Newton’s Lab

Exercise 6.11 Remove the “this.” segment before the mass in the line of code shown

above, so that it reads

mass = mass;

Does this code compile? Does it execute? What do you think this code does? What is its

effect? (Create an object and use its Inspect function to examine the mass field. Once

finished experimenting, restore the code to how it was before.)

The second aspect that is worth exploring a little further is the two lines near the top of the class,
shown in Code 6.2.

Code 6.2
Declaration of

constants

private static final double GRAVITY = 5.8;
private static final Color defaultColor = new Color(255, 216, 0);

These two declarations look similar to field declarations, except that they have the two keywords
static final inserted after the keyword private.

6.4 First extension: Creating movement | 85

Concept:

A constant is a

named value that

can be used in

similar ways as a

variable, but can

never change.

This is what we call a constant. A constant has similarities to a field, in that we can use the name
in our code to refer to its value, but the value can never change (it is constant). It is the final
keyword that makes these declaration constants.

The effect of the static keyword is that this constant is shared between all actors of this class,
and we don’t need separate copies of it in every object. We encountered the static keyword
before (in Chapter 3), in the context of class methods. Just as static methods belong to the class
itself (but can be called from objects of that class), static fields belong to the class and can be
accessed from its instances.

In this case, the constants declared are a value for gravity1 (to be used later), and a default color
for the bodies. This is an object of type Color, which we will discuss in more detail below.

It is good practice to declare fields constant that should not change in a program. Making the
field constant will prevent accidental change of the value in the code.

6.4 First extension: Creating movement
Okay, enough looking at what’s there. It is time to write some code and make something happen.

The first obvious experiment is to make the bodies move. We have mentioned that the
SmoothMover class provides a move() method, and since a Body is a SmoothMover, it, too,
has access to this method.

1 Our value of gravity has no direct relationship to any particular unit in nature. It is in an arbitrary unit
made up for this scenario. Once we start implementing gravitation for our bodies, you can experiment
with different amounts of gravity by changing this value.

Exercise 6.12 Add a call to the move() method into the act method of Body. Test.

What is the default direction of movement? What is the default speed?

Exercise 6.13 Create multiple Body objects. How do they behave?

Exercise 6.14 Call the public Space methods (sunAndPlanet(), etc.) and run the

scenario. How do these objects move? Where are their initial movement direction and

speed defined?

Exercise 6.15 Change the default direction of a body to be toward the left. That is, when

a body is created using the default constructor, and its move() method is executed, it

should move left.

As we see when we perform these experiments, just telling the bodies to move is enough to
make them move. They will, however, move in a straight line. This is because movement (speed
and direction) is dictated by their movement vector, and currently nothing changes this vector.
Thus, movement is constant.

Concept:

The Java class
library is a large

collection of

ready-made

classes, provided

with the Java

system. We can

use these classes

by using an

import statement.

Exercise 6.16 Find the class Color in the class list. Select it. Look at the documentation

of this class. How many constructors does it have?

6.5 Using Java library classes
While reading the code above, in both the Body and Space classes, we have come across the
Color class. The second constructor of the Body class expects a parameter of type Color, and
the code in the Space class creates Color objects with expressions such as

new Color(248, 160, 86)

The three parameters of the Color constructor are the red, green, and blue components of this
particular color. Every color on a computer screen can be described as a composite of these
three base colors. (We will discuss color a little more in Chapter 8. There, on page 136, you can
also find a table of RGB color values. You can use any good graphics program to experiment
with these yourself.)

For us, the more pressing question is, where does this class come from? And how can we know
what parameters its constructor expects?

A clue to the answer is found near the top of our class, where we can find the line

import java.awt.Color;

The class Color is one of the many classes from the Java Standard Class Library. The Java sys-
tem comes with a large collection of useful classes which we can just use. Over time, we will get
to know many of them.

We can see documentation for all the classes in the class library by selecting Java Library
Documentation from Greenfoot’s Help menu. This will open the documentation for the Java
libraries in a web browser (Figure 6.6).

The bottom left pane in this window shows a list of all classes in the Java library. (There are
many of them!) We can look at the documentation for any particular class by finding it in this
list and selecting it. When selected, the main part of the window will display the documentation
for this class.

Exercise 6.17 Find the description of the constructor we have used (the one with three

integers as parameters). What is the legal range for these integer numbers?

You can see that there are literally thousands of classes in the Java library. To get some sort of
order into this long list, classes are grouped into packages. A package is a group of logically
related classes. At the top of the documentation of any class, we can see what package the class
is in. The class Color, for instance, is in a package called java.awt.

When we want to use any of the classes from the Java library in our own scenario, we need to
import the class, using an import statement as we have seen above. The import statement names
the package and the class we want to use, with a dot in between. Thus, to use the Color class
from the java.awt package, we write

import java.awt.Color;

86 | Chapter 6 � Interacting objects: Newton’s Lab

6.6 Adding gravitational force | 87

Figure 6.6
The Java Library

Documentation

Importing a class makes it usable within our own scenario, just as if it was one of our own
classes. After importing it, we can create objects of this class, call methods, and do anything else
we can do with any other class.

The Java library is quite intimidating at first, because it has so many classes. Don’t worry—
we shall use only a small number of them, and we shall introduce them one by one when we
need them.

One of them, however, we need very soon: in the next section.

What we want to do next is to add gravity to this scenario. That is, when we have more than one
body in our space, the gravitational pull between these bodies should change each body’s
movement.

6.6 Adding gravitational force
Let us start by looking at the current act method in our Body class (Code 6.3). (If you have
not done Exercise 6.12, then the call to the move method will not be there—you can add
it now.)

88 | Chapter 6 � Interacting objects: Newton’s Lab

While the code currently contains only the move call, the comment actually describes correctly
what we have to do: Before we move, we should apply the forces caused by the gravitational pull
of all other objects in space.

We can give an outline of the task in pseudo-code:

apply forces from other bodies:
get all other bodies in space;
for each of those bodies:
{

apply gravity from that body to our own;
}

Since this is not an easy thing to do, we first start by making a separate method for this task
(Code 6.4). Creating a separate (initially empty) method might seem like a trivial task at first
that does not seem to accomplish much, but it greatly helps in breaking down our problem into
smaller subproblems, and it helps structuring our thoughts.

Code 6.3
The current act
method

/**
* Act. That is: apply the gravitation forces from
* all other bodies around, and then move.
*/
public void act()
{

move();
}

Code 6.4
Preparing to apply

forces of gravity

/**
* Act. For a body, that is: apply all the gravitation forces from
* all other bodies around, and then move.
*/
public void act()
{

applyForces();
move();

}

/**
* Apply the forces of gravity from all other celestial bodies in
* this universe.
*/
private void applyForces()
{

// work to do here
}

6.6 Adding gravitational force | 89

Concept:

Private methods
are only visible

from within the

class they are

declared in.

They are used

to improve the

structure of

the code.

Note: Private methods

The method we created in Code 6.4 has the keyword private at the beginning of its signature,

not public as we have previously seen.

Methods can be public or private. When methods are intended to be called from outside

the class (either interactively by a user or from another class), then they must be public. When

methods are intended to be called only from other methods within the same class (as is the

case here), then they should be declared private.

Private methods are not visible or accessible from outside the class itself. It is good practice

to make methods private that are only intended for internal use. This helps preventing errors

and documents the purpose of the method more clearly.

Next, we have to work out how we get access to all other objects in our world.

The World class in Greenfoot has methods that give us access to objects within it.

Exercise 6.18 Look up Greenfoot’s World class in the Greenfoot class documentation.

Find all methods that give us access to objects within the world. Write them down.

Concept:

The keyword null
stands for “nothing”

or “no object”.

The most interesting of those methods for us is this one:

java.util.List getObjects(java.lang.Class cls)

This method gives us a list of all objects in the world of a particular class. The parameter to this
method is of type java.lang.Class (i.e., the class named “Class” from the java.lang
package2). We have seen parameters of this type before, in Chapter 4, when we used the canSee
and eat methods in the Crab class to eat the worms. We can use a call to this method to get, for
instance, a list of all Body objects in our world:

getObjects(Body.class)

We can also provide null as a parameter to receive a list of all objects of any class in the world:

getObjects(null)

The keyword null is a special expression that means nothing, or no object. By using it in a
parameter list, we pass no object as the parameter. The value null could also be assigned to
variables.

The getObjects method is, however, a method of the World class, so it must be called on a
World object. We will write our code in the Body class, so we must first obtain the world object

2 The java.lang package is special: It contains the most commonly used classes, and classes in it are auto-
matically imported. So we do not need to write an import statement for any class in java.lang.

Concept:

A List is an exam-

ple of a collection.

Some methods

from the Greenfoot

API return List

objects.

Concept:

A collection is a

kind of object that

can hold many

other objects.

90 | Chapter 6 � Interacting objects: Newton’s Lab

to call this method on. Luckily, there is a method in the Actor class that gives us access to the
world object. Its signature is

World getWorld()

Find this method in the Greenfoot class documentation and read its description.

This method will return the world object, and we can then call the getObjects method on the
resulting object:

getWorld().getObjects(Body.class)

This code can be used from an actor to get all objects of class Body. Let us look more closely at
the return type now.

The return type of the getObjects method is specified as java.util.List. This indicates
that there is a type called List in the java.util package in the standard class library, and that
we will get an object of this type as a result of this method.

The List type is worth a closer look.

6.7 The List type
Dealing with collections of objects is important both in Greenfoot programming and in pro-
gramming in general. Several of the Greenfoot methods return collections of objects as their
result, usually in the form of a list. The type of the returned object then is the List type from the
java.util package.

Side Note: Interfaces

The List type is a little different from other object types we have seen: It is not a class, but an

interface. Interfaces are a Java construct that provides an abstraction over different possible

implementing classes. The details are not important to us right now—it is sufficient to know

that we can deal with the List type in similar ways as with other types: We can look it up in the

Java Library Documentation, and we can call the existing methods on the object. We cannot,

however, create objects directly of type List. We will come back to this issue later.

Exercise 6.19 Look up java.util.List in the Java Library Documentation. What are

the names of the methods used to add an object to the list, remove an object from the list,

and to find out how many objects are currently in the list?

Exercise 6.20 What is the proper name of this type, as given at the top of the

documentation?

When we looked at the getObjects method in the previous section, we noticed that it returns
an object of type java.util.List. Thus, in order to store this object, we need to declare a
variable of this type. We will do this in our applyForces method.

Concept:

A generic type
is a type that

receives a second

type name as

a parameter.

6.8 The for-each loop | 91

The List type, however, is different from other types we have seen before. The documentation
shows at the top

Interface List<E>

Apart from the word interface in place of class, we notice another new notation: the <E> after
the type name.

Formally, this is called a generic type. This means that the type List needs an additional type
specified as a parameter. This second type specifies the type of the elements held within the list.

For example, if we are dealing with a list of strings, we would specify the type as

List<String>

If instead we are dealing with a list of actors, we can write

List<Actor>

In each case, the type within the angle brackets (<>) is the type of some other known kind of
object. In our case, we expect a list of bodies, so our variable declaration will read:

List<Body> bodies

Now we can assign the list which we retrieve from the getObjects method to this variable:

List<Body> bodies = getWorld().getObjects(Body.class);

After executing this line, our variable bodies holds a list of all bodies that currently exist in the
world (see also Code 6.5). (Remember that you must also add an import statement for
java.util.List at the top of your class.)

Code 6.5
Getting a list of all

bodies in space

private void applyForces()
{

List<Body> bodies = getWorld().getObjects(Body.class);
...

}

6.8 The for-each loop
The next step we have to achieve, now that we have a list of all bodies, is to apply the gravita-
tional force from each body to our movement.

We will do this by going through our list of bodies one by one, and applying the force from each
body in turn.

Java has a specialized loop for stepping through every element of a collection, and we can use
this loop here. It is called a for-each loop, and it is written using the following pattern:

for (ElementType variable : collection)
{

statements;
}

Concept:

The for-each loop
is another kind of

loop. It is well

suited to process

all elements of a

collection.

92 | Chapter 6 � Interacting objects: Newton’s Lab

In this pattern, ElementType stands for the type of each element in the collection, variable
is a variable that is being declared here, so we can give it any name we like, collection is the
name of the collection we wish to process, and statements is a sequence of statements we
wish to carry out. This will become clearer with an example.

Using our list named bodies, we can write

for (Body body : bodies)
{

body.move();
}

(Remember that Java is case sensitive: Body with an uppercase “B” is different from body
with a lowercase “b”. The uppercase name refers to the class, the lowercase name refers to a
variable holding an object. The plural version—bodies—is another variable that holds the
whole list.)

We can read the for-each loop a little more easily if we read the keyword for as “for each”, the
colon as “in”, and the opening curly bracket as “do”. This then becomes

for each body in bodies do:...

This reading also gives us a hint as to what this loop does: It will execute the statements in the
curly brackets once for each element in the list bodies. If, for example, there are three elements
in that list, the statements will be executed three times. Every time, before the statements are
executed, the variable body (declared in the loop header) will be assigned one of the list ele-
ments. Thus, the sequence of action will be

body = first element from ‘bodies’;
execute loop statements;
body = second element from ‘bodies’;
execute loop statements;
body = third element from ‘bodies’;
execute loop statements;
...

The variable body is available to be used in the loop statements to access the current element
from the list. We could then, for example, call a method on that object, as in the example shown
above, or pass the object on to another method for further processing.

We can now use this loop to apply gravity from all other bodies to this one:

for (Body body : bodies)
{

applyGravity(body);
}

In this code, we just take each element (stored in the variable body) and pass it to another
method named applyGravity, which we will have to write in a moment.

We should add one more thing: Since bodies is a list of all bodies in space, it includes the
current object (the one we want to apply gravity to) as well. We do not need to apply gravity of
an object to itself, so we can add an if statement that calls applyGravity only if the element
from the list is not the current object itself.

6.9 Applying gravity | 93

Code 6.6
Applying gravity from

all other bodies in

space

private void applyForces()
{

List<Body> bodies = getWorld().getObjects(Body.class);

for (Body body : bodies)
{

if (body != this)
{

applyGravity (body);
}

}
}

/**
* Apply the gravity force of a given body to this one.
*/
private void applyGravity(Body other)
{

// work to do here
}

The result is shown in Code 6.6. Note how the keyword this is used here to refer to the current
object.

6.9 Applying gravity
In Code 6.6, we have solved the task of accessing each object in space, but we have deferred the
task of actually applying the gravitational force. The method applyGravity (another example
of a private method) still needs to be written.

This is now a little easier than before, though, since this method now only needs to deal with two
objects at a time: the current object, and one other object specified in its parameter. We now
want to apply the gravitational force from the other object to this one. This is where Newton’s
Law comes into play.

Newton’s formula for gravitation looks like this:

In other words, to calculate the force we need to apply to the current object, we need to multiply
the mass of this object with the mass of the other object, and then divide by the square of the
distance between the two objects. Finally, the value gets multiplied by the constant G—the
Gravitational Constant. (You may remember that we have already defined a constant for this
value in our class, named GRAVITY.)

force =
mass1 * mass2

distance2 G

94 | Chapter 6 � Interacting objects: Newton’s Lab

If you are very confident or adventurous, you may like to try to implement the applyGravity
method yourself. You need to create a vector in the direction from the current body to the other
body, with a length specified by this formula. For the rest of us, we now look at the finished
implementation of that method (Code 6.7).

Code 6.7
Calculating and

applying gravity from

another body

/**
* Apply the gravity force of a given body to this one.
*/
private void applyGravity(Body other)
{

double dx = other.getExactX() - this.getExactX();
double dy = other.getExactY() - this.getExactY();
Vector force = new Vector (dx, dy);
double distance = Math.sqrt (dx * dx + dy * dy);
double strength = GRAVITY * this.mass * other.mass /

(distance * distance);
double acceleration = strength / this.mass;
force.setLength (acceleration);
addForce (force);

}

dx

dydist
ance

a

bc

this object

other object

a2 + b2 = c2

Figure 6.7
The distance in

relation to dx and dy

This method is not quite as complicated as it looks. First, we calculate the distances between our
object and the other object in the x and y coordinates (dx and dy). Then we create a new vector
using these values. This vector now has the right direction, but not the correct length.

Next, we calculate the distance between the two objects using the Pythagoras theorem (a2 + b2 = c2

in right-angled triangles, see Figure 6.7).

This tells us that the distance is the square root of dx squared plus dy squared. In our code
(Code 6.7), we use a method called sqrt from the Math class to calculate the square root.
(Math is a class in java.lang, and thus automatically imported.)

6.10 Trying it out | 95

Exercise 6.21 Look up the class Math in the Java documentation. How many parame-

ters does the sqrt method have? What types are they? What type does this method return?

Exercise 6.22 In the Math class, find the method that can be used to find the maximum

of two integers. What is it called?

The next line in our code calculates the strength of the force by using Newton’s formula of
gravitation given above.

The final thing to do is to calculate the acceleration, since the actual movement change to our
object is not only determined by the force of gravity, but also the mass of our object: The heav-
ier the object, the slower it will accelerate. Acceleration is computed using the following
formula:

Once we have calculated the acceleration, we can set our force vector to the correct length and
add this vector to the movement of our body. Doing this is easy, using the addForce method
that is provided by the SmoothMover class.

acceleration =
force
mass

Exercise 6.23 Map the variables in Code 6.7 to Newton’s formula, the Pythagoras

theorem, and the acceleration formula given above. Which variable corresponds to which

part of which formula?

With this, our task is completed. (An implementation of the code described so far is also available
in the book scenarios as Newtons-Lab-2.)

This task clearly involved more background knowledge in math and physics than the others we have
seen. If this is not your favorite area, don’t worry, we shall return to less mathematical projects
shortly. Remember: programming can do anything you like. You can make it very mathematical, but
you can also make it very creative and artistic.

6.10 Trying it out
Now that we have completed our implementation of gravitational forces, it is time to try it out.
We can start by using the three ready-made scenarios defined in the Space class.

Exercise 6.24 With your completed gravity code, try out the three initialization methods

from the Space object again (sunAndPlanet(), sunAndTwoPlanets(), and

sunPlanetMoon()). What do you observe?

96 | Chapter 6 � Interacting objects: Newton’s Lab

Exercise 6.25 Experiment with changes in gravity (the GRAVITY constant at the top of

the Body class).

Exercise 6.26 Experiment with changes to the mass and/or initial movement of the

bodies (defined in the Space class).

Exercise 6.27 Create some new set-ups of stars and planets and see how they interact.

Can you come up with a system that is stable?

Pitfall

Be careful when using the constructor of class Vector. The constructor is overloaded: one ver-

sion expects an int and a double as parameters, the other expects two doubles. Thus

new Vector(32, 12.0)

will call one constructor, while

new Vector(32.0, 12.0)

will call the other constructor, resulting in an entirely different vector.

You will quickly see that it is very hard to configure the parameters so that the system remains
stable for a long time. The combination of mass and gravity will often result in objects crashing
into each other, or escaping from orbit. (Since we have not implemented a “crashing into each
other”, our objects can essentially fly through each other. However, when they get very close,
their force becomes very large and they often catapult each other onto strange trajectories.)

Some of these effects are similar to nature, although our simulation is a little inaccurate due to some
simplifications we have made. The fact, for example, that all objects act in sequence, rather than
simultaneously, will have an effect on the behavior and is not a realistic representation. To make the
simulation more accurate, we would have to calculate all forces first (without moving) and then exe-
cute all moves according to the previous calculations. Also, our simulation does not model the
forces accurately when two bodies get very close to each other, adding more unrealistic effects.

We can also ask the stability question about our own solar system. While the orbits of the planets
in our solar system are quite stable, precise details about their movement are hard to predict accu-
rately for a long time into the future. We are quite certain that none of the planets will crash into
the Sun in the next few billion years, but small variations in orbit may happen. Simulations such
as ours (just much more accurate and detailed, but similar in principle) have been used to try to
predict the future orbits. We have seen, however, that this is very hard to simulate accurately.
Simulations can show that minute differences in the initial conditions can make huge differences
after a few billion years3.

3 If you are interested to read more, Wikipedia is a good starting point: http://en.wikipedia.org/wiki/
Stability_of_the_solar_system

http://en.wikipedia.org/wiki/Stability_of_the_solar_system
http://en.wikipedia.org/wiki/Stability_of_the_solar_system

6.11 Gravity and music | 97

Seeing how difficult it is to come up with parameters that create a system that is stable even for
a limited time, we might be surprised that our solar system is as stable as it is. But there is an
explanation: When the solar system formed, material from a gas cloud surrounding the Sun
formed into lumps that slowly grew by colliding with other lumps of matter and combining to
form ever-growing objects. Initially, there were countless of the lumps in orbit. Over time, some
fell into the Sun, some escaped into deep space. This process ends when the only chunks left are
well separated from one another and on generally stable orbits.

It would be possible to create a simulation that models this effect. If we correctly model the
growth of planets out of billions of small, random lumps of matter, we would observe the same
effect: Some large planets form that are left in fairly stable orbits. For this, however, we would
need a much more detailed and complicated simulation and a lot of time: Simulating this effect
would take a very, very long time, even on very fast computers.

6.11 Gravity and music
Before we leave our Newton’s Lab scenario behind, we have one more thing to play with: adding
music. Well, noise, in any case.4

The idea is as follows: We add a number of Obstacles into our world. When obstacles are
touched by our planets, they make a sound. Then we create a few planets or stars, let them fly
around, and see what happens.

We will not discuss this implementation in detail. Instead, we leave you to study it yourself, and
just point out some of the more interesting features. You can find an implementation of this idea
in the book scenarios as Newtons-Lab-3.

4 The idea to add sound to a gravity project was inspired by Kepler’s Orrery (see https://keplers-orrery.
dev.java.net/ or search for “Kepler’s Orrery” on YouTube).

Exercise 6.28 Open the scenario named Newtons-Lab-3 and run it. Have a look at the

source code. Try to understand how it works.

Here is a summary of the most interesting changes we have made from the previous version to
create this:

� We have added a new class Obstacle. You can easily see objects of this class on screen.
Obstacles have two images: the orange rectangle you see most of the time, and a lighter ver-
sion of the rectangle to show when they are touched. This is used to create the “lighting up”
effect. Obstacles are also associated with a sound file, just as the piano keys were in our
piano scenario. In fact, we are reusing the sound files from the piano scenario here, so they
do sound the same.

� We have modified the Body class so that bodies bounce off the edges off the screen. This
gives a better effect for this kind of scenario. We have also increased gravity a bit to get faster

https://keplers-orrery.dev.java.net/
https://keplers-orrery.dev.java.net/

Concept:

The Greenfoot API

contains methods

for collision
detection. These

make it possible

to detect when

one actor touches

another. (More

about this in the

next chapter.)

98 | Chapter 6 � Interacting objects: Newton’s Lab

movement and modified the code so that bodies automatically slow down once they get too
fast. Otherwise they might speed each other up more and more indefinitely.

� Finally, we have added code in the Space class to create a fixed row of obstacles, and to
create five random planets (random size, mass, and color).

The implementation of these three changes includes a few interesting snippets of code that are
worth pointing out.

� In the Obstacle class, we use a method named getOneIntersectingObject to check
whether the obstacle is being hit by a planet. The code pattern is the following:

Object body = getOneIntersectingObject(Body.class);
if (body != null)
{

...
}

The getOneIntersectingObject method is defined in class Actor, and is available to
all actors. It will return an actor that this one intersects with if there is such an actor, or null
if no other actor intersects with this one. The following if statement that checks whether
body is null is therefore a check whether any other object intersected this one.

This is an example of collision detection, and we will discuss more of it in the next
chapter.

� In the Space class, we have added two methods, createObstacles and randomBodies.
The first creates the obstacles with their associated sound file names, quite similar to the
initialization code in the piano example. The second uses a while loop to create a number of
Body objects. The bodies are initialized with random values. The while loop counts down
from a given number to 0, to create the right number of objects. It is worth studying as
another example of a loop.

Exercise 6.29 Change the number of bodies that are created by default in this scenario.

Exercise 6.30 Play with the movement parameters to see whether you can create nicer

movement for the planets. The parameters are: the value for GRAVITY; the acceleration

value used when bouncing off an edge (currently 0.9); the speed threshold (currently 7)

and acceleration (0.9) used in the applyForces method to slow down fast objects; and

the initial mass used for the planets (in the Space class).

Exercise 6.31 Create a different arrangement of obstacles in your scenario.

Exercise 6.32 Use different sounds (different sound files) for your obstacles.

6.12 Summary of programming techniques | 99

Exercise 6.33 Use different images for your obstacles.

Exercise 6.34 Make planets change color every time they bounce off the edge of the

universe.

Exercise 6.35 Make planets change color every time they hit an obstacle.

Exercise 6.36 Make a different kind of obstacle that gets switched on and off by being

hit. When on, it continuously blinks and produces a sound at fixed intervals.

Exercise 6.37 Add some keyboard control. For example, pressing the right arrow key

could add a small force to the right to all Body objects.

Exercise 6.38 Allow adding more planets. A mouse click into the universe while it is

running should create a new planet at that location.

There are countless other possible ways to make this scenario more interesting and nicer to
look at. Invent some of your own and implement them!

6.12 Summary of programming techniques
In this chapter, we have touched on a number of new concepts. We have seen a new scenario—
Newton’s Lab—that simulates stars and planets in space. Simulations in general are a very inter-
esting topic, and we will come back to them in Chapter 9.

We have seen two useful helper classes, SmoothMover and Vector, both of which help us to
create more sophisticated movement.

One of the most important new topics in this chapter was the use of additional classes from the
standard Java class library. We have used Color, Math, and List from the library. We will
come back to this with the use of more classes in the remaining chapters.

Another new addition to our tool set was the use of a new loop: the for-each loop. This loop is
used to do something to every element of a Java collection, such as a list. This is another bit of
code that we will need to use again later.

For-each loops are especially useful when processing objects from a collection. However, they
cannot be used without a collection, and they do not provide an index while processing the
elements. If we need an index, or a loop independent of a collection, then we must use a for
loop or a while loop instead.

And finally, we have seen some more useful methods from the Greenfoot API, such as
the getObjects method from the World class and the getOneIntersectingObject method
from the Actor class. The last one leads us into the more general area of collision detection, which
we shall discuss in more detail in the next chapter, where we pick up the Asteroids game again.

100 | Chapter 6 � Interacting objects: Newton’s Lab

Concept summary

� Overloading is the use of the same method name for two different methods or constructors.

� The keyword this is used to call one constructor from another, or to refer to the current object.

� A constant is a named value that can be used in similar ways as a variable, but can never

change.

� The Java class library is a large collection of ready-made classes, provided with the Java

system. We can use these classes by using an import statement.

� Private methods are only visible from within the class they are declared in. They are used

to improve the structure of the code.

� The keyword null stands for “nothing” or “no object”.

� A collection is a kind of object that can hold many other objects.

� A List is an example of a collection. Some methods from the Greenfoot API return List objects

to us.

� A generic type is a type that receives a second type name as a parameter.

� The for-each loop is another kind of loop. It is well suited to process all elements of a collection.

� The Greenfoot API contains methods for collision detection. These make it possible to detect

when one actor touches another. (More about this in the next chapter.)

In this chapter, we shall not introduce many new concepts, but instead revisit and deepen our
understanding of some topics we have touched on in the last couple of chapters. We shall revisit
a scenario that we have encountered before, very early in this book: Asteroids (Figure 7.1).

The version of Asteroids that we use here is slightly different than the one we looked at earlier. It has
some added features (such as a proton wave and a score counter), but it is not fully implemented.

CHAPTER

Collision detection:
Asteroids7

topics: more about movement, keyboard control and collision detection

concepts: collections (again), for loop, for-each loop (again), casting

Figure 7.1
The new Asteroids

scenario (with proton

wave)

102 | Chapter 7 � Collision detection: Asteroids

Important parts of the functionality are still missing, and it will be our job in this chapter to
implement them.

We shall use this example to revisit movement and collision detection. In terms of Java
programming concepts, we will use this to gain more practice with loops and collections.

7.1 Investigation: What is there?
We should start this project by examining the existing code base. We have a partially implemented
solution, named asteroids-1, in the chapter07 folder of the book scenarios. (Make sure to use the
chapter07 version, not the copy from chapter01.)

Exercise 7.1 Open the asteroids-1 scenario from the chapter07 folder of the book projects.

Experiment with it to find out what it does, and what it does not do.

Exercise 7.2 Write down a list of things that should be added to this project.

Exercise 7.3 Which keyboard key is used to fire a bullet?

Exercise 7.4 Place an explosion into a running scenario (by interactively creating an

object of class Explosion). Does it work? What does it do?

Exercise 7.5 Place a proton wave into a scenario. Does this work? What does it do?

When experimenting with the current scenario, you will have noticed that some fundamental
functionality is missing:

� The rocket does not move. It cannot be turned, nor can it be moved forward.

� Nothing happens when an asteroid collides with the rocket. It flies straight through it, instead
of damaging the rocket.

� As a result of this, you cannot lose. The game never ends, and a final score is never displayed.

� The ScoreBoard, Explosion, and ProtonWave classes, which we can see in the class
diagram, do not seem to feature in the scenario.

One thing that we can do, however, is fire bullets at asteroids. (If you have not yet found out how,
try it out.) Asteroids break up when hit by a bullet or, if they are already fairly small, disappear.

The goal of this game would obviously be to clear the screen of asteroids without our rocket ship
being hit itself. To make it a little more interesting, we also want to add another weapon—the
proton wave. And we want to keep a score while we’re playing. To do this, we have a good
amount of work to do.

� We have to implement movement for the rocket. Currently, it can fire bullets, but nothing
else. We need to be able to move forward and turn.

� We must ensure that the rocket explodes when we hit an asteroid.

7.2 Painting stars | 103

� When the rocket explodes, we want to put up a scoreboard that displays our final score.

� We want to be able to release a proton wave. The proton wave should start small around the
rocket ship and then gradually spread out, destroying asteroids when it hits them.

But before we get into these functions, we start with one more minor cosmetic thing: Painting
stars into our universe.

7.2 Painting stars
In all our previous scenarios, we used a fixed image as the background for the world. The image
was stored in an image file in our file system.

In this scenario, we’d like to introduce a different technique to make background images: paint-
ing them on the fly.

The Asteroid scenario does not use an image file for the background. A world that does not have
a background image assigned will, by default, get an automatically created background image
that is filled with plain white.

Exercise 7.6 Investigate the constructor of the Space class in your scenario. Find the

lines of code that create the black background.

Looking at the asteroids-1 scenario, we can see that the background is plain black. When we
investigate the constructor of the Space class, we can find these three lines of code:

GreenfootImage background = getBackground();
background.setColor(Color.BLACK);
background.fill();

Exercise 7.7 Remove these three lines from your class. You can do this by just com-

menting them out. What do you observe? (Once done, put them back in.)

Tip:

If you want to

remove some code

temporarily, it is

easier to “comment

it out”, rather than

deleting it. The

Greenfoot editor

has a function to

do this. Just select

the lines in ques-

tion, and invoke

‘Comment’ (F8) or

‘Uncomment’ (F7)

from the Edit menu.

The first line retrieves the current background image from the world. This is the automatically
generated (white) image. We then have a reference to the world background stored in the
background variable.

The background object that we have stored here is of class GreenfootImage—we have seen
this class before.

Exercise 7.8 Look up the documentation for the class GreenfootImage. What is the

name of the method used to draw a rectangle? What is the difference between drawOval
and fillOval?

104 | Chapter 7 � Collision detection: Asteroids

The second line in the code fragment above sets the paint color to black. Doing this has no
immediate effect (it does not change the color of the image). Instead, it determines the color that
is used by all following drawing operations. The parameter is a constant from the Color class,
which we encountered in the previous chapter.

Exercise 7.9 Look up the documentation of class Color again. (Do you remember

which package it is in?) For how many colors does this class define constant fields?

The third line of the code fragment now fills our image with the chosen color. Note that we do
not need to set this image again as the background of the world. When we got the image (using
getBackground()), we got a reference to the background image, and the same image still
remains the world background. It is not removed from the world just because we now have a
reference to it.

When we paint onto this image, we are painting directly onto the background of the world.

Our task now is to draw some stars onto the background image.

Exercise 7.10 In class Space, create a new method named createStars. This

method should have one parameter of type int, named number, to specify the number of

stars it should create. It has no return value. The method body should—for now—be empty.

Concept:

The for loop is

one of Java’s loop

constructs. It is

especially good for

iterating a fixed

number of times.

Exercise 7.11 Write a comment for the new method. (The comment should describe

what the method does, and explain what the parameter is used for.)

Exercise 7.12 Insert a call to this new method into your Space constructor. 300 stars

may be a good amount to start with (although you can later experiment with different

numbers and choose something that you think looks good).

Exercise 7.13 Compile the class Space. At this stage, you should not see any effect

(since our new method is empty), but the class should compile without problems.

In the createStars method, we will now write code to paint some stars onto the background
image. The exact amount of stars is specified in the method’s parameter.

We will use yet another loop to achieve this: the for loop.

Previously, we have seen the while loop and the for-each loop. The for loop uses the same key-
word as the for-each loop (for), but has a different structure. It is

for (initialization; loop-condition; increment)
{

loop-body;
}

An example of this loop can be seen in the addAsteroids method in the Space class.

7.2 Painting stars | 105

Exercise 7.14 Examine the addAsteroids method in class Space. What does it do?

Exercise 7.15 Look at the for loop in that method. From the loop header, write down

the initialization part, the loop-condition, and the increment. (See the definition of the for
loop above.)

The initialization part of a for loop is executed exactly once before the loop starts. Then the
loop condition is checked: If it is true, the loop body is executed. Finally, after the loop body has
been completely executed, the increment section from the loop header is executed. After this, the
loop starts over: The condition is evaluated again and, if true, the loop runs again. This continues
until the loop conditions returns false. The initialization is never executed again.

A for loop could quite easily be replaced by a while loop. A while loop equivalent of the for
loop structure shown above is this:

initialization;
while (loop-condition)
{

loop-body;
increment;

}

The while loop structure shown here and the for loop structure shown above do exactly the
same thing. The main difference is that, in the for loop, the initialization and the increment
have been moved into the loop header. This places all elements that define the loop behavior in
one place, and can make loops easier to read.

The for loop is especially practical if we know at the beginning of the loop already how often
we want to execute the loop.

The for loop example found in the addAsteroids method reads

for (int i = 0; i < count; i++)
{

int x = Greenfoot.getRandomNumber(getWidth()/2);
int y = Greenfoot.getRandomNumber(getHeight()/2);
addObject(new Asteroid(), x, y);

}

This shows a typical example of a for loop:

� The initialization part declares and initializes a loop variable. This variable is often called i,
and often initialized to 0.

� The loop condition checks whether our loop variable is still less than a given limit (here:
count). If it is, the loop will continue.

� The increment section simply increments the loop variable.

Different variations of the for loop are possible, but this example shows a very typical format.

Exercise 7.16 In your Space class, rewrite the for loop in addAsteroids as a while
loop. Make sure that it does the same as before.

106 | Chapter 7 � Collision detection: Asteroids

Exercise 7.18 Implement the body of the createStars method that you created earlier.

This method should include the following:

� Retrieve the world’s background image.

� Use a for loop similar to the one in addAsteroids. The limit for the loop is given in the

method parameter.

� In the body of the loop, generate random x and y coordinates. Set the color to white and

then paint a filled oval with a width and height of two pixels.

Test! Do you see stars in your world? If all went well, you should.

Exercise 7.19 Create stars of random brightness. You can do this by creating a random

number between 0 and 255 (the legal range for RGB values for colors) and creating a new

Color object using the same random value for all three color components (red, green, and

blue). Using the same value for all color components ensures that the resulting color is a

shade of neutral gray. Use this new random color for painting the stars. Make sure to

generate a new color for every new star.

These exercises are quite challenging. If you have trouble, you can look into the solution. An
implementation of this is provided in the asteroids-2 version of this scenario. Alternatively, you
can ignore this section for now, continue with the following tasks first, and come back to this later.

7.3 Turning
In the previous section, we spent a lot of effort just on looks. We used a for loop to create the
stars in the background. That was hard work for little effect. However, knowing the for loop
will come in very handy later.

Now, we want to achieve some real functionality: We want to make the rocket move. The first
step to this is to make it turn when the right or left arrow key is pressed on the keyboard.

Exercise 7.20 Examine the Rocket class. Find the code that handles keyboard input.

What is the name of the method that holds this code?

Exercise 7.21 Add a statement that makes the rocket rotate left while the “left” key is

pressed. In every act cycle, the rocket should rotate 5 degrees. You can use the

getRotation and setRotation methods from the Actor class to achieve this.

Exercise 7.17 Rewrite this method again with a for loop, as it was before.

7.4 Flying forward | 107

Exercise 7.22 Add a statement that makes the rocket rotate right while the “right” key is

pressed. Test!

If you managed to successfully complete the exercises, your rocket should be able to turn now
when you press the arrow keys. Since it fires in the direction it is facing, it can also fire in all
directions.

The next challenge is to make it move forward.

7.4 Flying forward
Our Rocket class is a subclass of the SmoothMover class, which we have already seen in the
previous chapter. This means that it holds a movement vector that determines its movement, and
that it has a move() method that makes it move according to this vector.

Our first step is to make use of this move() method.

Exercise 7.23 In the Rocket’s act method, add a call to the move() method (inherited

from SmoothMover). Test. What do you observe?

Adding the call to move() to our act method is an important first step, but does not achieve
much by itself. It causes the rocket to move according to its movement vector, but since we have
not initiated any movement, this vector currently has length 0, so no movement takes place.

To change this, let us first introduce a small amount of automatic drift, so that the rocket starts
off with some initial movement. This makes it more interesting to play, because it stops players
from being able to just remain stationary for a long time.

Exercise 7.24 Add a small amount of initial movement to the rocket in its constructor. To

do this, create a new vector with some arbitrary direction and a small length (I used 0.3 for

my own version) and then use the SmoothMover’s addForce method with this vector as a

parameter to add this force to the rocket. (Make sure to use an int as your first parameter

in the Vector’s constructor, in order to use the correct constructor.)

Test. If all went well, the rocket should drift all by itself when the scenario starts. Don’t make

this initial drift too fast. Experiment until you have a nice, slow initial movement.

Next, we want to add movement controls for the player. The plan is that pressing the “up” arrow
key ignites the rocket’s booster and moves us forward.

108 | Chapter 7 � Collision detection: Asteroids

For the other keyboard input, we have used code of the following pattern:

if (Greenfoot.isKeyDown("left"))
{

setRotation(getRotation() - 5);
}

For the movement forward, we need a slightly different pattern. The reason is that, for the rota-
tion shown here, we need to act only if the key is being pressed.

The movement forward is different: When we press the “up” key to move, we want to change the
rocket’s image to show the rocket engine firing. When we release the key, the image should
return to the normal image. Thus, we need a code pattern along these lines:

when “up” key is pressed:
change image to show engine fire;
add movement;

when up key is released:
change back to normal image;

Showing the images is quite easy. The scenario already contains two different rocket images for
this: rocket.png and rocketWithThrust.png. Both images are loaded into fields toward the top of
the Rocket class.

Since we need to react in both cases, when the “up” key is pressed and when it is not pressed, we
will define and call a separate method to handle this functionality.

In checkKeys, we can insert the following method call:

ignite(Greenfoot.isKeyDown("up"));

We can then write a method called ignite that does the following:

� It receives a boolean parameter (say, boosterOn) that indicates whether the booster
should be on or off.

� If the booster is on, it sets the image to rocketWithThrust.png and uses addForce to add a
new vector. This vector should get its direction from the current rotation of the rocket
(getRotation()) and have a small, constant length (say, 0.3).

� If the booster is not on, set the image to rocket.png.

Exercise 7.25 Add the call to the ignite method to your checkKeys method, exactly

as shown above.

Exercise 7.26 Define a method stub (a method with an empty body) for the ignite
method. This method should have one boolean parameter, and a void return type. Make

sure to write a comment. Test! The code should compile (but not do anything yet).

Exercise 7.27 Implement the body of the ignite method, as outlined in the bullet

points above.

7.5 Colliding with asteroids | 109

For the implementation of our ignite method, it is okay if the image gets set every time the
method is called, even when it is not necessary (e.g., if the booster is off, and it was also off
last time, we would not need to set the image again since it has not changed). Setting the
image even when it is not strictly necessary has very little overhead and so avoiding it is not
crucial.

Once you have completed these exercises, you have reached a stage where you can fly your
rocket around and fire at asteroids.

A version of the project that implements the exercises presented so far in this chapter is provided
as asteroids-2 in the book scenarios.

7.5 Colliding with asteroids
The most obvious fault with our asteroids game at this stage is that we can fly right through the
asteroids. That leaves not much of a challenge to play this game, since we cannot lose. We shall
fix that now.

The idea is that our rocket ship should explode when we crash into an asteroid. If you did the
exercises earlier in this chapter, then you have already seen that we have a fully functional
Explosion class available in our project. Simply placing an explosion into the world will show
an adequate explosion effect.

Thus, a rough description of the task to solve is this:

if (we have collided with an asteroid) {
remove the rocket from the world;
place an explosion into the world;
show final score (game over);

}

Before we look into solving these subtasks, we prepare our source code to implement this task,
as we did before with other functionality. We follow the same strategy as before: Since this is a
separate subtask, we shall put it into a separate method, in order to keep our code well structured
and easily readable. You should usually start the implementation of new functionality like this.
The next exercise achieves this.

Exercise 7.28 Create a new method stub (a method with an empty body) in class

Rocket for checking for collisions with asteroids. Call it checkCollision. This method

can be private and needs no return value and no parameters.

Exercise 7.29 In the Rocket’s act method, add a call to the checkCollision
method. Ensure that your class compiles and runs again.

The first subtask is to check whether we have collided with an asteroid. Greenfoot’s Actor class
contains a number of different methods to check for collisions with different functionality.

Concept:

Greenfoot

provides several

methods for

collision detec-
tion. They are in

the Actor class.

Concept:

The bounding box
of an image is the

enclosing rectangle

of that image.

110 | Chapter 7 � Collision detection: Asteroids

visible image

bounding box

Figure 7.2
Two actor images

and their bounding

boxes

Appendix C presents a summary of the different collision detection methods and their function-
ality. This might be a good time to have a quick look through it. At some stage, you should
become familiar with all the collision detection methods.

For our purpose getIntersectingObjects seems like a good fit. Two objects intersect if any
of the pixels in their images intersect. This is pretty much what we need.

There is one small problem: transparent pixels in the actor images.

Images in Greenfoot are always rectangles. When we see non-rectangular images, such as the
rocket, this is because some pixels in the image are transparent (invisible; they contain no
color). For the purpose of our program, however, they are still part of the image.

Figure 7.2 shows the rocket and asteroid images with their bounding boxes. The bounding box is
the edge of the actual image. (The image of the rocket is a little bigger than what seems neces-
sary to make it the same size as the second rocket image, rocketWithThrust, which shows the
flame in the currently empty area.)

In Figure 7.2, the images intersect, even though their visible parts do not touch. The collision
detection methods will report this as an intersection. They work with the bounding boxes, and
pay no attention to the non-transparent parts of the image.

As a result, our rocket will make “contact” with an asteroid even though, on screen, there seems
to be still a little distance between them.

For our asteroids game, we choose to ignore this. Firstly, the distance is small, so often players
will not notice. Secondly, it is easy enough to come up with a story line to explain this effect
(“flying too close to an asteroid destroys your ship because of the gravitational pull”).

Sometimes it would be nice to check whether the actual visible (non-transparent) parts of an
image intersect. This is possible, but much more difficult. We will not discuss this here.

Now that we have decided to go with intersection, we can look at the Actor methods again.
There are two methods for checking object intersection. Their signatures are

List getIntersectingObjects(Class cls)
Actor getOneIntersectingObject(Class cls)

Both methods accept a parameter of type Class (which means that we can check for intersec-
tions with a specific class of object if we want to). The difference is that one method will return
a list of all objects that we currently intersect with, while the other returns only a single object.
In case we intersect more than one other object, the second method randomly chooses one of
them and returns it.

7.5 Colliding with asteroids | 111

For our purpose, the second method is good enough. It actually makes no difference to the game
whether we crash into one asteroid, or into two of them simultaneously. The rocket will explode
just the same. The only question for us is, did we intersect with any asteroid at all?

Thus, we shall use the second method. Since it returns an Actor, rather than a List, it is
slightly simpler to work with. It will return an actor if we do have an intersection, or null if we
currently do not intersect with any asteroid. We can check for a null return value to see whether
we crashed into anything:

Actor a = getOneIntersectingObject(Asteroid.class);
if (a != null)
{

...
}

Exercise 7.30 Add a check for intersecting with an asteroid, similar to the one shown

here, to your own checkCollision method.

Exercise 7.31 Add code to the body of the if statement that adds an explosion to the

world at the current position of the rocket, and removes the rocket from the world. (To do

this, you need to use the getWorld() method to access its methods for adding and

removing objects from the world.)

For the last exercise above, we can use our own getX() and getY() methods to retrieve our
current position. We can use this as the coordinates for placing the explosion.

An attempt at solving this might look like this:

World world = getWorld();
world.removeObject(this); // remove rocket from world
world.addObject(new Explosion(), getX(), getY());

This code looks reasonable at first glance, but will not work.

Exercise 7.32 Try out the code as shown above. Does it compile? Does it run? At what

point does something go wrong, and what is the error message?

The reason this does not work is that we are calling the getX() and getY() methods after
removing the rocket from the world. When an actor is removed from the world, it does not have
any coordinates anymore—it has coordinates only while being in the world. Thus, the getX()
and getY() method calls fail in this example.

This can easily be fixed by switching the last two lines of code: Insert the explosion first, and
then remove the rocket from the world.

112 | Chapter 7 � Collision detection: Asteroids

Exercise 7.33 This is a very advanced exercise, and you may want to skip it initially, and

come back to it later.

The explosion used here is a fairly simple looking explosion. It is good enough for the

moment, but if you want to create really good looking games, it can be improved. A more

sophisticated way to show explosions is introduced in a Greenfoot tutorial video, available on

the Greenfoot web site:

http://www.greenfoot.org/doc/videos.html

Create a similar explosion for your rocket.

7.6 Casting
Our game is now fairly playable. You may have noticed that the score counting does not work
(we will look into that later), and that nothing happens when you lose. Next, we shall add a big
“Game Over” sign at the end, when the rocket crashes.

This is almost easy to do: There is already a ScoreBoard class in the project that we can use.

Exercise 7.34 Create an object of class ScoreBoard and place it into the world.

Exercise 7.35 Examine the source code of the ScoreBoard class. How many

constructors does it have? What is the difference between them?

Exercise 7.36 Modify the ScoreBoard class: Change the text shown on it; change the

color of the text; change the background and frame colors; change the font size so that

your new text fits well; change the width of the scoreboard to suit your text.

As you have seen, the scoreboard includes a “Game over” text and the final score (although the
score is currently not correctly counted, but we shall worry about that later).

The Space class already has a method, named gameOver, that is intended to create and show a
scoreboard.

Exercise 7.37 Find and examine the gameOver method in the Space class. What does

its current implementation do?

Exercise 7.38 Implement the gameOver method. It should create a new ScoreBoard
object, using the constructor that expects an int parameter for the score. For now, use 999

as the score—we will fix this later. Place the scoreboard into the world, exactly centered in

the middle.

http://www.greenfoot.org/doc/videos.html

7.6 Casting | 113

Exercise 7.39 Once implemented, test your gameOver method. Remember: You can

call methods of the world class by right-clicking the world title (see Figure 6.3).

Exercise 7.40 How can you ensure that the scoreboard gets placed in the middle of the

world without hard-coding the location (i.e., without using the numbers 300 and 200 directly

as coordinates)? Hint: Make use of the width and height of the world. Implement this in your

scenario.

So, it seems most of the work has been well prepared for us. We now only need to call the
gameOver method when we want the game to finish.

The place in our code where we want the game to be over is in our rocket’s checkCollision
method: If we detect a collision, the rocket should explode (we have done that) and the game is over.

Exercise 7.41 Add a call to the gameOver method in your checkCollision method.

Compile. What do you observe? Most likely, you will see an error—what is the error message?

Simply adding the gameOver call creates a problem. This is quite a fundamental problem, and
we need to examine it in more detail. Let us look at the code so far, assuming we just add a call
to the gameOver method to our checkCollision (Code 7.1). This code will not compile.

Code 7.1
A first attempt

at calling the

gameOver method

private void checkCollision()
{

Actor a = getOneIntersectingObject(Asteroid.class);
if (a != null)
{

World world = getWorld();
world.addObject(new Explosion(), getX(), getY());
world.removeObject(this); // remove rocket from world
world.gameOver(); // error: this will not work

}
}

When trying to compile this code, we get an error message that reads

cannot find symbol—method gameOver()

This message is trying to tell us that the compiler cannot find a method with this name.
We know, however, that such a method exists in our Space class. We also know that the
getWorld() call used here gives us a reference to our Space object. So what is the problem?

Concept:

Casting is the

technique of

specifying a more

precise type for our

object than the one

the compiler knows

about.

114 | Chapter 7 � Collision detection: Asteroids

The problem lies in the fact that the compiler is not quite as smart as we would like. The
getWorld() method is defined in class Actor, and its signature is this:

World getWorld()

We can see that it states that it will return an object of type World. The actual world that it
returns in our case is of type Space.

This is not a contradiction: Our world object can be of type World and of type Space at the
same time, because Space is a subclass of World (Space is a World; we also say that the type
Space is a subtype of type World).

The error comes from the difference between the two: gameOver is defined in class Space,
while getWorld gives us a result of type World. The compiler looks only at the return type of
the method we are calling (getWorld). Because of this, the compiler searches for the
gameOver method only there and it does not find it. That’s why we get the error message.

To solve this problem, we need to tell the compiler explicitly that this world we’re getting is
actually of type Space. We can do this by using a cast.

Space space = (Space) getWorld();

Casting is the technique of telling the compiler a more precise type for our object than it can
work out for itself. In our case, the compiler can work out that the object returned from
getWorld is of type World, and we are now telling it that it is actually of class Space. We do
this by writing the class name (Space) in parentheses before the method call. Once we have
done this, we can call methods defined in Space:

space.gameOver();

It is worth noting that casting does not change the type of the object. Our world actually is of
type Space all along. The problem is just that the compiler does not know this. With the cast, we
are just giving additional information to the compiler.

Back to our checkCollision method. Once we have cast our world to Space and stored it in
a variable of type Space, we can call all methods on it: those defined in Space and those
defined in World. Thus, our existing calls to addObject and removeObject should still
work, and the gameOver call should work as well.

Exercise 7.42 Implement the call to the gameOver method, using the cast of the World
object to Space, as discussed here. Test. This should now work, and the scoreboard

should come up when the rocket explodes.

Exercise 7.43 What happens when you use a cast incorrectly? Try casting the world

object to, say, Asteroid instead of Space. Does this work? What do you observe?

This work so far has achieved the display of our “Game Over” sign (still with an incorrect
score). We shall leave the scoring as an exercise at the end of this chapter. If you really want to
fix this now, you may like to jump ahead to the end-of-chapter exercises and look into this first.
Here, we will look at proton waves next.

Concept:

Objects can be of

more than one
type: the type of

their own class,

and the type of the

class’s superclass.

7.8 Growing the wave | 115

Exercise 7.44 Run your scenario. Place a proton wave into the scenario—what do you

observe?

7.7 Adding fire power: The proton wave
Our game is getting pretty good. The final thing we shall discuss in detail in this chapter is the
addition of a second weapon: the proton wave. This should give the game a little more variety.
The idea is this: Our proton wave, once released, radiates outward from our rocket ship, damag-
ing or destroying every asteroid in its path. Since it works in all directions simultaneously, it is a
much more powerful weapon than our bullets. For the game, we should probably restrict how
often or how frequently you can use it, so that the game does not become too easy to play.

The exercise shows us that we have a proton wave actor, which shows the wave at full size. However,
this wave does not move, does not disappear, and does not cause any damage to asteroids.

Our first task will be to make the wave grow. We will start it very small, and then grow it until it
reaches the full size that we have just seen.

Exercise 7.45 Examine the source code of class ProtonWave. What are the methods

that already exist?

Exercise 7.46 What is the purpose of each method? Review the comments of each

method and expand them to add a more detailed explanation.

Exercise 7.47 Try to explain what the initializeImages method does and how it

works. Explain in writing, using diagrams if you like.

7.8 Growing the wave
We have seen that the ProtonWave class has a method—initializeImages—that creates
30 images of different sizes and stores them in an array (Code 7.2). This array, named images,
holds the smallest image at index 0, and the largest one at index 29 (see Figure 7.3). The images
are created by loading a base image (wave.png) and then, in a loop, creating copies of this image
and scaling them to different sizes.

Code 7.2
Initializing the

images for the

proton wave

/**
* Create the images for expanding the wave.
*/
public static void initializeImages()
{

if(images == null)
{

GreenfootImage baseImage = new GreenfootImage(“wave.png”);
images = new GreenfootImage[NUMBER_IMAGES];

116 | Chapter 7 � Collision detection: Asteroids

GreenfootImage [] images

GreenfootImage[]

0 1 2 3 4 ... 29
...

...

Figure 7.3
An array of images

(some left out for

space reasons)

Exercise 7.48 Rewrite the initializeImages method to use a for loop instead of a

while loop.

In practice, it is not very important which loop to use in this case. (We changed it here mainly to
gain additional practice in writing for loops.) This is, however, a case where a for loop is a
good choice, because we have a known number of iterations (the number of images) and we can
make good use of the loop counter in calculating the image sizes. The advantage over the while
loop is that the for loop brings all elements of the loop (initialization, condition, and increment)
together in the header, so that we run less danger of forgetting one of its parts.

int i = 0;
while (i < NUMBER_IMAGES)
{

int size = (i+1) * (baseImage.getWidth() / NUMBER_IMAGES);
images[i] = new GreenfootImage(baseImage);
images[i].scale(size, size);
i++;

}
}

}

Code 7.2
continued
Initializing the

images for the

proton wave

This method uses the scale method from the GreenfootImage class to do the scaling. It also
uses a while loop for the iteration. However, this is an example where a for loop, which we
encountered at the beginning of this chapter, might be appropriate.

7.8 Growing the wave | 117

1 The method is actually called for the first time from the Space constructor, so it executes even before the
first proton wave is created. This avoids a delay for the first proton wave as well. The call is included in
the proton wave constructor only as a safety feature: If this class is ever used in another project, and this
method is not called in advance, all will still work.

The images field and the initializeImages method are static (they use the static
keyword in their definition). As we have briefly mentioned in Chapter 7, this means that the
images field is stored in the ProtonWave class, not in the individual instances. As a result, all
objects that we shall create of this class can share this set of images, and we do not need to create
a separate set of images for each object. This is much more efficient than using a separate image
set each time.

Copying and scaling these images takes a fairly long time (between a tenth of a second and half
a second on a current average computer). This does not may seem very much, but it is long
enough to introduce a visible, annoying delay when we do it in the middle of playing a game. To
solve this, the code of this method is enclosed in an if statement:

if (images == null)
{

...
}

This if statement ensures that the main part of this method (the body of the if statement) is
executed only once. The first time, images will be null, and the method executes fully. This
will initialize the images field to something other than null. From then on, the test of the if
statement is all that will be executed, and the body will be skipped. The initializeImages
method is actually called every time a proton wave is created (from the constructor), but only the
very first time it is called, substantial work will be done.1

Now that we have a fair idea of the code and the fields that already exist, we can finally get to
work and make something happen.

What we want to do is the following:

� We want to start the wave off with the smallest image.

� At every act step, we want to grow the wave (show the next larger image).

� After we have shown the largest image, the wave should disappear (be removed from the
world).

The following exercises will achieve this.

Exercise 7.49 In the constructor of class ProtonWave, set the image to the smallest

image. (You can use images[0] as the parameter to the setImage method.)

Exercise 7.50 Create an instance field named imageCount of type int, and initialize it

to 0. We will use this field to count through the images. The current value is the index of the

currently displayed image.

118 | Chapter 7 � Collision detection: Asteroids

Exercise 7.51 Create a method stub for a new private method called grow. This method

has no parameter and does not return a value.

Exercise 7.52 Call the grow method from your act method. (Even though it does not do

anything at this stage.)

We’re almost there. The only thing left is to implement the grow method. The idea, roughly, is this:

show the image at index imageCount;
increment imageCount;

We will also have to add an if statement that f irst checks whether imageCount has
exceeded the number of images. In that case, we can remove the proton wave from the world
and we’re done.

Exercise 7.53 Implement the grow method along the lines discussed above.

Exercise 7.54 Test your proton wave. If you interactively create a proton wave and place

it into the world while the scenario is running, you should see the wave expansion effect.

Exercise 7.55 Add some sound. A sound file named proton.wav is included with the

scenario—you can just play it. You can place the statement to play the sound into the con-

structor of the proton wave.

Now that we have a functioning proton wave, we should equip our rocket to release it.

Exercise 7.56 In class Rocket, create a method stub named startProtonWave with-

out parameters. Does it need to return anything?

Exercise 7.57 Implement this method: It should place a new proton wave object into the

world, at the current coordinates of the rocket.

Exercise 7.58 Call this new method from the checkKeys method when the “z” key is

pressed. Test.

Exercise 7.59 You will quickly notice that the proton wave can be released much too

often now. For firing the bullets, a delay has been built into the Rocket class (using the

gunReloadTime constant and the reloadDelayCount field). Study this code and imple-

ment something similar for the proton wave. Try out different delay values until you find one

that seems sensible.

7.9 Interacting with objects in range | 119

7.9 Interacting with objects in range
We now have a proton wave that we can release at a press of a button. The remaining problem is:
This proton wave does not actually do anything to the asteroids.

We now wish to add code that causes damage to the asteroids when they get hit by the proton wave.

Exercise 7.60 Prepare for this new functionality: In class ProtonWave, add a method

stub for a method called checkCollision. The method has no parameters and does not

return a value. Call this method from your act method.

Exercise 7.61 The purpose of this new method is to check whether the wave touches an

asteroid, and cause damage to it if it does. Write the method comment.

This time we do not want to use the getIntersectingObjects method, since the invisible
image areas at the corners of the proton wave image (included in the bounding box, but not part
of the blue-ish circle) are fairly large, and asteroids would be destroyed long before the wave
seems to reach them.

Instead, we will use another collision detection method, called getObjectsInRange.

The getObjectsInRange method returns a list of all objects within a given radius of the call-
ing object (see Figure 7.4). Its signature is

List getObjectsInRange(int radius, Class cls)

When called, we can specify the class of objects we are interested in (as before), and we also
specify a radius (in cells). The method will then return a list of all objects of the requested class
that are found within this radius around the calling object.

To determine which objects are within the range, the center points of objects are used. For
example, an asteroid would be within range 20 of a rocket if the distance of its center point to

Figure 7.4
The range around an

actor with a given

radius

Exercise 7.62 In checkCollision, declare a local variable named range and assign

half the current image width to it.

the center point of the rocket is less than 20 cell widths. The size of the image is not relevant
for this method.

Using this method, we can implement our checkCollision method.

Our proton wave will have images of increasing size. At each act cycle, we can use the size of
the current image to determine the range of our collision check. We can find out our current
image size using the following method calls:

getImage().getWidth()

We can then use half of this size as our range (since the range is specified as a radius, not a
diameter).

120 | Chapter 7 � Collision detection: Asteroids

Exercise 7.63 Add a call to getObjectsInRange that returns all asteroids within the

calculated range. Assign the result to a variable of type List<Asteroid>. Remember

that you also have to add an import statement for the List type.

These exercises give us a list of all asteroids in the range of the proton wave. We now want to do
some damage to each asteroid in range.

The Asteroid class has a method called hit that we can use to do this. This method is already
being used to do damage to the asteroid when it is hit by a bullet, and we can use it again here.

We can use a for-each loop to iterate through all asteroids in the list we received from the
getObjectsInRange call. (If you are unsure about writing for-each loops, look back to
Section 6.8.)

Exercise 7.64 Find the hit method in the Asteroid class. What are its parameters?

What does it return?

Exercise 7.65 The ProtonWave class has a constant defined toward the top, called

DAMAGE, that specifies how much damage it should cause. Find the declaration of this

constant. What is its value?

Exercise 7.66 In method checkCollision, write a for-each loop that iterates over the

asteroid list retrieved from the getObjectsInRange call. In the loop body, call hit on

each asteroid using the DAMAGE constant for the amount of damage caused.

Once you have completed these exercise, test. If all went well, you should now have a playable
version of this game that lets you shoot at asteroids and also release proton waves to destroy

many asteroids in one go. You will notice that you should make the reload time for the proton
wave quite long, since the game gets too easy if you can use the wave too often.

This version of the game, including all the changes made in the last few sections, is available in
the book projects as asteroids-3. You can use this version to compare it to your own scenario, or
to look up solutions if you get stuck in one of the exercises.

7.10 Further development
We are at the end of the detailed discussion of development of this scenario in this chapter.
There are, however, a large number of further improvements possible to this game. Some are
quite obvious, others you may like to invent yourself.

Following are some suggestions for further work, in the form of exercises. Many of them are
independent of each other—they do not need to be done in this particular order. Pick those first
that interest you most, and come up with some extensions of your own.

7.10 Further development | 121

Exercise 7.67 Fix the score counting. You have seen that there already is a score counter,

but it is not being used yet. The counter is defined in class Counter, and a counter object is

being created in the Space class. You will have to do roughly the following: Add a method to

the Space class named something like countScore—this should add a score to the score

counter; and call this new method from the Asteroid class whenever an asteroid gets hit (you

may want to have different scores for splitting the asteroid and removing the last little piece).

Exercise 7.72 Add a shield. When the shield is deployed, it stays there for a short fixed

time. While the shield is up, it can be seen on screen, and colliding asteroids do no damage.

Exercise 7.68 Add new asteroids when all have been cleared. Maybe the game should

start with just two asteroids, and every time they are cleared away, new ones appear, one more

every time. So in the second round, there are three asteroids, in the third round four, etc.

Exercise 7.69 Add a level counter. Every time the asteroids are cleared, you go up a

level. Maybe you get higher scores in later levels.

Exercise 7.70 Add an end-of-level sound. This should be played every time a level is

completed.

Exercise 7.71 Add an indicator showing the load state for the proton wave, so that the

player can see when it is ready to be used again. This could be a counter, or some sort of

graphical representation.

There are, of course, countless more possible extensions. Invent some of your own, implement
them, and submit your results to the Greenfoot Gallery.

122 | Chapter 7 � Collision detection: Asteroids

Concept summary

� The for loop is one of Java’s loop constructs. It is especially good for iterating a fixed number

of times.

� Greenfoot provides several methods for collision detection. They are in the Actor class.

� The bounding box of an image is the enclosing rectangle of that image.

� Objects can be of more than one type: the type of their own class, and the type of the class’s

superclass.

� Casting is the technique of specifying a more precise type for our object than the one the

compiler knows about.

7.11 Summary of programming techniques
In this chapter, we have worked on completing an asteroids game that was initially half-written.
In doing this, we have encountered several important constructs again that we had seen before,
including loops, lists, and collision detection.

We have seen one new style of loop—the for loop—and we have used it to paint the stars, and
to generate the proton wave images. We have also revisited the for-each loop when we imple-
mented the proton wave functionality.

Two different collision detection methods were used: getOneIntersectingObject and
getObjectsInRange. Both have their advantages in certain situations. The second one of
those returned a list of actors to us, so we had to deal with lists again.

Understanding lists and loops is initially quite difficult, but very important in programming, so
you should carefully review these aspects of your code if you are not yet comfortable in using
them. The more practice you get, the easier it becomes. After using them for a while, you will be
surprised that you found them so difficult at first.

We will take a little time out to go on a second interlude—a break in the chapter sequence to do
something a little different. This time, we will look at “Greeps”—a programming competition.

The Greeps are alien creatures. And they’ve come to Earth! One of the important things to know
about Greeps is that they like tomatoes. They have landed with their spaceship and are swarming
out to find and collect tomatoes (Figure I2.1).

INTERLUDE

The Greeps competition2

Figure I2.1
Two Greeps hunting

for tomatoes

1 If you submit the Greeps scenario to the Greenfoot Gallery, please do not include source code. We want to
keep this project as a challenge to future programmers and don’t want to make it too easy to find solutions
of others.

The challenge in this programming competition will be to program your Greeps so that they find
and collect tomatoes as quickly as possible. You will have limited time, and every tomato you
manage to bring back to the spaceship scores a point.

You can do this project as a competition against a friend who programs their own Greeps, or you can
do it as a contest for a whole group of programmers, such a school class. If you’re on your own, you
could post your entry to the Greenfoot Gallery and see how you compare to other people there.1 Or
you could do it on your own just for the fun of it—either way, it should be an interesting challenge.

124 | Interlude 2 � The Greeps competition

I2.1 How to get started
To start, open the greeps scenario from the book-scenarios folder. Run this scenario.

You will see that a spaceship lands in an area with sand and water. The Greeps will leave the
spaceship and start searching for tomato piles (which happen to be found in various places in
this area). Greeps are land animals—they cannot and will not walk into the water. (In fact, they
are so sensitive to water that they dissolve very quickly in it, so don’t try.)

When you try out the scenario, you will quickly see that the Greeps do not behave very intelligently.
They head out in a random direction from the ship, but when they reach the edge of the water, they
will just stay there, because they cannot go forward.

Your task will be to program the Greeps to use some more intelligent strategy, so that they find
the tomatoes and bring them back to the ship.

There are some facts about the Greeps that will be good to know:

� There are 20 Greeps in the spaceship. They will come out after landing to start their work.
You cannot get any more of them.

� Greeps can carry a tomato on their back, but they cannot load tomatoes onto their own back.
They can only load a tomato onto another Greep’s back! This means, that two of them have
to be at the tomato pile at the same time to pick up a tomato.

Figure I2.2
A tribe of Greeps

using paint drops

I2.2 Programming your Greeps | 125

� Greeps cannot talk, or communicate verbally in any way. They can, however, spit paint onto
the ground. And they can spit in three different colors! There are rumors that there once was
a tribe of Greeps who used this to convey information to each other.

� Greeps are very short sighted. They can only see the ground at their immediate location, and
cannot look any further.

� Greeps have a good memory—they never forget what they know. However—unfortunately—
their memory is very limited. They can only remember a few things at a time.

Armed with this extensive background knowledge, we can now get ready to program our Greeps.

I2.2 Programming your Greeps
To program your Greeps to collect as many tomatoes as possible, you should improve their
behavior. The Greep class, which is included in the scenario, already includes some behavior
(albeit not very clever) that you can look at to get started.

We can see that Greep is a subclass of Creature. Class Creature provides a number of very
useful methods that we can use.

There are, however, a number of rules that you must follow:

Rule 1: Only change the class “Greep”. No other classes may be modified or created.

Rule 2: You cannot extend the Greeps’memory. That is, you are not allowed to add fields (other
than final fields) to the class. Some general purpose memory (one int and two booleans)
is provided.

Rule 3: You cannot move more than once per “act” round.

Rule 4: Greeps do not communicate directly. They do not call each other’s methods or access
each other’s fields.

Rule 5: No long vision. You are allowed to look at the world only at the immediate location of
the Greep. Greeps are almost blind, and cannot look any further.

Rule 6: No creation of objects. You are not allowed to create any scenario objects (instances of
user-defined classes, such as Greep or Paint). Greeps have no magic powers—they
cannot create things out of nothing.

Rule 7: No teleporting. Methods from Actor that cheat normal movement (such as
setLocation) may not be used.

It is important to follow these rules. It is technically easy to break them, but that is considered
cheating.

To program your Greeps, you work mainly in the Greeps’ act method (and any other private
methods you choose to create).

Some tips to get started:

� Read the documentation of class Creature. (The best way to do this is to open the class in
the editor and switch to Documentation view.) These are some of the most useful methods for
your work. Know what is there.

126 | Interlude 2 � The Greeps competition

� Work in small steps. Start making small improvements and see how it goes.

� Some first improvements could be as follows: turn around when you are at water; wait if you
find a tomato pile (and try to load tomatoes); turn if you are at the edge of the world; . . .

You will soon figure out many more improvements you can do. It gets especially interesting
once you start using the paint drops on the ground to make marks for other Greeps to find.

I2.3 Running the competition
It helps to have a judge who runs the competition. In a school, this might be your teacher. If you
run this with friends, it could be a selected person (who then cannot take part as a normal
contestant in the competition himself).

To make the competition interesting, there should be two versions of the Greeps scenario. One
gets handed out to all contestants. (This is the one included in the book scenarios.) This scenario
includes three different maps. The Greeps land and forage on each of the three maps in turn. (So
the challenge for contestants is to develop movement algorithms that are flexible enough to work
on different maps, not just a known one.)

The judge should have a different scenario that includes more maps. We recommend running the
competition with 10 different maps. Contestants do not get access to the last seven maps—they
can only test on the first three. Then they hand in their Greeps for scoring, and the judge then
runs the contestants’ Greeps on all 10 maps (maybe on a large display screen) to reach the
official score.

The competition is best run over several days (or maybe a week or two), with repeated chances
for contestants to submit their work for scoring, so that they can slowly improve.

I2.4 Technicalities
For submission of an entry to the judge, the easiest mechanism is that contestants submit only
the Greeps.java file. The judge then copies that file into his full (10-map) scenario, recompiles,
and runs it. This ensures that no other classes are modified in the process.

Some artwork (to make flyers or posters for the competition) is available at

http://www.greenfoot.org/competition/greeps/

Instructors can also find instructions there for obtaining a version of the Greeps scenario with
10 maps. Alternatively, instructors can make more maps themselves fairly easily. An image of an
empty map is provided in the images folder of the Greeps scenario. Water can just be painted
onto the map, and map data (location of tomato piles, etc.) can be specified in the Earth class.

http://www.greenfoot.org/competition/greeps/

Many of the scenarios we have encountered previously were interesting not only because of the
program code that defined their behavior, but also because they made effective use of sound and
images. So far, we have not discussed the production of these media files much, and have mostly
relied on existing pictures and sounds.

In this chapter, we shall discuss some aspects of creating and managing these media files. We
first discuss some background about sound in computer programs, followed by various tech-
niques to create and handle images.

As a side effect, we shall also encounter dealing with mouse input.

8.1 Preparation
In contrast to previous chapters, we will not build a complete scenario in this chapter but work
through various smaller exercises that illustrate separate techniques that can then be incorpo-
rated into a wide variety of different scenarios. The first sequence of exercises guides us through
creating a scenario which plays a sound—which we create ourselves—when the user clicks on
an actor.

For these exercises, we shall not use a prepared, partly implemented starting scenario this time
but create a new one from scratch.

CHAPTER

Creating images
and sound8

topics: creating sounds, creating images, dynamic image changes, handling

mouse input

concepts: sound formats, sound quality parameters, image file formats, RGBA color

model, transparency

Exercise 8.1 As a preparation for the exercises in this chapter, create a new scenario.

You can call it anything you like.

128 | Chapter 8 � Creating images and sound

You will see that the new scenario automatically includes the World and Actor superclasses,
but no other classes.

Exercise 8.2 Create a subclass of World. Call it MyWorld. You can give it any background

image you like. Compile.

Exercise 8.3 Change the size and resolution of the world so that it has a cell size of one

pixel, and a size of 400 cells width and 300 cells height.

Exercise 8.4 Create an actor subclass in your scenario. At this stage, it does not matter

much what it is. You may like to look through the available library images shown in the New

class dialog, and choose one that looks interesting. Name your class appropriately.

(Remember: class names should start with a capital letter.)

Exercise 8.5 Add code to your MyWorld class that automatically places an instance of

your actor into the world.

Exercise 8.6 Write code into your actor’s act method that moves the actor 10 pixels to

the right every time it acts.

You should now have a scenario with an actor that moves to the right when you run it.
Movement, however, is not our main goal here. We added movement only to have an initial
visual effect to experiment with.

The next step in our preparation will be to make the actor react to mouse clicks.

Exercise 8.7 In class Greenfoot, there are several methods that can handle mouse input.

What are they? Look them up in the Greenfoot Class Documentation and write them down.

Exercise 8.8 What is the difference between mouseClicked and mousePressed?

When we want to react to mouse clicks, we can use the mouseClicked method from the
Greenfoot class. This method returns a boolean and can be used as a condition in an if
statement.

The parameter to the mouseClicked method can specify an object that the mouse was clicked
on. We can pass null as the parameter if we do not care where the mouse was when it was
clicked—the method will then return true if the mouse was clicked anywhere.

Exercise 8.9 Modify the code in your actor class so that it only moves to the right in

reaction to a mouse click. The mouse click can be anywhere in the world.

8.2 Working with sound | 129

Exercise 8.10 Now modify your code so that the actor only moves when the user clicks

on the actor. To do this, you have to pass the actor itself (instead of null) as a parameter

to the mouseClicked method. Remember, you can use the keyword this to refer to the

current object.

Exercise 8.11 Test your code: Place multiple instances of your actor into the world and

make sure that only the one you click on moves.

You should now have a scenario with an actor that can react to mouse clicks. This is a good starting
point for our following experiments with sound and images. (If you had trouble creating this, there is
a scenario called soundtest in the book scenarios for this chapter that implements this starting point.)

8.2 Working with sound
As we have already seen earlier, the Greenfoot class has a playSound method that we can use
to play a sound file. To be playable, the sound file must be located in the sounds folder inside the
scenario folder.

As a start, let us play an existing sound file.

Exercise 8.12 Select a sound file from one of your other Greenfoot scenarios and copy

it into the sounds folder of your current scenario. Then modify your actor so that it plays the

sound (instead of moving) when you click on it.

Pitfall

Some operating systems are configured so that file name suffixes (extensions) are not displayed.

A file that is fully named mysound.wav would then be displayed only as mysound. This is a prob-

lem, because we need to use the full name, including the suffix, from our Java code. Writing

Greenfoot.playSound(“mysound”);

would fail, because the file would not be found. However, without seeing the suffix, we have no

idea what it is.

The solution is to change the operating system’s settings so that suffixes are always displayed.

Windows, for example, has a checkbox titled Hide extensions for known file types, and you

should make sure that this is not checked. In Windows Vista, you can find this checkbox by

looking at your folder’s contents and going through the menus Organize/Folder and Search

Options/View. In other Windows systems, the menu names may vary, but the checkbox will be

there as well.

We can easily play an existing sound file. The more interesting task now is to make sound file
ourselves.

130 | Chapter 8 � Creating images and sound

Figure 8.1
A sound recording

and editing program

(Audacity)

1 Audacity is available from http://audacity.sourceforge.net

8.3 Sound recording and editing
There are various different options for obtaining sound files. We can copy sounds from other
Greenfoot projects, or download them from various free sound libraries on the Internet. If you
copy sounds form the Internet, pay attention to copyright notices: Not everything that is on the
Internet is free—respect other people’s copyright! The easiest option to obtain sound files is to
record them ourselves.

To do this, we need a microphone (many laptops have microphones built in, and often com-
puter headsets have microphones attached) and sound recording software. If you do not have a
microphone available right now, you may want to skip this section.

Many sound recording programs are available, several of them are free. We will use Audacity1 here
for the sample screenshots. Audacity is a good choice because it is powerful, runs on different
operating systems, and is free and fairly easy to use. There are many other sound recording
programs, however, so feel free to use one of your own choice.

Figure 8.1 shows a typical interface of a sound recording program. You typically have controls
for recording, playback, etc., and a wave form display of the recorded sound (the blue graph).

http://audacity.sourceforge.net

8.4 Sound file formats and file sizes | 131

Recording the sound is pretty straight forward—you can usually figure this out by playing with
the program for a little while.

Exercise 8.13 Open a sound recording program and record a sound. Play it back. Does

it come out as you expected? If not, delete it and try again.

When we record sounds, we often have a few seconds at the beginning and the end of our
recording that we do not want. Most sound recording programs allow us to edit the sound before
saving, so we can cut off the bits that we don’t need.

In Figure 8.1, for example, we can see a fairly long time of silence at the beginning and the end
of the sound file (the straight horizontal lines on the left and right end of the graph). If we save
the sound file as it is, the effect would be that the sound seems delayed when we play it (since
the first part of the sound that gets played is a second of silence).

We can edit the sound by selecting parts of it and using cut, copy, and paste to remove or copy
selected parts.

Exercise 8.14 Edit your sound file so that it includes only the exact sound you want.

Remove any noise or silence at the beginning or end, or any parts in the middle that are not

needed.

Many sound editing programs also offer filters to modify the sound or to generate entirely new
sound elements. Using filters, many different sound effects can be generated. By applying
effects, such as amplification, echoes, reverting, speed changes, and others, to simple sounds
(such as clapping, whistling, shouting, etc.), we can create a wide variety of effects.

Exercise 8.15 If your sound program supports filters, apply some filters to your

recorded sound. Select three of your favorite filters and describe, in writing, what they do.

Describe an example where you might use this effect.

Exercise 8.16 Produce the following sounds: a rabbit chewing a carrot; an explosion; a

sound of two hard objects colliding; a “game over” sound where the player has lost the game;

an “end of game” sound used when the player has won; a robot voice; and a “jumping”

sound (used when a game character jumps).

When the editing of the sound is complete, we are ready to save it to a file.

8.4 Sound file formats and file sizes
Sound files can be saved in many different formats and in different encodings, and this can get
quite confusing very quickly.

Greenfoot can play sounds saved in WAV, AIFF, and AU formats. (No MP3 files, I’m afraid.) These
formats, however, are what is known as “envelope formats”—they can contain different encodings,

Concept:

The sample
format, sample
rate, and

stereo/mono
setting of a sound

recording deter-

mine file size and

sound quality.

Concept:

Sounds can be

saved in a variety

of different

formats and

encodings. Not all

programs can play

all sound formats.

For Greenfoot, we

usually use WAV
format.

132 | Chapter 8 � Creating images and sound

Exercise 8.17 Save your recorded sound in an appropriate format for Greenfoot. Move

the sound file into the sounds folder of your scenario. Modify the code of your actor class

so that it plays your sound when it is clicked.

Exercise 8.18 Modify your code so that it plays one sound effect when clicked with the

left mouse button, and another sound effect when clicked with the right mouse button.

To do this, you need to get information about the mouse click that tells you which button was

pressed. Greenfoot has methods to achieve this—study the Greenfoot class documentation

to find out how this can be done.

Exercise 8.19 Modify your code so that the actor, when it is clicked, plays a sound effect

and moves to a new random location.

Sound files can quickly become very large. This is not a major problem as long as the scenario
is only used locally, but if the scenario is exported, for instance to the Greenfoot Gallery, then
the size can make a big difference. Sound and image files are often the largest parts of a
Greenfoot scenario, and the sound file sizes can make all the difference between a scenario
loading quickly and users having to wait for minutes for a scenario to download.

To avoid overly large sound files, we should pay attention to encoding details. When we record
and save sounds, we can make trade-offs between sound quality and file size. We can record and
save the sound either in very high quality, leading to large files, or in lower quality, leading to
smaller files. The settings we can vary are mainly

� The sample format (usually 16-bit, 24-bit, or 32-bit).

� The sample rate, measured in Hertz (Hz), varying usually from around 8,000 Hz to 96,000 Hz.

� Stereo versus mono recording. (Stereo records two separate tracks, and thus produces twice
the amount of data.)

If you look carefully at Figure 8.1, you can see that the sound in that screenshot was recorded in
32 bit, 44,100 Hz, stereo.

This is a typical default setting for sound recording programs, but actually much higher quality
than what is needed for simple sound effects. (We might want this quality for listening to music
that we like, but we don’t need it for a short Bang! sound effect.)

and Greenfoot can read only some of them. As a result, Greenfoot cannot, for example, play all
WAV files.

When you save your own recorded sounds, you should save them as a “signed 16 bit PCM
WAV” file. This is the safest format to ensure playback. In many sound recording programs, this
is achieved by using an “Export” function, rather than the standard “Save” function. Make sure
to save in this format.

When you come across sound files that Greenfoot cannot play (maybe downloaded from the
Internet), you can usually open them in your sound editing program and convert them to this format.

8.6 Image files and file formats | 133

In general, you should consider saving your sounds in lower quality, unless you feel you really
need more quality.

Exercise 8.20 Search your sound recording program for settings for sample format,

sample rate, and stereo/mono recording. In some programs, you can convert existing

sounds. In other programs, you can specify these settings only for new recordings. Make a

sound recording with different sample formats, with different sample rates, and in stereo

and mono. Save these as different files and compare the file sizes. Which change has the

largest benefit for the file size?

Exercise 8.21 Listen to the sounds produced in the previous exercise. Can you hear a

difference? How much can you reduce the quality (and the file size) while still achieving

acceptable quality?

8.5 Working with images
As discussed briefly in previous chapters (e.g., when we produced the asteroids background in
Chapter 7), managing images for actors and world backgrounds can be achieved in two different
ways: We can use prepared images from files, or we can draw an image on the fly in our program.

We shall discuss both methods in a little more detail here.

8.6 Image files and file formats
There are various ways to acquire images for our scenarios. The easiest is, of course, to use images
from the Greenfoot image library. These are presented automatically when we create new classes.
There are also several good libraries of free icons and images available on the Internet. A few
minutes of searching should turn some of them up. (Make sure, however, that the images you want
to use are really meant for free public use—not everything is free or in the public domain just
because it is on the Internet. Respect other people’s copyright and license terms.)

The most interesting alternative, however, if we want to make our scenarios unique and give
them their own atmosphere, is to make images ourselves.

There are several graphics programs available that we can use to produce images. Photoshop is
maybe the best known commercial program, and is certainly a very good one to use if you happen
to have it. However, there are also free and open source programs that provide similar functionality.
Gimp2 is an excellent free program with many sophisticated features, and it is worth installing.
There are also many simpler paint programs that could be used.

Producing good looking graphics takes some time to learn, and cannot be discussed in detail in
this book. Play and practice, and you will figure out many techniques and tricks. Here, we shall
concentrate on the technicalities of using the images.

2 http://www.gimp.org

http://www.gimp.org

Concept:

The JPEG image

format com-

presses large

images very well.

This is often the

best choice for

backgrounds.

134 | Chapter 8 � Creating images and sound

One of the important questions is what file formats to use when saving images. As with sounds,
there is a trade-off to be made between quality and file size. Image files have the potential to be
very large (much larger than the code files in our scenarios), so they can easily dominate the
overall download size of our project. Again, this is particularly important if we want to export
our scenario to a web server, such as the Greenfoot Gallery. Different image formats can lead to
different file sizes by a factor of 10 or more, meaning that the scenario will download 10 times
as fast (because it is only a tenth of the size) if we choose formats well.

Greenfoot can read images in JPEG, PNG, GIF, BMP, and TIFF formats. Of these, JPEG and
PNG are the two best formats for most uses.

JPEG images have the advantage that they compress very well. This means that they can be saved
with very small file sizes. This is particularly true for full color images, such as photos and back-
grounds (which is why many digital cameras use this format). When saving JPEG images, many
graphics programs allow us to choose how much we want to compress the file. The more we com-
press, the smaller the file gets, but also quality is reduced. Gimp, for example, presents a “Quality”
slider when we save an image in JPEG format. Reducing the quality creates smaller files.

Exercise 8.22 Create an image in your graphics program and save it as a JPEG file.

Save it with at least four different quality settings. Then open the different files and view

them side by side. Also compare the file sizes. Which quality setting is a good compromise

between picture quality and file size for your image?

Exercise 8.23 In your graphics program, make a new background for your scenario that

you created for the earlier sections of this chapter. Save it as a JPEG file. Use it in your sce-

nario. Which size (height and width) should the image be? What happens if it is too big?

What happens if it is too small?

Exercise 8.24 How do you think the JPEG algorithm manages to make files smaller?

How could this work? Try to come up with a few theories and guesses as to how this could

be done.

Exercise 8.25 How does JPEG actually compress files? Do some research on the

Internet to find out and answer in writing.

The second image format that is very useful to us is PNG.

PNG images have the advantage that they can handle transparency very well. Any individual
pixel can be partly or completely transparent. This allows us to create non-rectangular images.
(As discussed in Chapter 7, all images are rectangular, but having transparent parts creates the
appearance of arbitrary shapes.)

This ability to handle transparency, combined with good compression, makes PNG an ideal for-
mat for actor images. (JPEG images cannot have transparent pixels, so they cannot be used here,
unless the actor happens to be rectangular. For backgrounds, this is generally not a problem,
because we do not usually have transparency in backgrounds.)

Concept:

The PNG image

format is often the

best choice for

actor images, since

it can handle trans-

parency and com-

presses fairly well.

Concept:

Pixels in images

have a

transparency
value that deter-

mines whether we

can see through

them. Pixels may

be partly transpar-

ent. If they are fully

transparent, they

are invisible.

8.7 Drawing images | 135

There is rarely a need to use BMP, TIFF, or GIF images. BMP does not compress as well as other
formats and does not support transparent pixels. TIFF images can preserve quality very well, but
create larger file sizes. GIF is a proprietary format that has effectively been replaced by the
better—and free—PNG format.

Exercise 8.26 Make two new images for your actor (the actor will switch between these

two images). Save them in PNG format. Make one of these images the default image for

your actor class.

Exercise 8.27 Modify your actor code so that it toggles between your two images every

time the actor is clicked with the mouse.

Exercise 8.28 Modify your actor code again so that it displays the second actor image

only while the mouse is pressed. In other words, the actor starts off with a default image;

when the mouse is pressed on the actor, it displays a different image, and as soon as the

mouse is released, it reverts to its original image.

8.7 Drawing images
The second method to obtain images for our actors and backgrounds is to draw them program-
matically. We have seen examples of this in some of the scenarios in earlier chapters, for example,
when we painted the stars in the asteroids program.

Every pixel in an image is defined by two values: its color value and its transparency value (also
called the alpha value).

The color value is again split into three components: the red, green, and blue component.3

Colors represented this way are usually referred to as RGB colors.

This means that we can represent a pixel (with color and transparency) in four numbers. The
order usually is as follows:

(R, G, B, A)

That is, the first three values define the red, green, and blue components (in this order), and the
last is the alpha value.

In Java, all of these values are in the range [0..255] (zero to 255 inclusive). A color component
value of 0 indicates no color in this component, while 255 is full strength. An alpha value of 0 is
fully transparent (invisible), while 255 is opaque (solid).

Figure 8.2 shows a table of some of the possible colors, all with no transparency (alpha = 255).
The table in Figure 8.2 was produced with the Greenfoot scenario color-chart, which is in the
chapter08 folder in the book scenarios.

3 This is just one possible model to represent color. There are others in use in computer graphics and in
print. However, this is the one most commonly used in Java programming, so we shall concentrate on this
model here.

136 | Chapter 8 � Creating images and sound

Figure 8.2
RGB color table

8.8 Combining images files and dynamic drawing | 137

Exercise 8.29 What do pixels look like which have a color/alpha value of (255, 0, 0,

255)? What about (0, 0, 255, 128)? And what is (255, 0, 255, 230)?

In Greenfoot, colors are represented by objects of the Color class from the java.awt package.
After importing that class, we can create color objects either with just RGB values:

Color mycol = new Color (255, 12, 34);

or with RGB values and an alpha value:

Color mycol = new Color (255, 12, 34, 128);

If we do not specify an alpha value, the color will be fully opaque.

Exercise 8.30 Create a new Greenfoot scenario called color-test. In it, create a world

with a background that displays a pattern. Create an Actor subclass called ColorPatch.

Program the ColorPatch class so that it generates a new GreenfootImage of a fixed

size, filled with a fixed color. Use this image as the actor’s image. Experiment with different

color and alpha values.

Exercise 8.31 Modify your code so that the color patch, when created, gets an image of

a random size, filled with a random color, and random transparency.

Exercise 8.32 Modify your code again so that the image is not filled, but instead has

100 small colored dots painted into it, at random locations within the actor’s image.

8.8 Combining images files and dynamic drawing
Some of the most interesting visual effects are achieved when we combine static images from
files with dynamic changes made by our program. We can, for example, start with a static image
file, and then paint onto it with different colors, or scale it up or down, or let it fade by changing
its transparency.

To try this out, we shall create a smoke effect. In our next scenario, we make a ball move across
the screen, leaving a trail of smoke behind (see Figure 8.3).

Exercise 8.33 Create a new scenario called smoke. Make a nice looking, fairly neutral

background image for it.

Exercise 8.34 Create a ball that moves across the screen at constant speed. When it

hits the edge of the screen, it bounces off. (The screen is, in effect, a box, and the ball

bounces within it.)

138 | Chapter 8 � Creating images and sound

Figure 8.3
The smoke trail effect

Figure 8.4
An image of a puff

of smoke

Now we shall work on the smoke effect. First, create an image showing a puff of smoke
(Figure 8.4).

Note that the checkered background is not part of the image—it is shown here only to
demonstrate that the smoke puff image is semi-transparent (we can see the background
behind it).

Your smoke does not have to be green—you can make it any color you like—but it should
be transparent. You can achieve this in a good graphics program by simply drawing a dot
with a large, soft, semi-transparent paint brush. If you have trouble producing this image,
you can use the prepared image f ile smoke.png from the chapter08 folder in the book
scenarios.

8.9 Summary | 139

Exercise 8.35 Create the smoke image as described above.

Exercise 8.36 Create a Smoke actor class in your scenario. When inserted into the

world, a Smoke actor should fairly quickly fade away. That is, in every act cycle, the image

of the actor should become smaller and more transparent. (The GreenfootImage class

has methods to adjust the size and transparency.) When they are fully transparent or very

small, they should remove themselves from the world.

Exercise 8.37 Modify your ball so that it leaves puffs of smoke behind. Producing a puff

of smoke every time the ball moves may be a little too much: Try creating a new smoke puff

only in every second step of the ball. Test.

Exercise 8.38 Modify your smoke so that it does not always fade at exactly the same

rate. Make the rate of fading somewhat random, so that some puffs of smoke fade away

more quickly than others.

If you completed all the exercises above, then you should now have a good looking smoke trail
behind your ball. If you had trouble with these exercises, or if you want to compare your solution
to ours, you can have a look at the smoke scenario in the book projects. This implements the task
described here.

8.9 Summary
Being able to produce sounds and images is a very valuable skill for producing good looking
games, simulations, and other graphical applications. Knowing about sound and image file
formats is important to make good choices about trade-offs between file size and quality.

Sounds can be recorded and edited with a variety of sound recording programs, and various
parameters determine the sound quality and file size. For Greenfoot scenarios, we usually use
WAV format with fairly low quality.

Images can also be saved in a variety of different formats. Different formats vary in how well
they compress files, how well they preserve image quality, and how they handle transparency.
JPEG and PNG are the formats most often used for Greenfoot scenarios.

By combining images from a file with dynamic image operations, such as scaling and transparency
changes, we can achieve attractive visual effects in our scenarios.

Concept summary

� Sounds can be saved in a variety of different formats and encodings. Not all programs can

play all sound formats. For Greenfoot, we usually use WAV format.

� The sample format, sample rate, and stereo/mono setting of a sound recording determine

file size and sound quality.

140 | Chapter 8 � Creating images and sound

� The JPEG image format compresses large images very well. This is often the best choice for

backgrounds.

� Pixels in images have a transparency value that determines whether we can see through them.

Pixels may be partly transparent. If they are fully transparent, they are invisible.

� The PNG image format is often the best choice for actor images, since it can handle transparency

and compresses fairly well.

In this chapter, we shall discuss one type of software application in a little more detail: simulations.

Simulations are fascinating examples of computing, because they are highly experimental, and
potentially allow us to predict the future. Many types of simulations can be (and have been)
developed for computers: traffic simulations, weather forecasting systems, economics simula-
tions (simulations of stock markets), simulations of chemical reactions, nuclear explosions,
environmental simulations, and many more.

We have seen one simple simulation in Chapter 6, in which we simulated part of a solar system.
That simulation was a little too simplistic to accurately forecast trajectories of real planets, but
there are some aspects of astrophysics that that simulation may help us understand.

In general, simulations may serve two different purposes: they can be used to study and under-
stand the system they are simulating, or they can be used for forecasting.

In the first case, the modeling of a system (such as the modeling of the stars and planets) may
help us understand some aspects of how it behaves. In the second case, if we have an accurate
simulation, we can play through “what if ” scenarios. For example, we might have a traffic
simulation for a city, and we observe that every morning a traffic jam develops at a certain inter-
section in the real city. How can we improve the situation? Should we build a new roundabout?
Or change the traffic light signal patterns? Or maybe we should build a bypass?

The effects of any of these interventions are often hard to predict. We cannot try out all these options
in real life to see which is best, since that would be too disruptive and expensive. But we can
simulate them. In our traffic simulation, we can try out each option and see how it improves traffic.

If the simulation is accurate, then the result we observe in the simulation will also be true in real
life. But this is a big “if ”: Developing a simulation that is accurate enough is not easy, and it is
a lot of work. But for many systems, it is possible to a useful degree.

Weather forecasting simulations are now accurate enough that a one-day forecast is fairly reliable.
A seven-day forecast, however, is about as good as rolling dice: The simulations are just not good
enough.

CHAPTER

Simulations9
topics: simulations

concepts: emergent behavior, experimentation

Concept:

A simulation is a

computer program

that simulates

some phenomena

from the real world.

If simulations are

accurate enough,

we can learn

interesting things

about the real

world from

observing them.

142 | Chapter 9 � Simulations

When we use simulations, it is important to be aware of the limitations: Firstly, simulations
always have a degree of inaccuracy because we are not modeling the behaviors of the actors
completely realistically and because we may not know the exact state of the starting system.

In addition, simulations necessarily model only part of reality, and we must be aware that parts
outside of our simulation might actually be relevant.

In the example of our traffic jam, for instance, maybe the best solution is neither of the options
mentioned above, but to provide better public transport or bicycle lanes to get some cars off the
road. If our simulation does not include that aspect, we would never find out just by using the
simulation, no matter how accurate it is.

Despite these limitations, however, good simulations are incredibly useful, and even very simple
simulations are fascinating to play with. They are so useful, in fact, that almost all of the world’s
fastest computers run simulations most of the time, or at least a substantial part of their time.

Side note: Supercomputers

A list of the fastest supercomputers in the world is regularly published on the Internet at

http://www.top500.org. Most of these are described there in some detail, and for many of them,

the list includes links to web sites that describe their purpose and the kind of work they are

used for.

Reading through this material, you can see that many are run by large research institutions or

the military and that almost all are used to run simulations, often physics simulations. The mili-

tary use these, for example, to test nuclear explosions in simulations, and research institutions

conduct many different science experiments this way.

Simulations also have a special place in the history of object-oriented programming: Object
orientation was invented explicitly to run simulations.

The very first object-oriented programming language, named Simula, was designed in the 1960s
by Kristen Nygaard and Ole-Johan Dahl at the Norwegian Computer Center in Oslo. As the
name suggests, its purpose was to build simulations. All object-oriented programming
languages today can be traced back to that language. Dahl and Nygaard received the 2001
Turing Award—computer science’s equivalent of the Nobel prize—for this work.

Enough introduction—let’s get our hands on the keyboard again and try out some things.

In this chapter, we shall look at one simulation fairly briefly and then work on writing another
one in more detail.

9.1 Foxes and rabbits
The first simulation we investigate is called foxes-and-rabbits. It is a typical example of a class
of simulations called predator-prey-simulations—a type of simulation in which one creature
chases (and eats) another. In our case, the predator is a fox and the prey is a rabbit.

The idea here is as follows: The scenario shows a field that contains populations of foxes and
rabbits. Foxes are represented by blue squares, and rabbits are shown as yellow squares.

http://www.top500.org

9.1 Foxes and rabbits | 143

Exercise 9.1 Open the foxes-and-rabbits scenario. Run it. Explain the patterns of popu-

lations and movement you see emerging in the field.

Both species have fairly simple behavior: Rabbits move around and—if they are old enough—
may produce offspring. There is a set probability at each act step for rabbits to reproduce. There
are two ways in which rabbits may die: They may die of old age, or they may be eaten by a fox.

Foxes move and breed in a manner similar to rabbits (although they breed less frequently and
have fewer young). One additional thing, however, that they do is hunt. If they are hungry, and
they see a rabbit sitting next to them, they will move to eat the rabbit.

Foxes can also die in two different ways: They can die of old age, and they can starve. If they do
not find a rabbit to eat for some time, they will die. (Rabbits are assumed to always find suffi-
cient amounts of food.)

Exercise 9.2 You will notice that this scenario shows a second small window with a pop-

ulation graph. One curve shows the number of foxes, the other the number of rabbits.

Explain the shape of these graphs.

Figure 9.1
The foxes-and-

rabbits simulation

As we can see, the simulation is highly simplistic in many ways: Animals do not have to meet
mates to reproduce (they can do that all on their own), food sources for rabbits are not included
in the simulation, other factors of death (such as diseases) are ignored, and many factors are left
out. However, the parameters that we do simulate are already fairly interesting, and we can do
some experiments with them.

144 | Chapter 9 � Simulations

Exercise 9.3 Are the current populations stable? That is, does it always continue to run

without one of the species dying out? If species become extinct, what is the average time

they survive?

Does the size of the field matter? For example, imagine we have a national park with an endan-
gered species. And someone wants to build a freeway through the middle of it that the animals
cannot cross, essentially dividing the park into two parks of half the size each. The proponents
of the freeway might argue that this does not matter because the total size of parkland is about
the same as before. The park authority might argue that this is bad because it halves the size of
each park. Who is right? Does the size of a park matter? Do some experiments.

Exercise 9.4 The Field class has definitions of constants toward the top of its source

code for its width and height. Modify these constants to change the size of the field. Does

the size of the field affect the stability of the populations? Do species die out more easily if

the field is smaller or larger? Or does it make no difference?

Other parameters with which we can experiment are defined in constants at the top of the
Rabbit and Fox classes. Rabbits have definitions for their maximum age, the age from which
they can breed, the frequency of breeding (defined as a probability for each step), and the max-
imum size of their litter when they do breed. Foxes have the same parameters and an additional
one: the nutritional value of a rabbit when it is eaten (expressed as the number of steps that the
fox can survive after eating the rabbit). The food level of a fox decreases by one in every step
and increases when eating a rabbit. If it ever reaches zero, the fox dies.

Exercise 9.5 Choose a field size in which the populations are almost stable but occa-

sionally die out. Then make changes to the Rabbit parameters to try to increase the

chances of the populations’ survival. Can you find settings that make the populations more

stable? Do some settings make them less stable? Are the observed effects as you

expected, or did some differ from your expectations?

Exercise 9.6 When the fox population is in danger of becoming extinct occasionally, we

could speculate that we could improve the chances of foxes’ survival by increasing the

food value of rabbits. If foxes can live longer on eating a single rabbit, they should starve

less often. Investigate this hypothesis. Double the amount of the RABBIT_FOOD_VALUE
constant and test. Does the fox population survive longer? Explain the result.

Exercise 9.7 Make other changes to the Fox parameters. Can you make the populations

more stable?

The exercises show that we can experiment with this simulation by changing some parameters
and observing their effects. In this chapter, however, we shall not be content with experimenting
with an existing simulation, we also want to develop our own.

We shall do that in the next section with a different scenario: ants.

9.2 Ants | 145

Figure 9.2
The ants simulation

9.2 Ants
The ants scenario simulates the food collecting behavior of ant colonies. Or, to be more precise,
we would like it to simulate this behavior, but it does not do it yet. We shall develop it to do so.
In its current state, the scenario has been prepared to some extent: The graphics exist and some
of the implementation has been completed. The main functionality, however, is missing, and we
shall work on completing it.

Exercise 9.8 Open the scenario called ants from the chapter09 folder of the book sce-

narios. Create an ant hill in the world and run the scenario. What do you observe?

Exercise 9.9 Examine the source code of the Ant class. What does it currently do?

Exercise 9.10 Ant is a subclass of class Creature. What functionality does a creature

have?

146 | Chapter 9 � Simulations

The first thing we notice is that the ants do not move. They are created in the middle of the ant
hill, but since they do not move, after a short while they will all sit there on top of each other. So
the first thing for us to do is to make ants move.

Exercise 9.12 In the Ant’s act method, add a line of code to make the ant move.

Consult the documentation of class Creature to find out about the methods to use.

We shall now go step by step through a series of improvements to this scenario. The steps we
shall take are as follows:

� We will introduce some food to the scenario, so that the ants have something to collect.

� We will improve the ants, so that they can find the food and carry some of it home.

� Next, we will add a Pheromone class. Pheromones are chemical substances that some
animals produce to leave messages for other animals of their species.

� We will improve the ants to make use of pheromones: They will leave drops of pheromones
on the ground when they have found food, and other ants can then smell these pheromones
and adjust where they are going.

These steps together roughly simulate the food collecting behavior of ant colonies. When
complete, we can do some experiments with the simulation.

9.3 Collecting food
Our first task is to create some food in our scenario and to let ants collect it and carry it back to
the ant hill.

Exercise 9.13 Create a new class called Food. The class does not need a fixed image.

We will draw the image from within the class.

Each object of class Food represents a pile of food crumbs. Our plan is to create a new, dynamically
drawn image for the Food object and draw a small dot on it for every crumb in the pile. A pile may
start with, say, 100 crumbs, and every time an ant finds the pile, it takes a few crumbs away. That
means that the image must be redrawn with fewer crumbs every time an ant takes some food.

Exercise 9.11 Examine the source code of class AntHill. What does this class do?

How many ants are in an ant hill?

Exercise 9.14 In class Food, create a field for the number of crumbs currently in the pile.

Initialize it to 100.

9.3 Collecting food | 147

Exercise 9.15 Create a new private method called updateImage, which creates an

image of a fixed size and draws a dot on it at a random location for each crumb currently in

the pile. Choose a size for the image of the pile that you think looks good. Call this method

from the constructor.

Figure 9.3
Placement of food

crumbs with

different randomizer

algorithms

If you completed the exercise above, and you placed food crumbs at a random location within
the Food image (using the Greenfoot.getRandomNumber method to obtain the coordi-
nates), then you will notice that the pile of crumbs has a somewhat square-ish shape
(Figure 9.3a). This is because the image itself is square, and the crumbs are evenly distributed
over the image.

If we want to change this to look more like a pile (with most crumbs toward the middle, and
other crumbs in a rough circle-shape around it, Figure 9.3b), then we can use another random
number method to place the crumbs differently. We shall do this with exercises 9.16 and
9.17. Note that these are more advanced exercises and they are purely cosmetic: They merely
change the look of the food pile, and none of its functionality, so they could safely be
skipped.

Exercise 9.16 Consult the API documentation for the standard Java class library. Find

the documentation for class Random from the java.util package. Objects of this class

are random number generators that are more flexible than Greenfoot’s getRandomNumber
method. The method of interest to us is the one that returns random numbers in a Gaussian

distribution (also called a “normal distribution”). What is the method’s name, and what

does it do?

a) crumbs with even distribution b) crumbs with Gaussian distribution

Exercise 9.17 In your Food class, change your placement of food crumbs in the

image to make use of the Gaussian distribution of random numbers. For this, you have

to use a java.util.Random object to create the random numbers, instead of

Greenfoot.getRandomNumber.

148 | Chapter 9 � Simulations

Now that we have a pile of food available in our scenario, we shall make our ants collect it. Ants
will now switch between two different behaviors:

� If they are not carrying food, they search for food.

� If they are currently carrying food, they walk toward home.

Ants switch between these two behaviors when they reach either a food pile or the home ant hill.
If they are searching for food, and they run into a food pile, they pick up some food and switch
from the first to the second behavior. If they then reach the ant hill, they drop the food there and
switch back to the first behavior pattern.

We shall now implement this in our Ant class. Written in pseudo code, the act method might
look somewhat like this:

if (carrying food) {
walk towards home;
check whether we are home;

}
else {

search for food;
}

We implement this now one step at a time.

Side note: Random distributions

If we need random behavior in our programs, it is sometimes important to think about

what kind of random distribution we need. Many random functions, such as the

Greenfoot.getRandomNumber method, produce a uniform distribution. In this, the chance

of every possible result occurring is the same. The Gaussian random number function gives us

a normal distribution. This is one in which the average results are more likely to occur, and more

extreme results are rarer.

If we, for example, program a dice game, we need a uniform distribution. Each side of the die is

evenly likely to come up. On the other hand, if we model the speed of cars in a traffic simulation,

a normal distribution would be better. Most cars are driving somewhere close to the average

speed, and only few cars are very slow or very fast.

Next, we need to add functionality to remove some crumbs from the food pile, so that ants can
take some food.

Exercise 9.18 Add a public method to class Food that removes a few crumbs from the

pile. Make sure that the image is redrawn with the correct number of remaining crumbs.

When the crumbs are all gone, the Food object should remove itself from the world. Test

this method interactively.

9.5 Adding pheromones | 149

Exercise 9.19 In the Ant class, implement a searchForFood method. This method

should initially just do a random walk and check whether we have run into a food pile. If we

find a food pile, stop execution. (This is just to test whether we have correctly detected

the food.)

Exercise 9.20 Add functionality to pick up some food when we find a food pile (instead of

stopping execution). We need to remove some crumbs from the food pile (we should already

have a method for this), note that we are now carrying food (we probably need a field for

this), and change the ant’s image. There is already an image prepared in the scenario,

named ant-with-food.png, that you can use.

Exercise 9.21 Ensure that the ant walks toward home when carrying food.

Exercise 9.22 Implement a method that checks whether an ant has reached the

home hill. If it has reached home, it should drop its food. Dropping the food consists of

noting that it is not carrying food anymore (including changing the image back) and

calling the AntHill’s countFood method to record that it has collected this food

crumb.

Concept:

Using short meth-
ods with a specific

purpose leads to

better code
quality.

Pay attention to the quality of your code: Use short methods with distinct purposes and make
sure to comment your methods well. Do not write too much code into a single method.

You can find an implementation of the functionality discussed so far in the scenario ants-2.
After completing your implementation (or when you get stuck), you might like to compare your
solution with ours.

9.4 Setting up the world
Before we go on to add pheromones to our scenario, let us first add some initialization code that
creates some ant hills and food for us automatically, so that we do not have to repeat this manu-
ally every time we wish to test.

Exercise 9.23 Add code to class AntWorld, so that it automatically creates two ant hills

and a few piles of food in the world.

9.5 Adding pheromones
Now that we have a good start setup, we are ready to add pheromones. Each pheromone object
is a small drop of a chemical substance that the ants leave on the ground. This drop will evapo-
rate fairly quickly and then disappear.

Exercise 9.24 Create a class Pheromone. This class does not need an image—we

shall draw the image programmatically.

150 | Chapter 9 � Simulations

Exercise 9.26 Give the pheromones an intensity attribute. (That is, add an intensity
field.) The intensity of a pheromone object should start out at a defined maximum intensity,

and decrease in every act cycle. When the intensity reaches 0, remove the pheromone

object from the world. A drop of pheromone should evaporate in about 180 act cycles.

Exercise 9.27 Modify your updateImage method, so that it makes use of the

pheromone’s intensity. As the intensity decreases, the white circle representing it on screen

should become smaller and more transparent. Make sure updateImage is called from the

act method so that we see the image change on screen.

Exercise 9.28 Test your pheromones by placing them into the world manually and

running your simulation.

We now have a Pheromone class available that our ants can use. Now we only have to get the
ants to use it. The first half of using the pheromone is placing it into the world. (The second half
is noticing it and changing direction as a result.) Let us do the first half first.

Exercise 9.29 Add a method to your ant that places a drop of pheromone into the

world. Call this method repeatedly while the ant is walking home.

If, in the previous exercise, you placed a drop of pheromone at every act cycle, you will
notice that this places too much pheromone into the world. Ants cannot produce unlimited
amounts of pheromones. After placing a drop, they need some time to regenerate more
pheromone.

Exercise 9.30 Modify the ant so that it can leave a drop of pheromone at most every

18 steps. To achieve this, you will need a field that stores the current pheromone level of an

ant. When the ant places a pheromone drop, the pheromone level (remaining pheromones

in the ant’s body) goes down to 0, and then it slowly rises again until the ant is ready to

leave another drop.

Exercise 9.25 Implement an updateImage method in the Pheromone class. Initially,

this method should create an image with a white circle drawn onto it and set this as the

actor’s image. The white circle should be partly transparent. Call this method from the

constructor.

Ants drop pheromones while they are walking back home from a food source. When other ants
smell the drop of pheromone, they can then turn away from their home hill and walk in the
direction toward the food.

9.5 Adding pheromones | 151

Figure 9.4 shows a trail of pheromones left by our ant at this point.1 The drops are spaced out
(the ant needs some time to regenerate pheromones), and the older pheromone drops are partly
evaporated—they are smaller and more transparent.

Figure 9.4
An ant leaving a trail

of pheromones

1 If you look closely, you will notice that I have modified my pheromone image to have a small dark dot in
the middle. This is so that pheromones can be seen better even when they are quite transparent.

The final thing to add is for ants to smell the pheromones, and change their direction of
movement when they do.

If an ant smells a drop of pheromone, it should walk away from its home hill for some lim-
ited time. If it does not find food or smell a new drop of pheromone after some time, then it
should revert to random walking. Our algorithm for searching for food might look something
like this:

if (we recently found a drop of pheromone) {
walk away from home;

}
else if (we smell pheromone now) {

walk towards the center of the pheromone drop;
if (we are at the pheromone drop center) {

note that we found pheromone;
}

}
else {

walk randomly;
}
check for food;

When implementing this in your own scenario, remember to create a separate method for each
distinct subtask. That way, your code will remain well structured, easy to understand, and easy
to modify.

Exercise 9.31 Implement the functionality discussed above in your own scenario: When

ants smell pheromones, they walk away from their home hill for the next 30 steps, before

reverting to their default behavior.

152 | Chapter 9 � Simulations

Concept:

Simulations of

systems often

display emergent
behavior. This is

behavior not

programmed into

single actors, but

emerging as a

result of the sum

of all behaviors.

If you completed this exercise, then your ant simulation is more or less complete (as much as
any software application is ever complete). If you run your scenario now, you should see ants
forming paths to the food sources.

9.6 Path forming
One interesting aspect of this scenario is that there is no code anywhere in the project that talks
about forming paths. The behavior of the individual ants is quite simple (“if you have food, go
home; if you smell pheromones, go away; otherwise go anywhere”). However, together, the ants
display some fairly sophisticated behavior: They form stable paths, refreshing the pheromones
as they evaporate, and efficiently transport food back to their ant hill.

This is known as emergent behavior. It is behavior that is not programmed into any individual
actor, but system behavior that emerges from the interactions of many (fairly simple) actors.

Most complex systems display some sort of emergent system behavior, whether they are traffic
systems in cities, networks of computers, or crowds of people. Predicting these effects is very
difficult, and computer simulations can help in understanding such systems.

Exercise 9.32 How realistic is our simulation of the use of pheromones by ants? Do

some research into the actual use of pheromones by ant colonies and write down which

aspects of our simulation are realistic, and where we have made simplifications.

Exercise 9.33 Assume pollution has introduced a toxic substance into the ants’ environ-

ment. The effect is that their production of pheromones is reduced to a quarter of the

previous amount. (The time between leaving drops of pheromones is four times as long.)

Will they still be able to form paths? Test.

Exercise 9.34 Assume another pollutant has decreased the ants’ ability to remember

that they recently smelled a pheromone to a third. Instead of 30 steps, they can only

remember the pheromone for 10 steps. What is the effect of this on their behavior?

There are many more experiments you can do. The most obvious is to try out different placements
of ant hills and food sources, and different values for the attributes that determine the ants’behavior.

The scenario ants-3 in the chapter09 folder shows an implementation of the tasks discussed
above. It includes three different setup methods in the world class that can be called interactively
from the antWorld popup menu.

9.7 Summary
In this chapter, we have seen two examples of simulations. This served two purposes. Firstly, this
was a chance to practice many of the programming techniques we have discussed in earlier
chapters, and we had to use most of the Java constructs previously introduced. Secondly,

9.7 Summary | 153

Concept summary

� A simulation is a computer program that simulates some phenomena from the real world. If

simulations are accurate enough, we can learn interesting things about the real world from

observing them.

� Using short methods with a specific purpose leads to better code quality.

� Simulations of systems often display emergent behavior. This is behavior not programmed into

single actors, but emerging as a result of the sum of all behaviors.

simulations are an interesting kind of application to experiment with. Many simulations are used
in real life for many purposes, such as weather forecasting, traffic planning, environmental
impact studies, physics research, and many more.

If you managed to solve all the exercises in this chapter, then you have understood a great deal
of what this book tried to teach you, and you are competent with the basics of programming.

This is the last chapter of this book. It is different from the other chapters in that it does not try to
teach you any new concepts or techniques of programming. Instead it briefly presents a number
of additional scenarios to give you some ideas for other things you might like to investigate and
work on.

All scenarios presented here are also available as Greenfoot projects with source code in the book
scenarios. However, most of them are not complete implementations of the idea they represent.

Some scenarios are almost complete, and you may like to study them to learn further techniques
and see how certain effects were achieved. Others are beginnings, partial implementations of an
idea which you could take as a starting point for your own project. Yet other ones are illustrations
of a single concept or idea that might provide inspiration for something you could incorporate
into one of your own scenarios.

In short, view these as a collection of ideas for future projects, and study them for a small
glimpse into what else is possible for a competent programmer to achieve.

10.1 Marbles
The marbles scenario (Figure 10.1) implements a game in which you roll a golden ball over a
board with the aim of clearing the board of all silver balls within a limited number of moves.
The game is reasonably complete.

Several things are worth observing about this scenario. The first thing that stands out is that it
looks quite nice. This has very little to do with Java or Greenfoot programming and is mostly
due to the use of nice graphics. Using nicely designed graphics and sounds can make a big
difference in the attractiveness of a game.

Marbles uses a nice looking background image (the game board and scroll for the text display)
and actors with semi-transparent drop shadows (the marbles and the obstacles).

CHAPTER

Additional scenario ideas10
topics: ideas for more scenarios

concepts: (no new concepts introduced)

10.2 Lifts | 155

The other interesting aspect to examine is the collision detection. The marbles do not use any of
the built-in Greenfoot collision detection methods, since these all work on the rectangular actor
images. The marbles, on the other hand, are round, and we need precise collision for this.

Luckily, when the actors are round, this is not very difficult. Two marbles collide if their distance
(measured from their center points) is less than their diameter. We know the diameter, and the
distance is fairly easy to compute (using the Pythagoras theorem).

The next interesting thing is the way the new movement direction of a colliding marble is computed.
There is a little trigonometry involved here, but if you are familiar with that, then it is not too hard.

Collisions with the fixed obstacles are easier, since they are always horizontally or vertically
oriented rectangles. Therefore, a marble hitting one of these obstacles simply reverses its
direction along one of the axes (x or y).

You could reuse the marble collision logic for all sorts of other games that involve collision of
round objects.

10.2 Lifts
The lifts scenario (Figure 10.2) shows a simple lift (or elevator) simulation. It shows several
floors of a multistory building and three lifts moving up and down. People appear on the floors
and press the call buttons and enter the lifts when they come.

Figure 10.1
The Marbles game

156 | Chapter 10 � Additional scenario ideas

This is actually a very rudimentary, unfinished implementation. Much of what we see on the
screen is fake: It does not properly simulate what is going on, and is just written for show effect.

For example, the people do not properly enter the lifts (they are just erased when a lift reaches a
floor). The number of people shown in a lift is just a random number. Lifts also do not react to
call buttons—they just move up and down randomly. There is no control algorithm implemented
for the lifts.

So this is just a quick demo that presents the idea and the graphics. To finish the project,
the movement of people would have to be properly modeled (in and out of the elevators). And
then we could experiment with implementing and testing different lift control algorithms.

10.3 Boids
The boids example (Figure 10.3) shows a simulation of flocking behavior of birds.

The term “boids” comes from a program developed in 1986 by Craig Reynolds that
first implemented this flocking algorithm. In it, each bird flies according to three rules:

Figure 10.2
A (partial) lift

simulation

10.4 Circles | 157

� Separation: steer away from other birds if getting too close.

� Alignment: steer toward the average heading of other birds in the vicinity.

� Cohesion: steer to move toward the average position of other birds in the vicinity.

With this algorithm, the birds develop movement that is quite nice to look at. Included in this
scenario is also obstacle avoidance: trying not to fly into trees.

A version of this algorithm was used, for example, in Tim Burton’s 1992 film “Batman Returns”
to create animation for computer-generated swarms of bats and penguin flocks, and in the “Lord
of the Rings” films to create the movement of the Orc armies.

The version for this book was written by Poul Henriksen.

You can find out much more about this by searching the web for “boids”. And while this sce-
nario currently does nothing other than show the movement, one feels that there has to be a
game in it somewhere . . .

10.4 Circles
Circles (Figure 10.4) is a project that does not seem to have much of a purpose but is interesting
to play with and nice to look at.

Figure 10.3
Boids: A simulation

of flocking behavior

158 | Chapter 10 � Additional scenario ideas

It uses some physical simulation, such as gravity and bouncing off edges, and some randomness
to create beautiful moving images. Is it physics? Is it art? Or maybe a bit of both?

Whatever it is, I am sure there are many other ways to produce interesting or beautiful images,
patterns, or color animations. (One idea might be to combine the circles with the collision detec-
tion algorithm from the Marbles game.)

Circles was written by Joe Lenton.

10.5 Explosion
The explosion scenario (Figure 10.5) demonstrates how we can implement a more spectacular
looking explosion effect. The object that explodes is, in this case, a simple rock that we have
encountered in other scenarios before. (It played, for example, the role of the asteroid in the
asteroids scenario.) But we could really explode anything we like.

To achieve this effect, we have a Debris class that represents a part of the rock. When the rock
explodes, we remove it from the world and place 40 pieces of debris in its place.

Each piece of debris is randomly stretched and rotated to make it look somewhat unique,
and initially has a movement vector in a random direction. At every step, we add a bit of

Figure 10.4
“Circles” is a mixture

of physics and art

10.6 Breakout | 159

downward movement to simulate gravity, and the result is the explosion you see when you run
this scenario.

A tutorial video explaining this scenario in more detail is available on the Greenfoot web site at
http://www.greenfoot.org/doc/videos.html.

10.6 Breakout
“Breakout” (Figure 10.6) is a classic computer game in which the player controls a paddle at the
bottom of the screen to bounce a ball upwards to remove some blocks. If you do not know the
game, do a web search and you will quickly find out.

The breakout scenario is a partial implementation of this game. It uses the ball with the smoke
effect that we discussed in Chapter 8 and adds a paddle for the player to control the ball. It has,
however, no blocks to aim for, so in its current form it is not very interesting.

Many variations of breakout have been created over time. Many use different patterns of layout
for the blocks at different levels. Most also have some “power-ups”—goodies hidden behind
some blocks that float down when the block is removed. Catching them typically makes some-
thing interesting happen in the game (extra balls, increased speed, larger or smaller paddles, etc.)

Completing this game in an interesting way can make a good project. It could also be modified
to have two paddles, one on either side, essentially turning it into the classic “Pong” game.

Figure 10.5
An explosion effect

http://www.greenfoot.org/doc/videos.html

160 | Chapter 10 � Additional scenario ideas

10.7 Platform jumper
A very common style of game is a “platform” game. The player typically controls a game char-
acter that has to move from one area on the screen to another, while overcoming various obsta-
cles. One such obstacle may be a gap in the ground the character is walking on, with some
means of getting across it.

The pengu scenario (Figure 10.7) implements a small segment of such a game. There are two
pieces of ground on either side of the screen, and the penguin can get across by jumping onto a
moving cloud.

This scenario is included here to demonstrate how an actor can move along the top of another
(the penguin on top of the ground), and how jumping and falling might be implemented.

Figure 10.6
The beginning of a

“breakout” game

10.8 Wave | 161

A tutorial video discussing this in more detail is available on the Greenfoot web site at
http://www.greenfoot.org/doc/videos.html, under the name “Running, jumping
and falling”.

10.8 Wave
The last scenario presented here is called wave (Figure 10.8). It is a simple simulation of the
propagation of a wave on a piece of string. Play around with it for a little while, and you will
discover what it does.

One of the fascinating aspects of this example is how a fairly simple implementation—in each
act round, each bead simply moves toward the middle of its two neighbors—achieves a quite
sophisticated simulation of various aspects of wave propagation.

This example is included here to illustrate that, with a bit of thought and preparation, various
behaviors from other disciplines could be simulated. In this case, it is a simple physical effect.
Equally, one could simulate chemical reactions, biological interactions, interactions of sub-
atomic particles, and much more. With some careful planning, we can learn something about
other application areas, as well as learning about programming.

This scenario also implements slider and switch controls, which may be useful in other
projects.

Figure 10.7
A start of a simple

platform jumper

game

http://www.greenfoot.org/doc/videos.html

162 | Chapter 10 � Additional scenario ideas

10.9 Summary
In this concluding chapter of our book, we have tried to show that there are many more direc-
tions you can follow, beyond the few examples that we have discussed in more detail throughout
this book.

As you become more experienced, you will become more confident and more able to turn your
ideas into reality as you develop your programs. As a programmer, an infinite world of creative
endeavor lies in front of you, both within Greenfoot and without, using other development envi-
ronments.

When you program in other environments, outside of Greenfoot, you will have to learn new skills
and techniques, but everything you have learned using Greenfoot will be useful and applicable.

If you have followed this book all the way through to this point, you have learned a great deal
about programming in Java, and indeed programming in an object-oriented language in general.
In learning to program, the beginning is always the hardest part, and you have that behind you.

If you would like support and ideas for further Greenfoot programming, make use of the
Greenfoot web site.1 Use the Greenfoot Gallery to publish your scenarios, look at other people’s
work, and get some ideas. Look at the video tutorials for tips and tricks. And join the discussion
group to chat to other Greenfoot programmers, get and give help, and discuss new ideas.

We hope that you have come to enjoy programming as much as we do. If you have, a whole new
world lies before you. Program, enjoy, and be creative!

Figure 10.8
Simulation of wave

propagation on a

string of beads

1 www.greenfoot.org

www.greenfoot.org

This appendix will tell you where to find the Greenfoot software and the scenarios used with
this book, and how to install them.

To work with the example projects in this book, you will need to install three things: A Java
system, the Greenfoot software, and the book scenarios.

A.1 Installing Java

Download Java from http://java.sun.com/javase/downloads. You should install the
latest version of the Java SE Development Kit (JDK).

On Mac OS X, Java does not need to be installed—it is included in the standard Mac OS
installation.

A.2 Installing Greenfoot

Download Greenfoot from http://www.greenfoot.org, and follow the installation
instructions.

A.3 Installing the book scenarios

Download the book scenarios from http://www.greenfoot.org/book. You will receive a
file named book-scenarios.zip. This is a compressed zip file that must be extracted. On
Windows systems, this can usually be achieved by right-clicking and selecting Extract All from
the menu. On Mac OS and Linux systems, you can double-click the file to extract it.

After extracting this file, you will have a folder named book-scenarios stored in your file
system. Remember where you saved it—you will need to open the projects from this folder
while you work through the book.

APPENDIX

Installing GreenfootA

http://www.greenfoot.org
http://www.greenfoot.org/book
http://java.sun.com/javase/downloads

This page intentionally left blank

The Greenfoot API consists of five classes:

APPENDIX

Greenfoot APIB

Actor
Actor methods are available to all

actor subclasses.
MouseInfo

Provides information about the

last mouse event.

World
World methods are available

to the world.
GreenfootImage

For image presentation

and manipulation.

Greenfoot
Used to communicate with the

Greenfoot environment itself.

Class World

World(int worldWidth, int worldHeight,
int cellSize)

Construct a new world.

void act() Act method for the world. Called once per act round.

void addObject(Actor object, int x, int y) Add an Actor to the world.

GreenfootImage getBackground() Return the world’s background image.

int getCellSize() Return the size of a cell (in pixels).

Color getColorAt(int x, int y) Return the color at the center of the cell.

int getHeight() Return the height of the world (in number of cells).

List getObjects(Class cls) Get all the objects in the world.

List getObjectsAt(int x, int y, Class cls) Return all objects at a given cell.

int getWidth() Return the width of the world (in number of cells).

int numberOfObjects() Get the number of actors currently in the world.

void removeObject(Actor object) Remove an object from the world.

void removeObjects(Collection objects) Remove a list of objects from the world.

void repaint() Repaint the world.

void setActOrder(Class... classes) Set the act order of objects in the world.

void setBackground(GreenfootImage image) Set a background image for the world.

void setBackground(String filename) Set a background image for the world from an image file.

void setPaintOrder(Class... classes) Set the paint order of objects in the world.

void started() Called by the Greenfoot system when execution has started.

void stopped() Called by the Greenfoot system when execution has stopped.

166 | Appendices

Class Actor

Actor() Construct an Actor.

void act() The act method is called by the Greenfoot framework

to give objects a chance to perform some action.

protected void addedToWorld(World world) This method is called by the Greenfoot system when the

object has been inserted into the world.

GreenfootImage getImage() Return the image used to represent this Actor.

protected List
getIntersectingObjects(Class cls)

Return all the objects that intersect this object.

protected List getNeighbours(int distance,
boolean diagonal, Class cls)

Return the neighbours to this object within a given

distance.

protected List getObjectsAtOffset(int dx,
int dy, Class cls)

Return all objects that intersect the given location

(relative to this object’s location).

protected List getObjectsInRange(int r,
Class cls)

Return all objects within range ‘r’ around this object.

protected Actor getOneIntersectingObject
(Class cls)

Return an object that intersects this object.

protected Actor getOneObjectAtOffset
(int dx, int dy, Class cls)

Return one object that is located at the specified cell

(relative to this object’s location).

int getRotation() Return the current rotation of the object.

World getWorld() Return the world that this object lives in.

int getX() Return the x-coordinate of the object’s current location.

int getY() Return the y-coordinate of the object’s current location.

protected boolean intersects(Actor other) Check whether this object intersects another given object.

void setImage(GreenfootImage image) Set the image for this object to the specified image.

void setImage(String filename) Set an image for this object from an image file.

void setLocation(int x, int y) Assign a new location for this object.

void setRotation(int rotation) Set the rotation of the object.

Class Greenfoot

Greenfoot() Constructor.

static void delay(int time) Delay execution by a number of time steps. The size

of one time step is defined by the speed slider.

static String getKey() Get the most recently pressed key since the last time

this method was called.

static MouseInfo getMouseInfo() Return a mouse info object with information about the state

of the mouse.

static int getRandomNumber(int limit) Return a random number between 0 (inclusive) and limit

(exclusive).

static boolean isKeyDown(String keyName) Check whether a given key is currently pressed down.

(continued)

B: Greenfoot API | 167

Class MouseInfo

Actor getActor() Return the actor (if any) that the current mouse behaviour

is related to.

int getButton() The number of the pressed or clicked button (if any).

int getClickCount() The number of mouse clicks of this mouse event.

int getX() The current x position of the mouse cursor.

int getY() The current y position of the mouse cursor.

String toString() Return a string representation of this mouse event info.

Class GreenfootImage

GreenfootImage(GreenfootImage image) Create a GreenfootImage from another GreenfootImage.

GreenfootImage(int width, int height) Create an empty (transparent) image with the specified size.

GreenfootImage(String filename) Create an image from an image file.

void clear() Clear the image.

void drawImage(GreenfootImage image,
int x, int y)

Draw the given image onto this image.

void drawLine(int x1, int y1, int x2,
int y2)

Draw a line, using the current drawing color, between the

points (x1, y1) and (x2, y2).

void drawOval(int x, int y, int width,
int height)

Draw an oval bounded by the specified rectangle with the

current drawing color.

void drawPolygon(int[] xPoints, int[]
yPoints, int nPoints)

Draw a closed polygon defined by arrays of x and y

coordinates.

void drawRect(int x, int y, int width,
int height)

Draw the outline of the specified rectangle.

void drawstring(String string, int x,
int y)

Draw the text given by the specified string, using the

current font and color.

static boolean mouseClicked(Object obj) True if the mouse has been clicked on the given object.

static boolean mouseDragEnded(Object obj) True if a mouse drag has ended.

static boolean mouseDragged(Object obj) True if the mouse has been dragged on the given object.

static boolean mouseMoved(Object obj) True if the mouse has been moved on the given object.

static boolean mousePressed(Object obj) True if the mouse has been pressed on the given object.

static void playSound(String soundFile) Play sound from a file.

static void setSpeed(int speed) Set the speed of the simulation execution.

static void start() Run (or resume) the simulation.

static void stop() Stop the simulation.

(continued)

Class Greenfoot (continued)

168 | Appendices

void fill() Fill the entire image with the current drawing color.

void fillOval(int x, int y, int width,
int height)

Fill an oval bounded by the specified rectangle with the

current drawing color.

void fillPolygon(int[] xPoints, int[]
yPoints, int nPoints)

Fill a closed polygon defined by arrays of x and y

coordinates.

void fillRect(int x, int y, int width,
int height)

Fill the specified rectangle.

BufferedImage getAwtImage() Return the BufferedImage that backs this GreenfootImage.

Color getColor() Return the current drawing color.

Color getColorAt(int x, int y) Return the color at the given pixel.

Font getFont() Get the current font.

int getHeight() Return the height of the image.

int getTransparency() Return the transparency of the image (range 0–255).

int getWidth() Return the width of the image.

void mirrorHorizontally() Mirror the image horizontally (flip around the x-axis).

void mirrorVertically() Mirror the image vertically (flip around the y-axis).

void rotate(int degrees) Rotate this image around the center.

void scale(int width, int height) Scale this image to a new size.

void setColor(Color color) Set the current drawing color.

void setColorAt(int x, int y, Color color) Set the color at the given pixel to the given color.

void setFont(Font f) Set the current font.

void setTransparency(int t) Set the transparency of the image (range 0–255).

String toString() Return a string representation of this image.

Class GreenfootImage (continued)

In this book, various collision detection methods are used in different situations. Following is a
summary of the collision detection methods available for Greenfoot actors, and a short explana-
tion of their purpose and when to use them.

C.1 Method summary

Greenfoot’s collision detection methods can be found in the Actor class. There are six relevant
methods. They are as follows:

List getIntersectingObjects(Class cls)
Return all the objects that intersect this object.

Actor getOneIntersectingObject(Class cls)
Return an object that intersects this object.

List getObjectsAtOffset(int dx, int dy, Class cls)
Return all objects that intersect the given location (relative to this object’s location).

Actor getOneObjectAtOffset(int dx, int dy, Class cls)
Return one object that is located at the specified cell (relative to this objects location).

List getNeighbours(int distance, boolean diagonal, Class cls)
Return the neighbours to this object within a given distance.

List getObjectsInRange(int r, Class cls)
Return all objects within range ’r’ around this object.

C.2 Convenience methods

Two of the methods, getIntersectingObjects and getObjectsAtOffset, have associ-
ated convenience methods, starting with getOne. . . .

These convenience methods work in very similar ways as the method they are based on, but they
return a single actor instead of a list of actors. In cases where multiple other actors could be
found (e.g., several other actors intersect with ours at the same time), the variant returning a list
returns all the relevant actors. The variant returning a single actor randomly picks one of the
intersecting actors and returns that one.

APPENDIX

Collision detectionC

170 | Appendices

The purpose of these convenience methods is just to simplify code: Often, we are only interested
in a single intersecting actor. In those cases, the convenience method allows us to handle the
actor without having to use a list.

C.3 Low versus high resolution

As we have seen throughout this book, the resolution (cell size) of Greenfoot worlds can vary.
This is relevant for collision detection, as we will often use different methods, depending on the
resolution.

We distinguish two cases: low-resolution worlds, where the entire actor image is completely
contained within a single cell (Figure C.1 a) and high-resolution worlds, where the image of an
actor spans multiple cells (Figure C.1 b).

Figure C.1
Examples of low and

high resolution in

Greenfoot worlds

C.4 Intersecting objects

Methods:

List getIntersectingObjects(Class cls)
Return all the objects that intersect this object.

Actor getOneIntersectingObject(Class cls)
Return an object that intersects this object.

These methods return other actors whose image intersects with the calling actor’s image. Images
intersect when any part of one image touches any part of another image. These methods are most
useful in high-resolution scenarios.

Intersection is computed using bounding boxes, so overlap of fully transparent parts of the
images is also treated as intersection (Figure C.2).

a) a low-resolution world b) a high-resolution world

C: Collision detection | 171

visible image

bounding box

Figure C.2
Intersection of actors

using their bounding

boxes

Figure C.3
Checking a given

offset from a location

(example here:

offset 2,0)

These methods are often used to check whether one actor has run into another kind of actor. The
inaccuracy resulting from using bounding boxes (rather than the visible part of the image) can
often be neglected.

The parameter can be used as a filter. If a class is specified as a parameter to these methods, only
objects of that class are considered and all other objects are ignored. If null is used as a parameter,
any intersecting object is returned.

C.5 Objects at offset

Methods:

List getObjectsAtOffset(int dx, int dy, Class cls)
Return all objects that intersect the given location (relative to this object’s location).

Actor getOneObjectAtOffset(int dx, int dy, Class cls)
Return one object that is located at the specified cell (relative to this objects location).

These methods can be used to check for objects at a given offset from an actor’s own current
location. They are useful for both low- and high-resolution scenarios.

The dx and dy parameters specify the offset in number of cells. Figure C.3 illustrates the location
at offset (2,0) from the wombat (2 cells offset along the x coordinate and 0 cells offset along the
y coordinate).

172 | Appendices

Another actor is considered to be at that offset if any part of that actor’s image intersects with the
center point of the specified cell. The cls parameter again provides the option to filter the
objects to be considered (see above).

These methods are often used to check an area in front of an actor (to test whether it can move
forward) or below an actor (to check whether it is standing on something).

C.6 Neighbors

Method:

List getNeighbours(int distance, boolean diagonal, Class cls)
Return the neighbours to this object within a given distance.

This method is used to retrieve objects from cells surrounding the current actor. It is useful
mainly in low-resolution scenarios.

Note the spelling of the method name: It really is getNeighbours (with British spelling)—
Greenfoot is not an American system.

The parameters specify the distance from the calling actor that should be considered and whether
or not diagonally positioned cells should be included. Figure C.4 illustrates the neighboring cells
at distance 1, with and without diagonals included.

A distance of N is defined as all cells that can be reached in N steps from the actor’s own
position. The diagonal parameter determines whether diagonal steps are allowed in this
algorithm.

As with the previous methods, the cls parameter provides the option to consider only objects of
a given class.

Figure C.4
Example of the

getNeighbours
method

a) neighbors with diagonal = false b) neighbors with diagonal = true

C: Collision detection | 173

Figure C.5
The cells in a given

range around

a location

C.7 Objects in range

Method:

List getObjectsInRange(int r, Class cls)
Return all objects within range ‘r’ around this object.

This method returns all objects within a given range of the calling actor. An object is in range if
its location is a cell whose center point is at distance r or less from the calling actor (Figure C.5).
The range r is measured in cells.

This method is mostly useful for high-resolution scenarios. As with the methods above, a class
filter can be applied.

This page intentionally left blank

D.1 Java data types

Java knows two kinds of types: primitive types and object types. Primitive types are stored in
variables directly, and they have value semantics (values are copied when assigned to another
variable). Object types are stored by storing references to the object (not the object itself). When
assigned to another variable, only the reference is copied, not the object.

D.1.1 Primitive types

The following table lists all the primitive types of the Java language:

APPENDIX

Some Java detailsD

Type name Description Example literals

Integer numbers

byte byte-sized integer (8 bit) 24 -2
short short integer (16 bit) 137 -119
int integer (32 bit) 5409 -2003
long long integer (64 bit) 423266353L 55L

Real numbers

float single-precision floating point 43.889F

double double-precision floating point 45.632.4e5

Other types

char a single character (16 bit) ‘m’ ‘?’ ‘\u00F6’

boolean a boolean value (true or false) true false

Notes:

� A number without a decimal point is generally interpreted as an int, but automatically
converted to byte, short, or long types when assigned (if the value fits). You can declare a
literal as long by putting an L after the number. (l—lower-case L—works as well but should
be avoided because it can easily be mistaken for a one.)

� A number with a decimal point is of type double. You can specify a float literal by putting
an F or f after the number.

� A character can be written as a single Unicode character in single quotes or as a four-digit
Unicode value, preceded by \u.

� The two boolean literals are true and false.

Because variables of the primitive types do not refer to objects, there are no methods associated
with the primitive types. However, when used in a context requiring an object type, autoboxing
might be used to convert a primitive value to a corresponding object.

The following table details minimum and maximum values available in the numerical types.

176 | Appendices

Type Minimum Maximum

byte -128 127

short -32768 32767
int -2147483648 2147483647
long -9223372036854775808 9223372036854775807

Positive minimum Positive maximum

float 1.4e–45 3.4028235e38

double 4.9e–324 1.7976931348623157e308

D.1.2 Object types

All types not listed in the Primitive types section are object types. These include class and
interface types from the standard Java library (such as String) and user-defined types.

A variable of an object type holds a reference (or ‘pointer’) to an object. Assignments and
parameter passing have reference semantics (i.e., the reference is copied, not the object). After
assigning a variable to another one, both variables refer to the same object. The two variables are
said to be aliases for the same object.

Classes are the templates for objects, defining the fields and methods that each instance possesses.

Arrays behave like object types—they also have reference semantics.

D.2 Java operators

D.2.1 Arithmetic expressions

Java has a considerable number of operators available for both arithmetic and logical expres-
sions. Table D.1 shows everything that is classified as an operator, including things such as type
casting and parameter passing. Most of the operators are either binary operators (taking a left

and a right operand) or unary operators (taking a single operand). The main binary arithmetic
operations are:

D: Some Java details | 177

+ addition
– subtraction
* multiplication
/ division
% modulus or remainder-after-division

[] . ++ – – (parameters)

++ – – + – ! ~

new (cast)

* / %

+ –

<< >> >>>

< > >= <= instanceof

== !=

&

^

|

&&

||

?:

= += –= *= /= %= >>= <<= >>>= &= |= ^=

Table D.1
Java operators,

highest precedence

at the top

The results of both division and modulus operations depend on whether their operands are inte-
gers or floating point values. Between two integer values, division yields an integer result and
discards any remainder, but between floating point values a floating point value is the result:

5 / 3 gives a result of 1
5.0 / 3 gives a result of 1.6666666666666667

(Note that only one of the operands needs to be of a floating point type to produce a floating
point result.)

When more than one operator appears in an expression, then rules of precedence have to be used
to work out the order of application. In Table D.1 those operators having the highest precedence
appear at the top, so we can see that multiplication, division, and modulus all take precedence

over addition and subtraction, for instance. This means that both of the following examples give
the result 100:

51 * 3 – 53
154 – 2 * 27

Binary operators with the same precedence level are evaluated from left to right and unary
operators with the same precedence level are evaluated right to left.

When it is necessary to alter the normal order of evaluation, parentheses can be used. So both of
the following examples give the result 100:

(205 – 5) / 2
2 * (47 + 3)

The main unary operators are –, !, ++, ––, [], and new. You will notice that ++ and –– appear in
both of the top two rows in Table D.1. Those in the top row take a single operand on their left,
while those in the second row take a single operand on their right.

D.2.2 Boolean expressions

In boolean expressions, operators are used to combine operands to produce a value of either true
or false. Such expressions are usually found in the test expressions of if-else statements and loops.

The relational operators usually combine a pair of arithmetic operands, although the tests for
equality and inequality are also used with object references. Java’s relational operators are:

178 | Appendices

! not

== equal-to != not-equal-to
< less-than <= less-than-or-equal-to
> greater-than >= greater-than-or-equal-to

&& and
|| or
^ exclusive-or

The binary logical operators combine two boolean expressions to produce another boolean
value. The operators are:

In addition,

takes a single boolean expression and changes it from true to false, and vice versa.

Both && and || are slightly unusual in the way they are applied. If the left operand of && is false then
the value of the right operand is irrelevant and will not be evaluated. Similarly, if the left operand of
|| is true then the right operand is not evaluated. Thus, they are known as short-circuit operators.

D.3 Java control structures

Control structures affect the order in which statements are executed within the body of a method
or constructor. There are two main categories: selection statements and loops.

A selection statement provides a decision point at which a choice is made to follow one route
through the body of a method or constructor rather than another route. An if-else statement

involves a decision between two different sets of statements, whereas a switch statement allows
the selection of a single option from among several.

Loops offer the option to repeat statements, either a definite or an indefinite number of times.
The former is typified by the for-each loop and for loop, while the latter is typified by the while
loop and do loop.

In practice, it should be borne in mind that exceptions to the above characterizations are quite
common. For instance, an if-else statement can be used to select from among several alternative
sets of statements if the else part contains a nested if-else statement; and a for loop can be used
to loop an indefinite number of times.

D.3.1 Selection statements

D.3.1.1 if-else

The if-else statement has two main forms, both of which are controlled by the evaluation of a
boolean expression:

if (expression)
{

statements
}

if (expression)
{

statements
}
else
{

statements
}

In the first form, the value of the boolean expression is used to decide whether to execute the
statements or not. In the second form, the expression is used to choose between two alternative
sets of statements, only one of which will be executed.

Examples:

if (field.size() == 0)
{

System.out.println(“The field is empty.”);
}

if (number < 0)
{

reportError();
}
else
{

processNumber(number);
}

D: Some Java details | 179

It is very common to link if-else statements together by placing a second if-else in the else part of the
first. This can be continued any number of times. It is a good idea to always include a final else part.

if (n < 0)
{

handleNegative();
}
else if (number == 0)
{

handleZero();
}
else
{

handlePositive();
}

D.3.1.2 switch

The switch statement switches on a single value to one of an arbitrary number of cases. Two
possible use patterns are:

switch (expression)
{

case value: statements;
break;

case value: statements;
break;

further cases omitted
default: statements;

break;
}

switch (expression)
{

case value1:
case value2:
case value3:

statements;
break;

case value4:
case value5:

statements;
break;

further cases omitted
default:

statements;
break;

}

Notes:

� A switch statement can have any number of case labels.
� The break instruction after every case is needed, otherwise the execution ‘falls through’ into

the next label’s statements. The second form above makes use of this. In this case, all three of

180 | Appendices

the first values will execute the first statements section, whereas values four and five will exe-
cute the second statements section.

� The default case is optional. If no default is given, it may happen that no case is executed.
� The break instruction after the default (or the last case, if there is no default) is not

needed, but is considered good style.

Examples:

switch(day)
{

case 1: dayString = “Monday”;
break;

case 2: dayString = “Tuesday”;
break;

case 3: dayString = “Wednesday”;
break;

case 4: dayString = “Thursday”;
break;

case 5: dayString = “Friday”;
break;

case 6: dayString = “Saturday”;
break;

case 7: dayString = “Sunday”;
break;

default: dayString = “invalid day”;
break;

}

switch(month)
{

case 1:
case 3:
case 5:
case 7:
case 8:
case 10:
case 12:

numberOfDays = 31;
break;

case 4:
case 6:
case 9:
case 11:

numberOfDays = 30;
break;

case 2:
if(isLeapYear())

numberOfDays = 29;
else

numberOfDays = 28;
break;

}

D: Some Java details | 181

D.3.2 Loops

Java has three loops: while, do-while, and for. The for loop has two forms. Except for the for-each
loop, repetition is controlled in each with a boolean expression.

D.3.2.1 while

The while loop executes a block of statements as long as a given expression evaluates to true.
The expression is tested before execution of the loop body, so the body may be executed zero
times (i.e., not at all). This capability is an important feature of the while loop.

while (expression)
{

statements;
}

Examples:

System.out.print(“Please enter a filename: ”);
input = readInput();
while (input == null)
{

System.out.print(“Please try again: ”);
input = readInput();

}

int index = 0;
boolean found = false;
while (!found && index < list.size())
{

if(list.get(index).equals(item))
{

found = true;
}
else
{
index++;
}

}

D.3.2.2 do-while

The do-while loop executes a block of statements as long as a given expression evaluates to true.
The expression is tested after execution of the loop body, so the body always executes at least
once. This is an important difference from the while loop.

do
{

statements;
} while (expression);

182 | Appendices

Example:

do
{

System.out.print(“Please enter a filename: ”);
input = readInput();

} while (input == null);

D.3.2.3 for

The for loop has two different forms. The first form is also known as a for-each loop, and is used
exclusively to iterate over elements of a collection. The loop variable is assigned the value of
successive elements of the collection on each iteration of the loop.

for (variable-declaration : collection)
{

statements;
}

Example:

for (String note : list)
{

System.out.println(note);
}

The second form of for loop executes as long as a condition evaluates to true. Before the loop
starts, an initialization statement is executed exactly once. The condition is evaluated before
every execution of the loop body (so the loop may execute zero times). An increment statement
is executed after each execution of the loop body.

for (initialization; condition; increment)
{

statements;
}

Example:

for (int i = 0; i < text.size(); i++)
{

System.out.println(text.get(i));
}

Both types of for loop are commonly used to execute the body of the loop a definite number of
times—for instance, once for each element in a collection. A for-each loop cannot be used if the
collection is to be modified while it is being iterated over.

D: Some Java details | 183

This page intentionally left blank

Index

A
Abstract classes, 81
Abstraction, See also Piano scenario,

66–67
Act button

execution control, 9–10
little-crab scenario, 19

act()
leaves-and-wombats scenario, 9–10
little-crab scenario, 18–20, 24
piano scenario, 62–65

Actor class, 12
in asteroids scenario, 11, 109–110
in leaves-and-wombats scenario, 5
in little-crab scenario, 16–17

Actor constructors
in little-crab scenario improvement

(finishing), 50–51
variables initialization and, 51

Actor defintion, 10
addObject()

in little-crab scenario, 45
in piano scenario, 68

Alpha value, 135, 137
Alternating images, see also Images

in little-crab scenario improvement
(finishing), 52

Animating images
little-crab scenario improvement

(finishing), 46
piano scenario, 62–64

Ants scenario simulation, 145
adding pheromones, 150–151
collecting food, 146–149
path forming, 152–153
Pheromone class, 146
setting up world (AntWorld class), 149

API Documentation, See Greenfoot Class
Documentation

Applet, 60
Arrays

creation for keys and notes, 74, 76
elements, 73
piano scenario using, 72–76

Assignment (=), 49–50
Asteroids scenario, 101

asteroids-1, 102
asteroids-2, 106, 109
asteroids-3, 121
bounding boxes, 110
casting, 112–114
class diagram

subclass, 10–12
superclass, 12

classes, 102
Explosion, 109
ScoreBoard, 112

colliding with asteroids, 109–111
flying forward, 107–108
interacting with objects in

range, 119–121
painting stars, 103–106
proton wave, 115
Audacity, See also Sound playing

scenario, 130

B
BMP image format, 135
Body class (Newton’s Lab scenario),

83–85
Boids scenario, 156–157
Boolean type, 7, 23
Bounding boxes, 110, 169
Breakout scenario, 159

186 | Index

C
Casting, 112–114
Circles scenario, 157–158
Class diagram, 4, 10–14

subclass, 10–12
superclass, 12

Class methods, See Static methods
Classes, See also Actor class; Greenfoot

class; World class
abstract, 81
Java library classes, 86–87

Collection, See also List, definition of
defined, 90

Colliding with asteroids, See also Asteroids
scenario, 101, 109–110

Collision detection
in Newton’s Lab scenario, 98
in Asteroids scenario, 101
overview, 168

Color class, 84, 86, 103, 137
Color-chart, 135–137
Compilation, source code, 14
Concatenation, See String concatenation
Constants, See also Variables

declaration, 84
defined, 85

Constructors, 44
actor constructors, 50–51
actor constructors (variables

initialization), 51
default, 83

Crab, See little-crab scenario
CrabWorld

class, 43–44
source code, 44

Creating new objects (new statement),
45–46

Crumbs, See also Ants scenario simulation
with even distribution, 147
with Gaussian distribution, 147

D
Dahl, Ole-Johan, 142
Default constructor, 83
Dot notation, 27
Drawing images

combining dynamic drawing and images
files, 137–139

color-chart, 135–137
Dynamic drawing, 137–139

E
Einstein, Albert, 78
Emergent behavior (ants scenario

simulation), 152
Equality (==) operator, 52
Errors, error messages, 21
Execution controls, 4

Act button, 9–10
Pause button, 10
Run button, 10

Explosion class, 109
Explosion scenario, 158–159
Exporting scenario, See Sharing scenario

F
Fields, See Instance variables (fields)
File formats, See Formats
Flying forward (asteroids scenario),

107–108
For loop, 104–105
For-each loop, 91–92
Formats

image files, 133
BMP, 135
GIF, 135
JEPG, 134
PNG, 134–135
TIFF, 135

sound files, 131–132
Foxes-and-rabbits simulation,

142–144

G
gameOver(), 112–114
Generic type, See under List type
getIntersectingObjects(), 119
getObjectsInRange(), 119
getRandomNumber(), 27–29
getWorld(), 114
getX(), 111
getY(), 111
GIF image format, 135
Gravity (Newton’s Lab scenario)

addition, 87–90
applying, 93–95
and music, 97–98

Greenfoot class (little-crab scenario)
adding sound and, 40–41
game ending and, 39–40

Greenfoot Class Documentation, 38–40

Index | 187

Greenfoot Gallery, 59–60
Greenfoot images, 47–48
Greenfoot interface, 3
GreenfootImage class, 47, 50, 103
Greeps scenario, 123–124

I
If-statement, 24, 52–53
Image files and formats, 133

BMP, 135
GIF, 135
JPEG, 134
PNG, 134–135
TIFF, 135

Images
animating, 46
combining with dynamic drawing,

137–139
drawing, 135–137
alternating, 52
Greenfoot, 47–48

Import statement, See also Java library
classes, 86

Indentation, 25
Index, See also Arrays, 72
Infinite loop, 70
Inheritance, 16
Inherited methods, 42
Instance variables (fields), 48–49
Instances, See Objects
Int type, 7–9
Interacting with objects, 6
Invoking methods, 6
isKeyDown method(), 36–37

J
jar file, 57–58
Java library classes, 86–87
Java Library Documentation, 86–87
JPEG image format, 134

K
Keyboard control, 36–37

L
Leaves-and-wombats scenario, 3
Library classes, See Java library classes
Lifts scenario, 155–156
List, definition of, 90

List type
generic type, 91
in Newton’s Lab scenario, 90–91

Little-crab scenario, 16–26
improving

adding lobster, 35–36
adding sound, 40–42
adding worms, 30–32
creating new methods, 33–35
eating worms, 32–33
keyboard control, 36–38
random behavior addition, 27–29

improving (finishing)
adding objects automatically, 43–45
alternating images, 52
animating images, 46
counting worms, 53–54

little-crab-2, 30
little-crab-3, 38
little-crab-4, 41
little-crab-5, 46, 55
screen edges, dealing with, 21–22
turning, 19–20, 23–24

Local
methods, 42
variable, 69–70

Lock scenario, See also Sharing scenario, 58
Logical operators

AND (&), 64
NOT (!), 64

Loop
for, 104–105
for-each, 91–92
infinite, 70
while, 69–71, 105

M
Marbles scenario, 154–155
Math class, 94–95
Method

call, definition of, 19
defined, 19
inherited, 42
invoking

leaves-and-wombats scenario, 6–7
Newton’s Lab scenario, 79–80

local, 42
overloading, 82
private, 89
public, 89

188 | Index

Method signature, 9, 18
Mono recording, 132
move()

asteroids scenario, 107
leaves-and-wombats scenario, 7
little-crab scenario, 18–20, 23–24
Newton’s Lab scenario, 88–89

N
New statement, 45–46
Newton, Isaac, 78

formula for gravitation, 93
Newton’s Lab scenario, 78

adding gravitational force, 87–90
applying gravity, 93–95
collision detection, 98
creating movement, 85
gravity and music, 97–98
helper classes

SmoothMover, 80–81
Vector, 82

Newtons-Lab-1, 79
Newtons-Lab-2, 95
Newtons-Lab-3, 97
using Java library classes, 86–87
World methods, 80

Non-void return type, See also Void
return type, 7

little-crab scenario, 23
Normal distribution, 148
Null keyword, 89
Nygaard, Kristen, 142

O
Objects, 4

in asteroids1 scenario, 12
in leaves-and-wombats

scenario, 4–5
in little-crab scenario improvement,

43–45
automatic addition of objects, 45
new statement, 45–46

interacting with
asteroids scenario, 119–121
leaves-and-wombats

scenario, 6–7
Operators, logical, 64
Overloading, method, 82

P
Packages, 86
Parameter, 8–9, 19–20

empty parameter list, 8
parameter list, 8

Pause button, 10
Pheromone class, 146, 150–151
Piano scenario, 61

animating key, 62–64
creating multiple keys (abstraction),

66–67
piano-1, 61–63
piano-2, 66
piano-3, 67
piano-4, 75
producing sound, 65–66
using arrays, 72–76
using loops (while loop), 69–71

Platform jumper scenario, 160–161
playSound(), See also Piano scenario,

40–41, 65, 129
PNG image format, 134–135
Predator-prey-simulations, See Foxes-and-

rabbits simulation
Private keyword, 48
Private method, 89
Proton wave

asteroids scenario, 115
Public method, 89
Publishing, See also Sharing scenario

on Greenfoot Gallery, 59–60

Q
Question, See also Void return

type, 23
as non-void return type, 7

R
Rabbits, See Foxes-and-rabbits

simulation
Random behavior, 27–29
Random distributions, 148

normal (Gaussian) distribution, 148
uniform distribution, 148

Recording
mono, 132
sound recording and editing,

130–131
stereo, 132

Index | 189

Resolution, see Screen resolution
Return type, 7

void vs. non-void, 23
Return value, 7–8
Reynolds, Craig, 156
Run button, 10, 19

S
Scenario

ants scenario, 145–153
asteroids, 10–14, 101–121
boids, 156–157
breakout, 159
circles, 157–158
explosion, 158–159
exporting, See Sharing

scenario
greeps, 123–126
leaves-and-wombats, 3–10
lifts, 155–156
little-crab scenario, 16–56
marbles, 154–155
Newton’s Lab, 78–98
piano, 61–76
platform jumper, 160–161
sharing (exporting), 57–60
smoke, 137
soundtest, 129
wave, 161–162

Screen resolution, 44, 169
setImage(), 47
setRotation(), 106, 108
Sharing a scenario

export to application, 57–58
export to web page, 58
publishing, 59–60

Short methods, 149
Signature, See Method signature
Simulations

ants scenario, 145–153
defined, 141
foxes-and-rabbits, 142–144
Newton’s Lab, 78–98

Smoke scenario, 137
SmoothMover class, 80–81
Sound

playing, 40–41, 65–66, 129
playSound(), 40–41, 129
sound recording, 42, 130–131

file formats and file sizes, 131–133
AIFF, 131
AU, 131
format encodings, 132
sample format, 132
sample rate, 132
stereo and mono recording, 132
WAV, 131–132

Soundtest scenario, 129
Source code, 13–14

compilation, 14
Stars, See also Asteroids scenario

painting, 103–104
Static keyword, 84
Static methods, 28

See also Little-crab scenario
Stereo recording, 132
stop(), 40
String

class, 76
type definition, 76

String concatenation, 75
Subclasses, 10–12
Superclass, 12

T
this keyword, 84
TIFF image format, 135
Transparency, See also Images, 134

value, 135, 137
Turning

asteroids scenario, 106–107
leaves-and-wombats scenario, 7
little-crab scenario, 19–20, 23–24

U
Uniform distributions, 148

V
Variables, See also Constants

defined, 48
initialization in actor constructors, 51
instance, 48–49
local, 69–70

Vector class (Newton’s Lab scenario), 82
Vector representation

cartesian, 82
polar, 82

190 | Index

Void return type, See also Non-void
return type

command, 7
little-crab scenario, 23

W
WAV, See also Sound playing scenario

sound file format, 131–132
Wave scenario, 161–162

While loop, 69–71, 105
Wombat class, 4–5
World

area, 4
methods, 80

World class, 10, 45
Worms (little-crab scenario)

adding, 30–32
counting, 53–54
eating, 32–33

	API

