


Introduction to Programming 
with Greenfoot

Object-Oriented Programming in Java 
With Games and Simulations

2e

A01_KOLL4292_02_SE_FM.indd   1 2/3/15   9:41 AM



A01_KOLL4292_02_SE_FM.indd   2 2/3/15   9:41 AM

This page intentionally left blank



Introduction to Programming 
with Greenfoot

Object-Oriented Programming in Java 
With Games and Simulations

Boston Columbus Indianapolis New York San Francisco Hoboken
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Michael Kölling

2e

A01_KOLL4292_02_SE_FM.indd   3 2/3/15   9:41 AM



Editorial Director: Marcia Horton
Executive Editor: Tracy Johnson
Editorial Assistant: Kelsey Loanes
VP of Marketing: Christy Lesko
Director of Field Marketing: Tim Galligan
Product Marketing Manager: Bram van Kempen
Field Marketing Manager: Demetrius Hall
Marketing Assistant: Jon Bryant
Director of Product Management: Erin Gregg
Team Lead Product Management: Scott Disanno
Program Manager: Carole Snyder
Production Project Manager: Camille Trentacoste
Procurement Manager: Mary Fischer
Senior Specialist, Program Planning and Support: Maura Zaldivar-Garcia
Manager, Rights Management: Rachel Youdelman
Senior Project Manager, Rights Management: Timothy Nicholls
Cover Designer: Black Horse Designs
Cover Art: Ivan kmit/Fotolia

Copyright © 2016 by Pearson Education, Inc. or its affiliates. All Rights Reserved. Printed in the 
United States of America. This publication is protected by copyright, and permission should be 
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, 
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or 
otherwise. For information regarding permissions, request forms and the appropriate contacts within 
the Pearson Education Global Rights & Permissions department, please visit www.pearsoned.com/
permissions/.

Many of the designations by manufacturers and sellers to distinguish their products are claimed 
as trademarks. Where those designations appear in this book, and the publisher was aware of a 
trademark claim, the designations have been printed in initial caps or all caps.

The copyright for Greenfoot is held by Michael Kölling. The Greenfoot system is available under the 
GNU General Public License version 2 with the Classpath Exception.

Library of Congress Cataloging-in-Publication Data on File

Kölling, Michael.
  Introduction to programming with greenfoot object-oriented programming in java with games 
and simulations / Michael Kölling. — 2nd edition.
   pages cm
 Includes bibliographical references and index.
  ISBN 978-0-13-405429-2 — ISBN 0-13-405429-6 1. Greenfoot (Electronic resource) 2. Object-
oriented programming (Computer science)—Study and teaching. 3. Java (Computer program 
language) 4. Computer games—Programming. I. Title. 
 QA76.64.K657 2016
 794.8'1526—dc23
 2015000976

ISBN-13: 978-0-13-405429-2
ISBN-10:         0-13-405429-6

10 9 8 7 6 5 4 3 2 1

A01_KOLL4292_02_SE_FM.indd   4 2/3/15   9:41 AM



To my darling girl.

A01_KOLL4292_02_SE_FM.indd   5 2/3/15   9:41 AM



A01_KOLL4292_02_SE_FM.indd   6 2/3/15   9:41 AM

This page intentionally left blank



Contents

List of scenarios discussed in this book xiii
About the companion website xvi
Acknowledgments xvii
About the 2nd edition xix

  Introduction 1

 Chapter 1 Getting to know Greenfoot 3

 1.1 Getting started 3
 1.2 Objects and classes 4
 1.3 Interacting with objects 6
 1.4 Return types 7
 1.5 Parameters 8
 1.6 Greenfoot execution 9
 1.7 A second example 10
 1.8 Understanding the class diagram 10
 1.9 Playing with asteroids 12
 1.10 Source code 13
  Summary 15

 Chapter 2 The first program: Little Crab 17

 2.1 The Little Crab scenario 17
 2.2 Making the crab move 19
 2.3 Turning 20
 2.4 Dealing with screen edges 23
  Summary of programming techniques 27
  Drill and practice 28

A01_KOLL4292_02_SE_FM.indd   7 2/3/15   9:41 AM



viii      |       Contents

 Chapter 3 Improving the crab: more sophisticated programming 31

 3.1 Adding random behavior 31
 3.2 Adding worms 35
 3.3 Eating worms 36
 3.4 Creating new methods 38
 3.5 Adding a Lobster 40
 3.6 Keyboard control 41
 3.7 Ending the game 43
 3.8 Adding sound 45
 3.9 Making your own sounds 46
  Summary of programming techniques 49
  Drill and practice 50

 Chapter 4 Finishing the crab game 52

 4.1 Adding objects automatically 52
 4.2 Creating new objects 54
 4.3 Variables 55
 4.4 Assignment 55
 4.5 Object variables 56
 4.6 Using variables 58
 4.7 Adding objects to the world 58
 4.8 Save the World 60
 4.9 Animating images 61
 4.10 Greenfoot images 62
 4.11 Instance variables (fields) 63
 4.12 Using actor constructors 66
 4.13 Alternating the images 68
 4.14 The if/else statement 69
 4.15 Counting worms 70
 4.16 More ideas 71
  Summary of programming techniques 72
  Drill and practice 73

 Interlude 1 Sharing your scenarios 75

 I1.1 Sharing your scenario 75
 I1.2 Publishing to the Greenfoot website 75
 I1.3 Export to a Web page 77
 I1.4 Export to application 78
 I1.5 Export to Greenfoot archive 78

A01_KOLL4292_02_SE_FM.indd   8 2/3/15   9:41 AM



Contents      |       ix   

 Chapter 5 Scoring 80

 5.1 WBC: The starting point 81
 5.2 WhiteCell: constrained movement 81
 5.3 Bacteria: making yourself disappear 84
 5.4 Bloodstream: creating new objects 85
 5.5 Side-scroll movement 86
 5.6 Adding viruses 87
 5.7 Collision: removing bacteria 88
 5.8 Variable speed 89
 5.9 Red blood cells 89
 5.10 Adding borders 90
 5.11 Finally: adding a score 92
 5.12 Scoring in the World 94
 5.13 Abstraction: generalizing the scoring 97
 5.14 Adding game time 100
  Summary of programming techniques 100
  Drill and practice 101

 Chapter 6 Making music: an on-screen piano 103

 6.1 Animating the key 104
 6.2 Producing the sound 107
 6.3 Abstraction: creating multiple keys 108
 6.4 Building the piano 110
 6.5 Using loops: the while loop 111
 6.6 Using arrays 114
  Summary of programming techniques 119
  Drill and practice 120

 Chapter 7 Object interaction: an introduction 122

 7.1 Interacting objects 123
 7.2 Object references 123
 7.3 Interacting with the world 124
 7.4 Interacting with actors 124
 7.5 The null value 125
 7.6 Interacting with groups of actors 126
 7.7 Using Java library classes 127
 7.8 The List type 129
 7.9 A list of leaves 130

A01_KOLL4292_02_SE_FM.indd   9 2/3/15   9:41 AM



x      |       Contents

 7.10 The for-each loop 130
  Summary of programming techniques 132
  Drill and practice 133

 Chapter 8 Interacting objects: Newton’s Lab 134

 8.1 The starting point: Newton’s Lab 134
 8.2 Helper classes: SmoothMover and Vector 136
 8.3 The existing Body class 139
 8.4 First extension: creating movement 141
 8.5 The Color class 142
 8.6 Adding gravitational force 143
 8.7 Applying gravity 146
 8.8 Trying it out 149
 8.9 Gravity and music 151
  Summary of programming techniques 152
  Drill and practice 153

 Chapter 9 Collision detection: Asteroids 154

 9.1 Investigation: what is there? 155
 9.2 Painting stars 156
 9.3 Turning 159
 9.4 Flying forward 160
 9.5 Colliding with asteroids 162
 9.6 Game Over 165
 9.7 Adding fire power: the proton wave 168
 9.8 Growing the wave 169
 9.9 Interacting with objects in range 172
 9.10 Further development 175
  Summary of programming techniques 176
  Drill and practice 177

 Interlude 2 The Greeps competition 179

 I2.1 How to get started 180
 I2.2 Programming your Greeps 181
 I2.3 Running the competition 182
 I2.4 Technicalities 183

A01_KOLL4292_02_SE_FM.indd   10 2/3/15   9:41 AM



Contents      |       xi   

 Chapter 10 Creating images and sound 184

 10.1 Preparation 184
 10.2 Working with sound 186
 10.3 Sound recording in Greenfoot 187
 10.4 External sound recording and editing 187
 10.5 Sound file formats and file sizes 189
 10.6 More control: the GreenfootSound class 191
 10.7 Working with images 192
 10.8 Image files and file formats 192
 10.9 Drawing images 194
 10.10 Combining image files and dynamic drawing 196
  Summary 198
  Drill and practice 199

 Chapter 11 Simulations 202

 11.1 Foxes and rabbits 204
 11.2 Ants 206
 11.3 Collecting food 208
 11.4 Setting up the world 211
 11.5 Adding pheromones 211
 11.6 Path forming 213
  Summary 214

 Chapter 12 Greenfoot and the Kinect 216

 12.1 What the Kinect can do 217
 12.2 Installing the software 219
 12.3 Getting started 220
 12.4 The simple camera 221
 12.5 The next step: greenscreen 222
 12.6 Stick-figure: tracking users 223
 12.7 Painting with your hands 227
 12.8 A simple Kinect game: Pong 231
  Summary 235
  Drill and practice 235

 Chapter 13 Additional scenario ideas 237

 13.1 Marbles 237
 13.2 Lifts 239

A01_KOLL4292_02_SE_FM.indd   11 2/3/15   9:41 AM



xii      |       Contents

 13.3 Boids 239
 13.4 Explosion 241
 13.5 Breakout 241
 13.6 Platform jumper 242
 13.7 Wave 243
 13.8 Map 244
  Summary 245

 Appendix A:  Installing Greenfoot  247

 A.1 Installing Greenfoot 247
 A.2 Installing the book scenarios 247

 Appendix B:  Greenfoot API   248

 Appendix C: Collision detection   255

 C.1 Method summary 255
 C.2 Convenience methods 255
 C.3 Low versus high resolution 256
 C.4 Intersecting objects 256
 C.5 Objects at offset 257
 C.6 Neighbors 258
 C.7 Objects in range 259

 Appendix D:  Some Java details    260

 D.1 Java data types 260
 D.2 Java control structures 262
 D.3 Java control structures 264

 Index   271

A01_KOLL4292_02_SE_FM.indd   12 2/3/15   9:41 AM



List of scenarios discussed 
in this book

Leaves and Wombats  (Chapter 1)
This is a simple example showing wombats moving around on screen, occasionally eat-
ing leaves. The scenario has no specific purpose other than illustrating some important 
object-oriented concepts and Greenfoot interactions.

Asteroids 1  (Chapter 1)
This is a simple version of a classic arcade game. You fly a spaceship through space 
and try to avoid being hit by asteroids. At this stage, we only use the scenario to make 
some small changes and illustrate how to edit source code to change program behavior.

Little Crab  (Chapters 2, 3, 4)
This is our first full development. Starting from almost nothing, we develop a simple 
game slowly, adding things such as movement, keyboard control, sound, and many 
other elements of typical games.

Fat Cat  (Chapter 2)
This is a small scenario serving as a basis for exercises with methods calls and simple 
statements. Make the cat perform while you practice your Java.

Stickman  (Chapter 3)
Another small exercise scenario. This does not do much to start with, and we use it to 
do some exercises with if-statements at the end of the chapter.

White Blood Cell (WBC)  (Chapter 5)
A typical side-scrolling game. We develop it from a very primitive, rudimentary start 
to a full, playable game. You steer a white blood cell through an artery to catch and 
neutralize bacteria.

Piano  (Chapter 6)
An on-screen piano that you can really play.

Bubbles  (Chapter 6)
A small scenario serving as a platform to practice writing some loops.

A01_KOLL4292_02_SE_FM.indd   13 2/3/15   9:41 AM



xiv      |       List of scenarios discussed in this book

Autumn  (Chapter 7)
This scenario shows leaves floating in the air, occasionally blown around. It is not a 
game, or any completed project in any sense, but it gives a good first look at collision 
detection and lists.

Newton’s Lab  (Chapter 8)
Newton’s Lab is a simulation of the motion of stars and planets in space. Gravity plays a 
central role here. We also make a variant of this that combines gravity with making music, 
ending up with musical output triggered by objects under gravitational movement.

Asteroids 2  (Chapter 9)
We come back to the asteroids example from Chapter 2. This time, we investigate more 
fully how to implement it and add some more game elements.

Loop Practice  (Chapter 9)
As the name suggests: a scenario with the sole purpose of reinforcing the use of loops. 
This scenario could also be used much earlier for similar exercises.

Greeps  (Interlude 2)
Alien creatures land on earth to collect tomatoes. This scenario is a competition: 
 Program the greeps so that they collect as many tomatoes in a limited time.

Color Chart  (Chapter 10)
A small scenario just to display a chart of RGB colors.

Smoke  (Chapter 10)
This scenario demonstrated a visual effect: smoke trailing a moving ball. In general, it 
serves to discuss dynamic drawing, to create more interesting visuals.

Path Follower  (Chapter 10)
A small scenario demonstrating a creature following a colored path on the ground. 
This example is used to practice more work with color.

Foxes and Rabbits  (Chapter 11)
A predator/prey simulation. This scenario is fairly complete, and we use it to make 
some experiments and gain some understanding about the nature of simulations.

Ants (Chapter 11)
A simulation of ant colonies searching for food, communicating via drops of phero-
mones left on the ground.

Simple Camera  (Chapter 12)
Showing a camera image on screen, using the Microsoft Kinect.

Greenscreen  (Chapter 12)
Using Kinect input to create a greenscreen effect (placing a user in front of  a fixed 
background image).

A01_KOLL4292_02_SE_FM.indd   14 2/3/15   9:41 AM



Stick Figure  (Chapter 12)
A demonstration of skeleton tracking with the Microsoft Kinect.

Body Paint  (Chapter 12)
We extend the skeleton tracking to allow multiple users to paint on screen by waving 
their hands in the air. Again, making use of the Microsoft Kinect.

Kinect Pong  (Chapter 12)
A very simple game, but this time with gesture input instead of keyboard control.

Fred With Radio  (Chapter 12)
A last demo scenario for the Microsoft Kinect. We do not discuss this scenario in the 
chapter, but it serves as a model demo for studying how a cartoon character could be 
controlled by gestures.

The following scenarios are presented in Chapter 13, and selected aspects of them briefly 
discussed. They are intended as inspiration for further projects.

Marbles
A simulation of a marble board game. Marbles have to be cleared of the board within 
a limited number of moves. Contains simple physics.

Lifts
A start of a lift simulation. Incomplete at this stage—can be used as a start of a project.

Boids
A demo showing flocking behavior: A flock of birds flies across the screen, aiming to 
stick together while avoiding obstacles.

Explosion
A demo of a more sophisticated explosion effect.

Breakout
This is the start of an implementation of the classic Breakout game. Very incomplete, 
but with an interesting visual effect.

Platform jumper
A demo of  a partial implementation of  an ever-popular genre of  games: platform 
jumpers.

Wave
This scenario is a simple demonstration of a physical effect: the propagation of a wave 
on a string.

Map
A scenario showing use of live data from the Internet, in this case Google maps.

List of scenarios discussed in this book      |       xv   

A01_KOLL4292_02_SE_FM.indd   15 2/3/15   9:41 AM



Additional material and resources for this book can be found at  
http://www.greenfoot.org/book/

For students:
● The Greenfoot software

● The scenarios discussed in this book

● The Greenfoot Gallery—a scenario showcase

● Tutorial videos

● A discussion forum

● Technical support

For Instructors:
● The “Greenroom,” a free, instructor-only community site containing many 

 teaching resources, worksheets, project ideas, and a discussion forum. Sign up 
here and talk to thousands of other instructors who are using Greenfoot.  
http://greenroom.greenfoot.org

● Scenarios are available to qualified instructors. Contact your Pearson representative 
or visit the Pearson Instructor Resource Center.  
http://www.pearsonhighered.com/irc

About the companion website

A01_KOLL4292_02_SE_FM.indd   16 2/3/15   9:41 AM



Acknowledgments

This book is the tip of  an iceberg. It is an introduction to programming with Java, 
but this kind of approach would not be possible without the Greenfoot ecosystem. 
This book builds on many years of  work by several people who have helped build 
Greenfoot.

The book rests first and foremost on the software itself—Greenfoot—but this is not the 
whole story. Much time and effort has gone into the design of websites (the Greenfoot 
community website, the Greenroom), development of material, building and support-
ing a user community, workshops and outreach, and a number of people have played 
very important roles in this.

Poul Henriksen was the first person to join me in this project. He started the Greenfoot 
implementation as part of  his Masters thesis and was the main contributor to the 
software for many of the early years. Davin McCall, Bruce Quig, and Neil Brown are 
the next wave of designers and developers who have worked on Greenfoot for many 
years and shaped large parts of the design and implementation of the system as it is 
today. It is not easy to maintain a software system of this size with such few people and 
resources, but all are outstanding programmers and have managed to develop a system 
that has survived for almost ten years so far and runs with few problems on millions of 
computers around the world. This is an outstanding achievement, and I have been very 
lucky to have these people on my team.

Other important contributions to the ecosystem were by Ian Utting and our more 
recent team members, Amjad Altadmri and Fabio Hedayioglu. A wide variety of activ-
ities has helped to make the Greenfoot community what it is today.

The development of Greenfoot is being supported by Oracle Inc., through charitable 
donations over many years. Their consistent and ongoing support have allowed us to 
maintain our group; without this, Greenfoot would not exist. We are very grateful for 
their commitment and substantial contribution to the education community.

The people at Pearson Education have struggled on bravely in the face of the many 
delays caused by my missing of every possible deadline for sending in this manuscript. 
Tracy Johnson has worked with me on this book from the very beginning, through the 
first edition, and now the second one. She has been consistently positive, excited and 
encouraging, and her support has made a huge difference. Camille Trentacoste and 
Carole Snyder have done a lot of the important detail work to get this book produced, 
and I am grateful for their input and help.

A01_KOLL4292_02_SE_FM.indd   17 2/3/15   9:41 AM



The first edition of this book was reviewed by a number of people who have provided 
very detailed, thoughtful and useful feedback. They are Carolyn Oates, Damianne 
President, Detlef Rick, Gunnar Johannesmeyer, Josh Fishburn, Mark Hayes, Marla 
Parker, Matt Jadud, Todd O’Bryan, Lael Grant, Jason Green, Mark Lewis, Rodney 
Hoffman, and Michael Kadri. They helped spotting many errors and pointed out 
many opportunities for improvement. Josh Buhl and Adrienne Decker made a number 
of very useful suggestions after the publication of the first edition that have helped 
improve the examples for the second edition.

I am very grateful to Kerstin Wachholz for her expert proofreading—she found and 
fixed many of my errors and removed the warts of my language—, and to my good 
friend Michael Caspersen for providing encouragement very early in the project that 
was very important to me, partly because it helped improve the book, but most impor-
tantly because it encouraged me to believe that the idea of the Greenfoot system itself  
might be interesting to teachers and worthwhile completing.

xviii      |       Acknowledgments

A01_KOLL4292_02_SE_FM.indd   18 2/3/15   9:41 AM



This is the second edition of  this book. It tries to stick with what worked well the  
first time around, and to improve the parts that were not as smooth as they could  
have been.

We maintain the overall style of the book: the hands-on presentation of programming 
projects, the practical work interspersed with discussion and explanation, and the gen-
eral tone. This has worked very well.

However, there were points in the first edition where readers found progression chal-
lenging when the pace picked up in the second half of the book. We have now added 
two chapters to introduce some concepts more slowly and gradually, and to pro-
vide more practice with the most difficult concepts. We have also added a significant 
amount of exercises to each chapter to provide much more practice and reinforcement 
of the concepts covered. This includes the presentation and use of many more practice 
scenarios.

We have also added a chapter about programming Greenfoot with the Microsoft 
Kinect. While not every reader can make use of this (because it requires having the 
hardware available), the level of enthusiasm and excitement that these examples have 
generated when we presented them in workshops justify, in our view, inclusion here. 
There is so much potential.

And, of course, the book has been updated to make use of new features of more recent 
versions of the Greenfoot software. We have adapted Greenfoot to make some popular 
tasks possible or easier and to illustrate some concepts better. The book incorporates 
this in the new scenarios.

Overall, we hope that the added material serves to make your path through the maze 
that is the learning of programming even more smooth and more interesting.

About the 2nd edition

A01_KOLL4292_02_SE_FM.indd   19 2/3/15   9:41 AM



A01_KOLL4292_02_SE_FM.indd   20 2/3/15   9:41 AM

This page intentionally left blank



Introduction

Welcome to Greenfoot! In this book, we will discuss how to program graphical 
computer programs, such as simulations and games, using the Java Programming 
Language and the Greenfoot environment.

There are several goals in doing this: one is to learn programming, another is to 
have fun along the way. While the examples we discuss in this book are specific to 
the Greenfoot environment, the concepts are general: working through this book will 
teach you general programming principles in a modern, object-oriented programming 
language. However, it will also show you how to make your own computer game, a 
biology simulation, or an on-screen piano.

This book is very practically oriented. Chapters and exercises are structured around 
real, hands-on development tasks. First, there is a problem that we need to solve, then 
we look at language constructs and strategies that help us solve the problem. This is 
quite different from many introductory programming textbooks that are often struc-
tured around programming language constructs.

As a result, this book starts with less theory, and more practical activity than most 
programming books. This is also the reason we use Greenfoot: It is the Greenfoot 
environment that makes this possible. Greenfoot allows us to play. And that does not 
only mean playing computer games; it means playing with programming: we can cre-
ate objects, move them around on screen, call their methods, and observe what they 
do, all interactively and easily. This leads to a more hands-on approach to program-
ming than what would be possible without such an environment.

A more practical approach does not mean that the book does not cover the necessary 
theory and principles as well. It’s just that the order is changed. Instead of introduc-
ing a concept theoretically first and then doing some exercises with it, we often jump 
right in and use a construct, initially explaining only as much as necessary to solve the 
task at hand, then come back to the theoretical background later. We typically follow 
a spiral approach: we introduce some aspects of a concept when we first encounter it, 
then revisit it later in another context, and gradually deepen our understanding.

The emphasis throughout is to make the work we do interesting, relevant, and enjoy-
able. There is no reason why computer programming has to be dry, formal, or boring. 
Having fun along the way is okay. We think we can manage to make the experience 
interesting and pedagogically sound at the same time.

M00_KOLL4292_02_SE_INT.indd   1 2/3/15   1:53 PM



2      |       Introduction

This book can be used both as a self-study book or as a textbook in a programming 
course. Exercises are worked into the text throughout the book—if you do them all, 
you will come out of this as a fairly competent programmer.

The projects discussed in this book are easy enough that they can be managed by high 
school students, but they are also open and extendable enough that even seasoned 
programmers can find interesting and challenging aspects to do. While Greenfoot is 
an educational environment, Java is not a toy language. Since Java is our language of 
choice for this book, the projects discussed here (and others you may want to create in 
Greenfoot) can be made as complex and challenging as you like.

While it is possible to create simple games quickly and easily in Greenfoot, it is equally 
possible to build highly sophisticated simulations of complex systems, possibly using 
artificial intelligence algorithms, agent technology, database connectivity, network 
communication, or anything else you can think of. Java is a very rich language that 
opens the whole world of programming, and Greenfoot imposes no restrictions as to 
which aspects of the language you can use.

In other words: Greenfoot scales well. It allows easy entry for young beginners, but 
experienced programmers can also implement interesting, sophisticated scenarios.

Programming is a creative discipline, and Greenfoot is a tool that helps you build what 
you invent.

M00_KOLL4292_02_SE_INT.indd   2 2/3/15   1:53 PM



Chapter

1

This book will show you how to develop computer games and simulations with 
Greenfoot, a development environment. In this chapter, we shall take a look at 
Greenfoot itself  and see what it can do and how to use it. We do this by trying out 
some existing programs.

Once we are comfortable with using Greenfoot, we shall jump right into writing a 
game ourselves.

The best way to read this chapter (and indeed the whole book) is by sitting at your 
computer with Greenfoot open on your screen and the book open on your desk. We 
will regularly ask you to do things in Greenfoot while you read. Some of the tasks you 
can skip; however, you will have to do some in order to progress in the chapter. In any 
case, you will learn most if  you follow along and do them.

At this stage, we assume that you have already installed the Greenfoot software and 
the book scenarios (described in Appendix A). If  not, read through the appendix first.

 1.1 Getting started
Start Greenfoot and open the scenario leaves-and-wombats from the Greenfoot book 
scenarios folder. You can do this by choosing Scenario–Open1 from the menu.

topics:  the Greenfoot interface, interacting with objects, invoking methods, running  
a scenario

concepts:  object, class, method call, parameter, return value

Getting to know 
Greenfoot

1 We use this notation to tell you to select functions from the menu. Scenario–Open refers to the 
Open item in the Scenario menu.

M01_KOLL4292_02_SE_C01.indd   3 2/2/15   5:08 PM



4      |       Chapter 1 ■ Getting to know Greenfoot

You will now see the Greenfoot main window, with the scenario open, looking similar 
to Figure 1.1.

The main window consists of  three main areas and a couple of  extra buttons. The 
main areas are:

■ The world. The largest area covering most of the screen (a sand-colored grid in this 
case) is called the world. This is where the program will run and we will see things 
happen.

■ The class diagram. The area on the right with the beige-colored boxes and arrows is 
the class diagram. We shall discuss this in more detail shortly.

■ The execution controls. The Act, Run, and Reset buttons and the speed slider at the 
bottom are the execution controls. We’ll come back to them in a little while, too.

 1.2 Objects and classes
We shall discuss the class diagram first. The class diagram shows us the classes involved 
in this scenario. In this case, they are World, WombatWorld, Actor, Wombat, and Leaf.

We shall be using the Java programming language for our projects. Java is an object-
oriented language. The concepts of  classes and objects are fundamental in object  
orientation.

Let us start by looking at the Wombat class. The class Wombat stands for the general 
concept of a wombat—it describes all wombats. Once we have a class in Greenfoot, we 

Class
diagram

World

Execution
controls

Figure 1.1
The Greenfoot main 
window

Concept
Greenfoot 
 scenarios  consist 
of a set of 
classes.

M01_KOLL4292_02_SE_C01.indd   4 2/2/15   5:08 PM



1.2 Objects and classes      |       5   

can create objects from it. (Objects are also often referred to as instances in program-
ming—the two terms are synonyms.)

A wombat, by the way, is an Australian marsupial (Figure 1.2). If  you want to find out 
more about them, do a Web search—it should give you plenty of results.

Right-click3 on the Wombat class, and you will see the class menu pop up (Figure 1.3a). The first 
option in that menu, new Wombat(), lets us create new wombat objects. Try it out.

You will see that this gives you a small picture of  a wombat object, which you can 
move on screen with your mouse (Figure 1.3b). Place the wombat into the world by 
clicking anywhere in the world (Figure 1.3c).

3 On Mac OS, use ctrl-click instead of right-click if  you have a one-button mouse.

2 Image source: Marco Tomasini/Fotolia

Figure 1.2
A wombat2

Figure 1.3
a) The class menu  
b) Dragging a  
new object  
c) Placing the object

a) b) c)

M01_KOLL4292_02_SE_C01.indd   5 2/3/15   5:52 PM



6      |       Chapter 1 ■ Getting to know Greenfoot

Once you have a class in Greenfoot, you can create as many objects from it as you like.Concept
Many objects 
can be created 
from a class.

Exercise 1.1 Create some more wombats in the world. Create some leaves.

Currently, only the Wombat and Leaf classes are of interest to us. We shall discuss the 
other classes later.

 1.3 Interacting with objects
Once we have placed some objects into the world, we can interact with these objects 
by right-clicking them. This will pop up the object menu (Figure 1.4). The object menu 
shows us all the operations this specific object can perform. For example, a wombat’s 
object menu shows us what this wombat can do (plus two additional functions, Inspect 
and Remove, which we shall discuss later).

In Java, these operations are called methods. It cannot hurt to get used to standard 
terminology straight away, so we shall also call them methods from now on. We can 
invoke a method by selecting it from the menu.

Concept
Objects have 
methods. 
Invoking these 
performs an 
action.

Exercise 1.2 Invoke the move() method on a wombat. What does it do? Try it several  
times. Invoke the turnLeft() method. Place two wombats into your world and make 
them face each other.

Figure 1.4
The wombat’s object 
menu

M01_KOLL4292_02_SE_C01.indd   6 2/2/15   5:09 PM



1.4 Return types      |       7   

In short: we can start to make things happen by creating objects from one of  the 
classes provided, and we can give commands to the objects by invoking their methods.

Let us have a closer look at the object menu. The move and turnLeft methods are listed as:

void move()
void turnLeft()

We can see that the method names are not the only thing shown. There is also the word 
void at the beginning and a pair of parentheses at the end. These two cryptic bits of infor-
mation tell us what data goes into the method call, and what data comes back from it.

 1.4 Return types
The word at the beginning is called the return type. It tells us what the method returns 
to us when we invoke it. The word void means “nothing” in this context: methods 
with a void return type do not return any information. They just carry out their 
action, and then stop.

Any word other than void tells us that the method returns some information when 
invoked, and of  what type that information is. In the wombat’s menu (Figure 1.4), 
we can also see the words int and boolean. The word int is short for “integer” 
and refers to whole numbers (numbers without a decimal point). Examples of integer 
numbers are 3, 42, –3, and 12000000.

The type boolean has only two possible values: true and false. A method that 
returns a boolean will return either the value true or the value false to us.

Methods with void return types are like commands for our wombat. If  we invoke the 
turnLeft method, the wombat obeys and turns left. Methods with non-void return 
types are like questions. Consider the canMove method:

boolean canMove()

When we invoke this method, we see a result similar to that shown in Figure 1.5, 
displayed in a dialog box. The important information here is the word “true,” which 

Figure 1.5
A method result

Concept
The return type 
of a method 
specifies what a 
method call will 
return.

Concept
A method with a 
void return type 
does not return  
a value.

M01_KOLL4292_02_SE_C01.indd   7 2/2/15   5:09 PM



8      |       Chapter 1 ■ Getting to know Greenfoot

was returned by this method call. In effect, we have just asked the wombat “Can you 
move?”, and the wombat has answered by saying “Yes!” (true).

Exercise 1.3 Invoke the canMove() method on your wombat. Does it always return 
true? Or can you find situations in which it returns false?

Try out another method with a return value:

int getLeavesEaten()

Using this method, we can get the information how many leaves this wombat has eaten.

Exercise 1.4 Using a newly created wombat, the getLeavesEaten() method will 
always return zero. Can you create a situation in which the result of this method is not 
zero? (In other words: can you make your wombat eat some leaves?)

Methods with non-void return types usually just tell us something about the object 
(Can it move? How many leaves has it eaten?), but do not change the object. The wom-
bat is just as it was before we asked it about the leaves. Methods with void return types 
are usually commands to the objects that make it do something.

 1.5 Parameters
The other bit in the method menu that we have not yet discussed is the parentheses 
after the method name.

Return type Parameter

int getLeavesEaten()
void setDirection(int direction)

The parentheses after the method name hold the parameter list. This tells us whether the 
method requires any additional information to run, and if so, what kind of information.

If  we see only a pair of parentheses without anything else between it (as we have in 
all methods so far), then the method has an empty parameter list. In other words, it 
expects no parameters—when we invoke the method, it will just run. If  there is any-
thing between the parentheses, then the method expects one or more parameters—
additional information that we need to provide.

Let us try out the setDirection method. We can see that it has the words int direction 
written in its parameter list. When we invoke it, we see a dialog box similar to the one 
shown in Figure 1.6.

Concept
Methods with 
void return 
types represent 
commands; 
methods with 
non-void return 
types represent 
questions.

Concept
A parameter is 
a mechanism to 
pass additional 
data to a method.

Concept
Parameters and 
return values 
have types. 
Examples of 
types are int for 
numbers, and 
boolean for 
true/false values.

M01_KOLL4292_02_SE_C01.indd   8 2/2/15   5:09 PM



1.6 Greenfoot execution      |       9   

The words int direction tell us that this method expects one parameter of type int, which speci-
fies a direction. A parameter is an additional bit of data we must provide for this method to 
run. Every parameter is defined by two words: first the parameter type (here: int) and then a 
name, which gives us a hint what this parameter is used for. If a method has a parameter, then 
we must provide this additional information when we invoke the method.

In this case, the type int tells us that we now should provide a whole number, and the 
name suggests that this number somehow specifies the direction to turn to.

At the top of the dialog is a comment that tells us a little more: the direction param-
eter should be between 0 and 3.

Figure 1.6
A method call dialog

Exercise 1.5 Invoke the setDirection(int direction) method. Provide a param-
eter value and see what happens. Which number corresponds to which direction?  
Write them down. What happens when you type in a number greater than 3? What  
happens if you provide input that is not a whole number, such as a decimal number (2.5) 
or a word (three)?

The setDirection method expects only a single parameter. Later, we shall see cases 
where methods expect more than one parameter. In that case, the method will list all 
the parameters it expects between the parentheses.

The description of each method shown in the object menu, including the return type, 
method name, and parameter list, is called the method signature.

We have now reached a point where you can do the main interactions with Greenfoot 
objects. You can create objects from classes, interpret the method signatures, and 
invoke methods (with and without parameters).

 1.6 Greenfoot execution
There is one other way of interacting with Greenfoot objects: The execution controls.

Concept
The specification 
of a method, 
which shows its 
return type, name, 
and parameters  
is called its  
signature.

M01_KOLL4292_02_SE_C01.indd   9 2/2/15   5:30 PM



10      |       Chapter 1 ■ Getting to know Greenfoot

The act method is a very fundamental method of Greenfoot objects. We shall encoun-
ter it regularly in all the following chapters. All objects in a Greenfoot world have this 
act method. Invoking act is essentially giving the object the instruction “Do whatever 
you want to do now.” If  you tried it out for our wombat, you will have seen that the 
wombat’s act does something like the following:

■ If  we’re sitting on a leaf, eat the leaf.

■ Otherwise, if  we can move forward, move forward.

■ Otherwise, turn left.

The experiments in the exercises above should also have shown you that the Act but-
ton in the execution controls simply calls the act method of the actors in the world. 
The only difference to invoking the method via the object menu is that the Act button 
invokes the act method of all objects in the world, while using the object menu affects 
only the one chosen object.

The Run button just calls act over and over again for all objects, until you click Pause.

Let us try out what we have discussed in the context of another scenario.

 1.7 A second example
Open another scenario, named asteroids1, from the chapter01 folder of the book sce-
narios. It should look similar to Figure 1.7 (except that you will not see the rocket or 
the asteroids on your screen yet). 

 1.8 Understanding the class diagram
Let us first have a closer look at the class diagram (Figure 1.8). At the top, you see the 
two classes called World and Space, connected by an arrow.

Exercise 1.6 Place a wombat and a good number of leaves into the world, and then 
invoke a wombat’s act() method several times. What does this method do? How 
does it differ from the move method? Make sure to try different situations, for example, 
the wombat facing the edge of the world, or sitting on a leaf.

Exercise 1.7 Still with a wombat and some leaves in the world, click the Act button in 
the execution controls near the bottom of the Greenfoot window. What does this do?

Exercise 1.8 What is the difference between clicking the Act button and invoking the 
act() method? (Try with several wombats in the world.)

Exercise 1.9 Click the Run button. What does it do?

Tip
You can place 
objects into 
the world more 
quickly by select-
ing a class in the 
class diagram, 
and then shift-
clicking in the 
world.

Concept
Objects that can 
be placed into 
the world are 
known as actors.

M01_KOLL4292_02_SE_C01.indd   10 2/2/15   5:09 PM



1.8 Understanding the class diagram      |       11   

The World class is always there in all Greenfoot scenarios—it is built into Greenfoot. 
The class under it, Space in this case, represents the specific world for this particular 
scenario. Its name can be different in each scenario, but every scenario will have a 
specific world here.

Figure 1.7
The asteroids1 scenario

Figure 1.8
A class diagram

Concept
A subclass is a 
class that repre-
sents a speciali-
zation of another. 
In Greenfoot, this 
is shown with an 
arrow in the class 
diagram.

M01_KOLL4292_02_SE_C01.indd   11 2/2/15   5:09 PM



12      |       Chapter 1 ■ Getting to know Greenfoot

The arrow shows an is-a relationship: Space is a World (in the sense of  Greenfoot 
worlds: Space, here, is a specific Greenfoot world). We also sometimes say that Space 
is a subclass of  World.

We do not usually need to create objects of world classes—Greenfoot does that for us. 
When we open a scenario, Greenfoot automatically creates an object of the world sub-
class. The object is then shown on the main part of the screen. (The big black image of 
space is an object of the Space class.)

Below this, we see another group of six classes, linked by arrows. Each class represents 
its own objects. Reading from the bottom, we see that we have asteroids, rockets, and 
bullets, which are all “movers,” while movers and explosions are actors.

Again, we have subclass relationships: Rocket, for example, is a subclass of Mover, 
and Mover and Explosion are subclasses of Actor. (Conversely, we say that Mover is 
a superclass of  Rocket and Actor is a superclass of  Explosion.)

Subclass relationships can go over several levels: Rocket, for example, is also a sub-
class of Actor (because it is a subclass of Mover, which is a subclass of Actor). We 
shall discuss more about the meaning of subclasses and superclasses later.

The class Vector, shown at the bottom of the diagram under the heading Other classes 
is a helper class used by the other classes. We cannot place objects of it into the world.

 1.9 Playing with asteroids
We can start playing with this scenario by creating some actor objects (objects of sub-
classes of Actor) and placing them into the world. Here, we create objects only of the 
classes that have no further subclasses: Rocket, Bullet, Asteroid, and Explosion.

Let us start by placing a rocket and two asteroids into space. (Remember: you can create 
objects by right-clicking on the class, or selecting the class and shift-clicking into the world.)

When you have placed your objects, click the Run button. You can then control the space-
ship with the arrow keys on your keyboard, and you can fire a shot by using the space 
bar. Try getting rid of the asteroids before you crash into them.

Exercise 1.10 If you have played this game for a bit, you will have noticed that you 
cannot fire very quickly. Let us tweak our spaceship firing software a bit so that we can 
shoot more quickly. (That should make getting rid of the asteroids a bit easier!) Place a 
rocket into the world, then invoke its setGunReloadTime method (through the object 
menu), and set the reload time to 5. Play again (with at least two asteroids) to try it out.

Exercise 1.11 Once you have managed to remove all asteroids (or at any other point in 
the game) stop the execution (press Pause) and find out how many shots you have fired. 
You can do this using a method from the rocket’s object menu. (Try destroying two aster-
oids with as few shots as possible.)

Exercise 1.12 You will have noticed that the rocket moves a bit as soon as you place 
it into the world. What is its initial speed?

M01_KOLL4292_02_SE_C01.indd   12 2/2/15   5:09 PM



1.10 Source code      |       13   

 1.10 Source code
The behavior of each object is defined by its class. The way we can specify this behav-
ior is by writing source code in the Java programming language. The source code of a 
class is the code that specifies all the details about the class and its objects. Selecting 
Open editor from the class’s menu will show us an editor window (Figure 1.9) that 
contains the class’s source code.

The source code for this class is fairly complex, and we do not need to understand it 
all at this stage. However, if  you study the rest of this book and program your own 
games or simulations, you will learn over time how to write this code.

Exercise 1.13 Asteroids have an inherent stability. Each time they get hit by a bullet, 
their stability decreases. When it reaches zero, they break up. What is their initial stabil-
ity value after you create them? By how much does the stability decrease from a single 
hit by a bullet? (Hint: Just shoot an asteroid once, and then check the stability again. 
Another hint: To shoot the asteroid, you must run the game. To use the object menu, 
you must pause the game first.)

Exercise 1.14 Make a very big asteroid.

Concept
Every class is 
defined by 
source code. 
This code defines 
what objects of 
this class can do. 
We can look at 
the source code 
by opening the 
class’s editor.

Figure 1.9
The editor window 
of class Rocket

M01_KOLL4292_02_SE_C01.indd   13 2/2/15   5:09 PM



14      |       Chapter 1 ■ Getting to know Greenfoot

At this point, it is only important to understand that we can change the behavior of 
the objects by changing the class’s source code. Let us try this out.

We have seen before that the default firing speed of  the rocket was fairly slow. We 
could change this for every rocket individually by invoking a method on each new 
rocket, but we would have to do this over and over again, every time we start playing. 
Instead, we can change the code of the rocket so that its initial firing speed is changed 
(say, to 5), so that all rockets in the future start with this improved behavior.

Open the editor for the Rocket class. About 25 lines from the top, you should find a 
line that reads

gunReloadTime = 20;

This is where the initial gun reloading time gets set. Change this line so that it reads

gunReloadTime = 5;

Be sure to change nothing else. You will notice very soon that programming sys-
tems are very fussy. A single incorrect or missing character can lead to errors. If, 
for example, you remove the semicolon at the end of  the line, you would run into 
an error fairly soon.

Close the editor window (our change is complete) and look at the class diagram again. 
It has changed: The Rocket class now appears striped (Figure 1.10). The striped look 
indicates that a class has been edited and now must be compiled. Compilation is a 
translation process: the class’s source code is translated into a machine code that your 
computer can execute.

Classes must always be compiled after their source code has been changed, before 
new objects of  the class can be created. (Sometimes several classes need recom-
pilation even though we have changed only a single class. This may be the case 
because classes depend on each other. When one changes, several may need to be 
translated again.)

Tip
You can open 
an editor for a 
class by double-
clicking the 
class in the class 
diagram.

Figure 1.10
Classes after editing

Concept
Computers do 
not understand 
source code. It 
needs to be trans-
lated to machine 
code before it can 
be executed.  
This is called 
compilation.

M01_KOLL4292_02_SE_C01.indd   14 2/2/15   5:09 PM



1.10 Source code      |       15   

We shall come back to the asteroids game in Chapter 7, where we will discuss how to 
write this game.

We can compile the classes by clicking the Compile button in the bottom right corner 
of Greenfoot’s main window. Once the classes have been compiled, the stripes disap-
pear, and we can create objects again.

Exercise 1.15 Make the change to the Rocket class source code as described above. 
Close the editor, and compile the classes. Try it out: Rockets should now be able to fire 
quickly right from the start.

Summary

In this chapter, we have seen what Greenfoot scenarios can look like, and how to 
interact with them. We have seen how to create objects, and how to communicate with 
these objects by invoking their methods. Some methods were commands to the object, 
while other methods returned information about the object. Parameters are used to 
provide additional information to methods, while return values pass information back 
to the caller.

Objects were created from their classes, and source code controls the definition of the 
class (and with this, the behavior and characteristics of all the class’s objects).

We have seen that we can change the source code using an editor to make changes. 
After editing the source, classes need to be recompiled.

We will spend most of the rest of the book discussing how to write Java source code to 
create scenarios that do interesting things.

Concept summary
■ Greenfoot scenarios consist of a set of classes.

■ Many objects can be created from a class.

■ Objects have methods. Invoking these performs an action.

■ The return type of a method specifies what a method call will return.

■ A method with a void return type does not return a value.

■ Methods with void return types represent commands; methods with non-void return types  
represent questions.

M01_KOLL4292_02_SE_C01.indd   15 2/2/15   5:09 PM



16      |       Chapter 1 ■ Getting to know Greenfoot

■ A parameter is a mechanism to pass additional data to a method.

■ Parameters and return values have types. Examples of types are int for numbers, and boolean for 
true/false values.

■ The specification of a method, which shows its return type, name, and parameters, is called its  
signature.

■ Objects that can be placed into the world are known as actors.

■ A subclass is a class that represents a specialization of another. In Greenfoot, this is shown with an 
arrow in the class diagram.

■ Every class is defined by source code. This code defines what objects of this class can do. We can 
look at the source code by opening the class’s editor.

■ Computers do not understand source code. It needs to be translated to machine code before it can 
be executed. This is called compilation.

M01_KOLL4292_02_SE_C01.indd   16 2/2/15   5:09 PM



Chapter

In the previous chapter, we discussed how to use existing Greenfoot scenarios: We 
 created objects, invoked methods, and played a game.

Now we want to start to make our own game.

 2.1 The Little Crab scenario
The scenario we use for this chapter is called little-crab. You will find this scenario in 
the book-scenarios folder.

The scenario you see should look similar to Figure 2.1.

The first program: Little Crab

topics: writing code: movement, turning, reacting to the screen edges

concepts: source code, method call, parameter, sequence, if-statement 

2

Exercise 2.1 Start Greenfoot and open the little-crab scenario. Place a crab into the 
world and run the program (click the Run button). What do you observe? (Remember: 
If the class icons on the right appear striped, you have to compile the project first.)

On the right you see the classes in this scenario (Figure 2.2). We notice that there  
are the usual Greenfoot Actor and World classes, and subclasses called CrabWorld 
and Crab.

The hierarchy (denoted by the arrows) indicates an is-a relationship (also called inher-
itance): A crab is an actor, and the CrabWorld is a world.

Initially, we will work only with the Crab class. We will talk a little more about the 
CrabWorld and Actor classes later on.

If  you have just done the exercise above, then you know the answer to the question 
“What do you observe?” It is: “nothing.”

M02_KOLL4292_02_SE_C02.indd   17 2/3/15   7:39 PM



18      |       Chapter 2 ■ The first program: Little Crab

Figure 2.1
The Little Crab 
scenario

The crab does not do anything when Greenfoot runs. This is because there is no source 
code in the definition of the Crab class that specifies what the crab should do.

In this chapter, we shall work on changing this. The first thing we will do is to make 
the crab move.

Figure 2.2
The Little Crab classes

M02_KOLL4292_02_SE_C02.indd   18 2/3/15   7:39 PM



2.2 Making the crab move      |       19   

 2.2 Making the crab move
Let us have a look at the source code of class Crab. Open the editor to display the 
Crab source. (You can do this by selecting the Open editor function from the class’s 
popup menu, or you can just double-click the class.)

The source code you see is shown in Code 2.1.

Code 2.1 
The original version 
of the “Crab” class

This is a standard Java class definition. That is, this text defines what the crab can do.

You will notice the different colored backgrounds: The whole class definition is 
enclosed in a green box and, within it, every method definition is in a separate box 
with yellowish background. (There is also a separate statement at the top, before the 
class definition, on white background.)

We will look at this in more detail later. For now we will concentrate on getting the 
crab to move.

Within the class definition, we can see what is called the act method (the bit in the  
yellow box). It looks like this1:

public void act()

{
   // Add your action code here.

}

The first line is the signature of  the method. The last three lines—the two curly brack-
ets and anything between them—are called the body of  the method. Here we can add 
some code that determines the actions of the crab. We can replace the grey text in the 
middle with a command. One such command is

move(5);

1 In this book, when we show code inline in the text, we do not show the background colors. 
Don’t worry about this: the colors do not alter the meaning of the code. They just help you 
read and write your code when you are in Greenfoot.

M02_KOLL4292_02_SE_C02.indd   19 2/3/15   7:39 PM



20      |       Chapter 2 ■ The first program: Little Crab

Note that it has to be written exactly as shown, including the parentheses and the 
semicolon. The act method should then look like this:

public void act()

{

   move(5);

}

Exercise 2.2 Change the act method in your crab class to include the move(5); 
instruction, as shown above. Compile the scenario (by clicking the Compile button) 
and place a crab into the world. Try clicking the Act and Run buttons.

Exercise 2.3 Change the number 5 to a different number. Try larger and smaller 
numbers. What do you think the number means?

 Exercise 2.4 Place multiple crabs into the world. Run the scenario. What do you observe?

You will see that the crab can now move across the screen. The move(5) instruction 
makes the crab move a little bit to the right.

When we click the Act button in the Greenfoot main window, the act method is 
executed once. That is, the instruction that we have written inside the act method 
(move(5)) executes. The number 5 in the instruction defines how far the crab moves in 
each step: In every act step, the crab moves five pixels to the right.

Clicking the Run button is just like clicking the Act button repeatedly, very quickly. 
The act method is executed over and over again, until we click Pause.

Concept
A method call 
is an instruction 
that tells an 
object to per-
form an action. 
The action is 
defined by a 
method of the 
object.

Exercise 2.5 Can you find a way to make the crab move backwards (to the left)?

 2.3 Turning
Let us see what other instruction we can use. The crab also understands a turn instruc-
tion. Here is what it looks like:

turn(3);

Terminology

The instruction move(5) is called a method call. A method is an action that an object knows how to do (here, 
the object is the crab) and a method call is an instruction telling the crab to do it. The parentheses and number 
within them are part of the method call. Instructions like this are ended with a semicolon.

M02_KOLL4292_02_SE_C02.indd   20 2/3/15   7:39 PM



2.3 Turning      |       21   

Concept
Additional infor-
mation can be 
passed to some 
methods within 
the parenthe-
ses. The value 
passed is called a 
parameter.

The number 3 in the instruction specifies how many degrees the crab should turn. This 
is called a parameter. (The number 5 used for the move call above is also a parameter.)

We could also use other numbers, for example:

turn(23);

The degree value is specified out of 360 degrees, so any value between 0 and 359 can 
be used. (Turning 360 degrees would turn all the way around, so it is the same as turn-
ing 0 degrees, or not turning at all.)

If  we want to turn instead of moving, we can replace the move(5) instruction with a 
turn(3) instruction. (The parameter values, 5 and 3 in this case, are picked somewhat 
arbitrarily; you can also use different values.) The act method then looks like this:

public void act()
{
   turn(3);
}

Exercise 2.6 Replace move(5) with turn(3) in your scenario. Try it out. Also, try 
values other than 3 and see what it looks like. Remember: every time after you change 
your source code, you must compile again.

Exercise 2.7 How can you make the crab turn left?

Concept
Multiple 
instructions are 
executed in 
sequence, one 
after the other, 
in the order in 
which they are 
written.

Code 2.2
Making the crab 
move and turn

The next thing we can try is to both move and turn. The act method can hold more 
than one instruction—we can just write multiple instructions in a row.

Code 2.2 shows the complete Crab class, as it looks when we move and turn. In this 
case, at every act step, the crab will move and then turn (but this will happen so quickly 
after each other that it appears as if  it happens at the same time).

M02_KOLL4292_02_SE_C02.indd   21 2/3/15   7:39 PM



22      |       Chapter 2 ■ The first program: Little Crab

Side note: Errors
When we write source code, we have to be very careful: every single character counts. Getting 
one small thing wrong will result in our program not working. Usually, it will not compile.

This will happen to us regularly: when we write programs, we inevitably make mis-
takes, and then we have to correct them. Let us try that out now.

If, for example, we forget to write the semicolon after the move(5) instruction, we will 
be told about it when we try to compile.

Exercise 2.8 Try it out: use a move(N) and turn(M) instruction in your crab’s act 
method. Try different values for N and M.

Concept
When a class is 
compiled, the 
compiler checks 
to see whether 
there are any 
errors. If an error 
is found, an 
error message 
is displayed.

Exercise 2.9 Open your editor to show the crab’s source code, and remove the 
 semicolon after move(5). Then compile. Also experiment with other errors, such as 
 misspelling move or making other random changes to the code. Make sure to change 
it all back after this exercise.

Exercise 2.10 Make various changes to cause different error messages. Find at least 
five different error messages. Write down each error message and what change you 
introduced to provoke this error.

As we can see with this exercise, if  we get one small detail wrong, Greenfoot will open 
the editor, highlight a line, and display a message at the bottom of the editor window. 
This message attempts to explain the error. The messages, however, vary consider-
ably in their accuracy and usefulness. Sometimes they tell us fairly accurately what 
the problem is, but sometimes they are cryptic and hard to understand. The line that 
is highlighted is often the line where the problem is, but sometimes it is the line after 
the problem. When you see, for example, a “; expected” message, it is possible that the 
semicolon is in fact missing on the line above the highlighted line.

We will learn to read these messages a little better over time. For now, if  you get a mes-
sage and you are unsure what it means, look very carefully at your code and check that 
you have typed everything correctly.

Tip
When an error 
message appears 
at the bottom 
of the editor 
window, a 
question mark 
button appears 
to the right of 
it. Clicking this 
button displays 
some additional 
information 
about the error 
message.

Terminology

The number between the parentheses in the turn instruction—i.e., the 5 in turn(5)—is called a 
parameter. A parameter is an additional bit of information that we have to provide when we call 
some methods.

Some methods do not expect any parameters. We write those by writing the method name, the 
parentheses, and nothing in-between, for example stop(). Other methods, such as turn and move, 
want more information: How much should I turn? How far should I move? In this case, we have to pro-
vide that information in the form of a parameter value between the parentheses, for instance turn(17).

M02_KOLL4292_02_SE_C02.indd   22 2/3/15   7:39 PM



2.4 Dealing with screen edges      |       23   

 2.4 Dealing with screen edges
When we made the crabs move and turn in the previous sections, they got stuck when 
they reached the edge of the screen. (Greenfoot is designed so that actors cannot leave 
the world and fall off  its edge.)

Now we shall improve this behavior so that the crab notices that it has reached the 
world edge and turns around. The question is: How can we do that?

Above, we have used the move and turn methods, so there might also be a method 
that helps us with our new goal. (In fact, there is.) But how do we find out what meth-
ods we have got available?

The move and turn methods we have used so far, come from the Actor class. A crab 
is an actor (signified by the arrow that goes from Crab to Actor in the class diagram); 
therefore it can do whatever an actor can do. Our Actor class knows how to move 
and turn—that is why our crab can also do it. This is called inheritance: the Crab class 
inherits all the abilities (methods) from the Actor class.

The question now is: what else can our actors do?

To investigate this, we can open the Actor class. You will notice when you open  
(double-click) the Actor class, it does not open in a text editor like the Crab class, but 
shows some documentation in a Web browser instead (Figure 2.3). This is because the 

Concept
A subclass 
inherits all the 
methods from its 
superclass. That 
means that it has 
and can use all 
methods that 
its superclass 
defines.

Figure 2.3
Documentation of 
the Actor class

M02_KOLL4292_02_SE_C02.indd   23 2/3/15   7:39 PM



24      |       Chapter 2 ■ The first program: Little Crab

Actor class is built-in in Greenfoot; it cannot be edited. But we can still use the Actor’s 
methods to call them. This documentation tells us what methods exist, what param-
eters they have, and what they do. (We can also look at the documentation of  our 
other classes by switching the editor view from “Source Code” to “Documentation”, 
using the pop-up control in the top right of each editor window. But for Actor, there 
is only the documentation view.)

Exercise 2.11 Open the documentation for the Actor class. Find the list of methods 
for this class (the “Method Summary”). How many methods does this class have?

Exercise 2.12 Look through the list of methods available. Can you find one that 
sounds like it might be useful to check whether we are at the edge of the world?

If  we look at the method summary, we can see all the methods that the Actor class 
provides. Among them are three methods that are especially interesting to us at the 
moment. They are:

boolean isAtEdge()
Detect whether the actor has reached the edge of the world.

void move(int distance)
Move this actor the specified distance in the direction it is currently facing.

void turn(int amount)
Turn this actor by the specified amount (in degrees).

Here we see the signatures for three methods, as we first encountered them in Chapter 1. 
Each method signature starts with a return type, and is followed by the method name 
and the parameter list. Below it, we see a comment describing what the method does. 
We can see that the three method names are isAtEdge, move, and turn.

The move and turn methods are the ones we used in the previous sections. If  we 
look at their parameter lists, we can see what we observed before: they each expect 
one parameter of type int (a whole number). For the move method, this specifies the 
distance to move; for the turn method, this is the amount to turn.  (Read Section 1.5 
again if  you are unsure about parameter lists.)

We can also see that the move and turn methods have void as their return type. This means 
that neither method returns a value. We are commanding or instructing the object to move, 
or to turn. The crab will just obey the command and not respond with an answer to us.

The signature for isAtEdge is a little different. It is

boolean isAtEdge()

This method has no parameters (there is nothing between the parentheses), but it 
specifies a return value: boolean. We have briefly encountered the boolean type in 
Section 1.4—it is a type that can hold two possible values: true or false.

M02_KOLL4292_02_SE_C02.indd   24 2/3/15   7:39 PM



2.4 Dealing with screen edges      |       25   

Calling methods that have return values (where the return type is not void) is not 
like issuing a command, but asking a question. If  we use the isAtEdge() method, 
the method will respond with either true (Yes!) or false (No!). Thus, we can use this 
method to check whether we are at the edge of the world.

Concept
Calling a method 
with a void 
return type 
issues a com-
mand. Calling 
a method with 
a non-void 
return type asks 
a question.

Exercise 2.13 Create a crab. Right-click it, and find the boolean isAtEdge() method. 
(It is in the “inherited from Actor” submenu, since the crab inherited this method from 
the Actor class). Call this method. What does it return?

Exercise 2.14 Let the crab run to the edge of the screen (or move it there manually), 
and then call the isAtEdge() method again. What does it return now?

We can now combine this method with an if-statement to write the code shown in Code 2.3.

Code 2.3
Turning around 
at the edge of the 
world

The if-statement is part of the Java language that makes it possible to execute com-
mands only if  some condition is true. For example, here we want to turn only if  we are 
at the edge of the world. The code we have written is:

if ( isAtEdge() )
{
   turn(17);
}

move(5);

The general form of an if-statement is this:

if ( condition )
{
   instruction;

   instruction;

   . . .

}

Concept
An if-statement 
can be used to 
write instructions 
that are only 
executed when a 
certain condition 
is true.

M02_KOLL4292_02_SE_C02.indd   25 2/3/15   8:25 PM



26      |       Chapter 2 ■ The first program: Little Crab

In place of the condition can be any expression that is either true or false (such as our 
isAtEdge() method call), and the instructions will only be executed if  the condition 
is true. There can be one or more instructions.

If  the condition is false, the instructions are just skipped, and execution continues 
under the closing curly bracket of the if-statement.

Note that our move(5) method call is outside the if-statement, so it will be executed in 
any case. In other words: If  we are at the edge of the world, we turn and then move; if  
we are not at the edge of the world, we just move.

Exercise 2.15 Try it out! Type in the code discussed above, and see if you can make 
your crabs turn at the edge of the screen. Pay close attention to the opening and clos-
ing brackets—it is easy to miss one or have too many.

Exercise 2.16 Experiment with different values for the parameter to the turn 
method. Find one that looks good.

Exercise 2.17 Place the move(5) statement into the if statement, rather than behind it. 
Test—what is the effect? Explain the behavior you observe. (Then fix it again by moving it 
back where it was.)

Side note: Scope coloring and indentation
When you look at source code in Greenfoot or in the code examples in this book  
(for instance, Code 2.3), you will notice the colored boxes used for the back-
ground. These are called scopes. A scope is the extent of  a given Java construct. In 
Greenfoot, different kinds of  construct have been given different colors: a class is 
green, for example, a method is yellow, and an if-statement is a purplish-grey. You 
see that these scopes can be nested: an if-statement is inside a method, a method 
is inside a class.

Paying attention to these colored scopes pays off  over time; they can help you avoid 
some common errors. Scopes are usually defined in your code by a pair of  curly 
brackets (usually with a header above the opening bracket that defines what kind of 
scope we are looking at). It can happen very easily to get the curly brackets out of 
balance—to have more opening than closing ones, or vice versa. If  this happens, your 
program will not compile.

Scope coloring helps you detect such a problem. You will get used to what the scopes 
should look like quite quickly, and you will notice that it just looks wrong when a 
bracket is mismatched.

Hand-in-hand with scope colors goes indentation.

In all the code examples you have seen so far, you may have noticed some careful inden-
tation being used. Every time a curly bracket opens, the following lines are indented 
one level more than the previous ones. When a curly bracket closes, the indentation 

Tip
In the Greenfoot 
editor, when 
you place the 
cursor behind 
an opening or 
closing bracket, 
Greenfoot 
will mark the 
matching clos-
ing or opening 
bracket. This 
can be used to 
check whether 
your brackets 
match up as 
they should.

M02_KOLL4292_02_SE_C02.indd   26 2/3/15   7:39 PM



2.4 Dealing with screen edges      |       27   

goes back one level, so that the closing curly bracket is directly below the matching 
opening bracket. This makes it easy to find the matching bracket.

We use four spaces for one level of indentation. The TAB key will insert spaces in your 
editor for one level of indentation. Greenfoot can also help you should your indenta-
tion get too messy: the editor has an Auto-Layout function in its Edit menu, which 
will try to fix your indentation for the whole class.

Taking care with indentation in your own code is very important. If  you do not indent 
carefully, the scope coloring will look messy, become useless, and some errors (particu-
larly misplaced or mismatched curly brackets) are very hard to spot. Proper indenta-
tion makes code much easier to read, and thus avoids potential errors.

Summary of programming techniques

In this book, we are discussing programming from a very example-driven perspective. 
We introduce general programming techniques as we need them to improve our sce-
narios. So from now on, we shall summarize the important programming techniques 
at the end of each chapter, to make it clear what you really need to take away from the 
discussion to be able to progress well.

In this chapter, we have seen how to call methods (such as move(5) or isAtEdge()), 
with and without parameters. This will form the basis for all further Java program-
ming. We have also learnt to identify the body of the act method—this is where we 
start writing our instructions.

You have encountered some error messages. This will continue throughout all your 
programming endeavors. We all make mistakes, and we all encounter error messages. 
This is not a sign of a bad programmer—it is a normal part of programming.

We have encountered a first glimpse of inheritance: Classes inherit the methods from 
their superclasses. The documentation of a class gives us a summary of the methods 
available.

And, very importantly, we have seen how to make decisions: We have used an if- 
statement for conditional execution. This went hand in hand with the appearance of 
the type boolean, a value that can be true or false.

Exercise 2.18 Open the source code for your Crab class. Remove various opening or 
closing curly brackets and observe the change in scope coloring. In each case, can you 
explain the change in color? Also experiment with changing the indentation of brack-
ets and other code and observe how it affects the look. At the end, fix the brackets and 
indentation so that the code looks nice again.

M02_KOLL4292_02_SE_C02.indd   27 2/3/15   7:39 PM



28      |       Chapter 2 ■ The first program: Little Crab

Some of the chapters include “Drill and practice” sections at the end. These sections 
introduce no new material but give you a chance to practice an important concept that 
has been introduced in this chapter in another context, and to deepen your under-
standing.

The two most important constructs we have encountered in this chapter are method 
calls and if-statements. Here we do some more exercises with these two constructs. 
(See Figure 2.4.)

Concept summary
■ A method call is an instruction that tells an object to perform an action. The action is defined by a 

method of the object.

■ Additional information can be passed to some methods within the parentheses. The value passed is 
called a parameter.

■ Multiple instructions are executed in sequence, one after the other, in the order in which they are 
written.

■ When a class is compiled, the compiler checks to see whether there are any errors. If an error is 
found, an error message is displayed.

■ A subclass inherits all the methods from its superclass. That means that it has, and can use, all 
methods that its superclass defines.

■ Calling a method with a void return type issues a command. Calling a method with a non-void 
return type asks a question.

■ An if-statement can be used to write instructions that are only executed when a certain condition 
is true.

Drill and practice

Figure 2.4
Fat Cat

M02_KOLL4292_02_SE_C02.indd   28 2/3/15   7:39 PM



2.4 Dealing with screen edges      |       29   

Method signatures

Exercise 2.19 Look at the following method signatures:

public void play();

public void addAmount(int amount);

public boolean hasWings();

public void compare(int x, int y, int z);

public boolean isGreater (int number);

For each of these signatures, answer the following questions (in writing):

 a) What is the method name?
 b) Does the method return a value? If yes, what is the type of the return value?
 c) How many parameters does the method have?

Exercise 2.20 Write a method signature for a method named “go.”  The method has 
no parameters, and it does not return a value.

Exercise 2.21 Write a method signature for a method named “process.”  The method 
has a parameter of type “int” that is called "number", and it returns a value of type “int.”

Exercise 2.22 Write a method signature for a method named “isOpen.”  This method 
has no parameters and returns a value of type “boolean.”

Exercise 2.23 On paper, write a method call (note: this is a method call, not a 
 signature) for the “play” method from Exercise 2.19. Write another method call for 
the “addAmount” method from Exercise 2.19. And finally, write a method call for the 
 “compare” method from the same exercise.

reading documentation
All the following exercises are intended to be implemented in the Greenfoot scenario 
“fatcat.” Open the scenario in Greenfoot before continuing.

Exercise 2.24 Open the editor for class Cat. Change the view of the editor from 
“Source Code” to “Documentation” view using the control in the top right of the editor 
window. How many methods does the class Cat have?

Exercise 2.25 How many of the Cat’s methods return a value?

Exercise 2.26 How many parameters does the sleep method have?

M02_KOLL4292_02_SE_C02.indd   29 2/3/15   7:39 PM



30      |       Chapter 2 ■ The first program: Little Crab

If-statements

Writing method calls (with and without parameters)

Exercise 2.27 Try calling some of your cat’s methods interactively, by using the cat’s 
popup menu. The interesting methods are all “inherited from Cat.”

Exercise 2.28 Is the cat bored? How can you make it not bored?

Exercise 2.29 Open the editor for class MyCat. (This is where you will write the code 
for all the following exercises.)

Exercise 2.30 Make the cat eat when it acts. (That is, in the act method, write a call to 
the eat method.) Compile. Test by pressing the Act button in the execution controls.

Exercise 2.31 Make the cat dance. (Don’t do this interactively—write code in the act 
method to do this. When done, click the Act button in the execution controls.)

Exercise 2.32 Make the cat sleep.

Exercise 2.33 Make the cat do a routine of your choice, consisting of a number of 
the available actions in sequence.

Exercise 2.34 Change the act method of your cat so that, when you click Act, if the 
cat is tired, it sleeps a bit. If it is not tired, it doesn’t do anything.

Exercise 2.35 Change the act method of your cat so that it dances if it is bored. (But 
only if it is bored.)

Exercise 2.36 Change the act method of your cat so that it eats if it is hungry.

Exercise 2.37 Change the act method of your cat to the following: If the cat is tired, 
it sleeps a bit, and then it shouts hooray. If it is not tired, it just shouts hooray. (For test-
ing, make the cat tired by calling some methods interactively. How can you make the 
cat tired?)

Exercise 2.38 Write code in the act method to do the following: If your cat is alone, let 
it sleep. If it is not alone, make it shout “Hooray.”  Test by placing a second cat into the world 
before clicking Act.

M02_KOLL4292_02_SE_C02.indd   30 2/3/15   7:39 PM



Chapter

In the previous chapter, we looked at the basics of starting to program our first game. 
There were many new things that we had to look at. Now, we will add more interesting 
behavior. Adding code will get a little easier from now on, since we have seen many of 
the fundamental concepts.

The first thing we will do is add some random behavior.

 3.1 Adding random behavior
In our current implementation, the crab can walk across the screen, and it can turn at 
the edge of our world. But when it walks, it always walks exactly straight. That is what 
we want to change now. Crabs don’t always go in an exact straight line, so let us add a 
little random behavior: the crab should go roughly straight, but every now and then it 
should turn a little off  course.

We can achieve this in Greenfoot by using random numbers: the Greenfoot envi-
ronment itself  has a method to give us a random number. This method, called 
getRandomNumber, expects a parameter that specifies the limit of  the number. It 
will then return a random number between 0 (zero) and the limit. For example,

Greenfoot.getRandomNumber(20)

will give us a random number between 0 and 20. The limit—20—is excluded, so the 
number is actually in the range 0 to 19.

The notation used here is called dot notation. When we called methods that were 
defined in our own class or inherited, it was enough to write the method name 
and parameter list. When the method is defined in another class, we need to spec-
ify the class or object that has the method, followed by a period (dot), followed by  

Improving the crab: more 
sophisticated programming

topics: random behavior, keyboard control, sound

concepts: dot notation, random numbers, defining methods, comments

3

Concept
When a 
method we 
wish to call is 
not in our own 
class or inher-
ited, we need 
to specify 
the class or 
object that has 
the method 
before the 
method name, 
followed by 
a dot. This is 
called dot 
notation.

M03_KOLL4292_02_SE_C03.indd   31 2/3/15   7:48 PM



32      |       Chapter 3 ■ Improving the crab: more sophisticated programming

the method name and parameter. Since the getRandomNumber method is not in the 
Crab or Actor class, but in a class called Greenfoot, we have to write “Greenfoot.” 
in front of the method call.

Concept
Methods that 
belong to classes 
(as opposed 
to objects) are 
marked with the 
keyword static 
in their signature. 
They are also 
called class 
methods.

Note: Static methods

Methods may belong to objects or classes. When methods belong to a class, we write

class-name.method-name (parameters);

to call the method. When a method belongs to an object, we write

object.method-name (parameters);

to call it.

Both kinds of methods are defined in a class. The method signature tells us whether a given method 
belongs to objects of that class, or to the class itself.

Methods that belong to the class itself are marked with the keyword static at the beginning of the 
method signature. For example, the signature of Greenfoot’s getRandomNumber method is

static int getRandomNumber(int limit);

This tells us that we must write the name of the class itself (Greenfoot) before the dot in the method 
call.

We will encounter calls to methods that belong to other objects in a later chapter.

Let us say we want to program our crab so that there is a 10 percent chance at every 
step that the crab turns a little bit off  course. We can do the main part of this with an 
if-statement:

if ( something-is-true )
{
    turn(5);
}

Now we have to find an expression to put in place of  something-is-true that 
returns true in exactly 10 percent of the cases.

We can do this using a random number (using the Greenfoot.getRandomNumber 
method) and a less-than operator. The less-than operator compares two numbers and 
returns true if  the first is less than the second. “Less-than” is written using the symbol 
“<.” For example:

2 < 33

is true, while

162 < 42

is false.

M03_KOLL4292_02_SE_C03.indd   32 2/3/15   7:48 PM



3.1 Adding random behavior      |       33   

If  we want to express the chance in percent, it is easiest to deal with random numbers 
out of 100. An expression that is true 10 percent of the time, for example, could be

Greenfoot.getRandomNumber(100) < 10

Since the call to Greenfoot.getRandomNumber(100) gives us a new random num-
ber between 0 and 99 every time we call it, and since these numbers are evenly distrib-
uted, they will be below 10 in 10 percent of all cases.

We can now use this to make our crab turn a little in 10 percent of its steps (Code 3.1).

Exercise 3.1 Before reading on, try to write down, on paper, an expression using 
the getRandomNumber method and the less-than operator that, when executed, is 
true exactly 10 percent of the time.

Exercise 3.2 Write down another expression that is true 7 percent of the time.

Note

Java has a number of operators to compare two values. They are:

 <   less than   >= greater than or equal

 >   greater than   == equal

 <= less than or equal   !=   not equal

Code 3.1
Random course 
changes—first try

M03_KOLL4292_02_SE_C03.indd   33 2/3/15   7:48 PM



34      |       Chapter 3 ■ Improving the crab: more sophisticated programming

This is a pretty good start, but it is not quite perfect yet. First of all, if  the crab turns, 
it always turns the same amount (four degrees), and secondly, it always turns right, 
never left. What we would really like to see is that the crab turns a small but random 
amount to either its left or its right. (We will discuss this now. If  you feel confident 
enough, try to implement this on your own before reading on.)

The simple trick to the first problem—always turning the same amount, in our case 4 
degrees—is to replace the fixed number 4 in our code with another random number, 
like this:

if ( Greenfoot.getRandomNumber(100) < 10 )
{
    turn( Greenfoot.getRandomNumber(45) );
}

In this example, the crab still turns in 10 percent of its steps. And when it turns, it will 
turn a random amount, between 0 and 44 degrees.

Exercise 3.3 Try out the random course changes shown above in your own version. 
Experiment with different probabilities for turning.

Exercise 3.4 Try out the code shown above. What do you observe? Does the crab 
turn different amounts when it turns?

Exercise 3.5 We still have the problem that the crab turns right only. That’s not nor-
mal behavior for a crab, so let’s fix this. Modify your code so that the crab turns either 
right or left by up to 45 degrees each time it turns.

Exercise 3.6 Try running your scenario with multiple crabs in the world. Do they all 
turn at the same time, or independently? Why?

Exercise 3.5 is not easy at first if  you have never seen anything like this before and 
probably deserves a hint. There is a temptation at first to perhaps use an if-statement 
to deal with the two directions, but there is actually a much simpler solution.

Think about it this way: Greenfoot.getRandomNumber only gives us numbers with a 
lower bound of zero. We want numbers from −45 to 45. That means we want (roughly) 
90 different numbers. We can get a range of 90 numbers using Greenfoot.getRan-
domNumber(90), but this gives us 0–90. How can we get from 0–90 to −45–45?

The answer is: we can just get random numbers out of  90, and then subtract 45. 
Figure 3.1 attempts to illustrate this. (Note that this is actually out by 1: the range of 
the random number is actually 0–89, so after subtracting 45 we end up with −45–44. 
But since we don’t care about accuracy with our random turns, that is okay.)

M03_KOLL4292_02_SE_C03.indd   34 2/3/15   7:48 PM



3.2 Adding worms      |       35   

Try solving this exercise yourself. The project little-crab-2 (included with this  
book) shows an implementation of  what we have done so far, including the last 
 exercises.

 3.2 Adding worms
Let us make our world a little more interesting by adding another kind of animal.

Crabs like to eat worms. (Well, that is not true for all kinds of crab in the real world, 
but there are some that do. Let’s just say our crab is one of  those that like to eat 
worms.) So let us now add a class for worms.

We can add new actor classes to a Greenfoot scenario by selecting New subclass from 
one of  the existing actor classes (Figure 3.2). In this case, our new class Worm is a 
subclass of class Actor. (Remember, being a subclass is an is-a relationship: a worm 
is an actor.)

When we are creating a new subclass, we are prompted to enter a name for the class 
and to select an image (Figure 3.3).

In our case, we name the class “Worm.” By convention, class names in Java should 
always start with a capital letter. They should also describe what kind of object they 
represent, so “Worm” is the obvious name for our purpose.

Figure 3.1
a) Random angle 0–90 
degrees b) Random 
angle -45–45 degrees

Figure 3.2
Creating new sub-
classes

a) b)

M03_KOLL4292_02_SE_C03.indd   35 2/3/15   7:48 PM



36      |       Chapter 3 ■ Improving the crab: more sophisticated programming

Then, we should assign an image to the class. There are some images associated with 
the scenario, and a whole library of generic images to choose from. In this case, we 
have prepared a worm image and made it available in the scenario images, so we can 
just select the image named worm.png.

Once done, we can click Ok. The class is now added to our scenario, and we can com-
pile and then add worms to our world.

Figure 3.3
Creating a new class

Exercise 3.7 Add some worms to your world. Also add some crabs. Run the scenario. 
What do you observe? What do the worms do? What happens when a crab meets a worm?

We now know how to add new classes to our scenario. The next task is to make these 
classes interact.

 3.3 Eating worms
We now want to add new behavior to the crab: when a crab runs into a worm, it eats 
it. Again, we first check what methods we have already inherited from the Actor class. 
When we open the documentation for class Actor again, we can see the following two 
methods:

M03_KOLL4292_02_SE_C03.indd   36 2/3/15   7:48 PM



3.3 Eating worms      |       37   

boolean isTouching (java.lang.Class cls)
Check whether this actor is touching any other objects of the given class.

void removeTouching (java.lang.Class cls)
Remove one object of the given class that this actor is currently touching (if any exist).

Using these methods, we can implement this behavior. The first method checks 
whether the crab touches a worm. This method returns a boolean—true or false—so 
we can use it in an if-statement.

The second method removes a worm. Both methods expect a parameter of type java.
lang.Class. This means that we are expected to specify one of our classes from our 
scenario. Here is some sample code:

if ( isTouching(Worm.class) )
{
    removeTouching(Worm.class);
}

In this case, we specify Worm.class as the parameter to both method calls  
(the isTouching method and the removeTouching method). This declares which 
kind of object we are looking for, and which kind of object we want to remove. Our 
complete act method at this stage is shown in Code 3.2.

Code 3.2
First version of  
eating a worm

Try this out. Place a number of worms into the world (remember: shift-clicking into 
the world is a shortcut for quickly placing several actors), place a few crabs, run the 
scenario, and see what happens.

M03_KOLL4292_02_SE_C03.indd   37 2/3/15   7:48 PM



38      |       Chapter 3 ■ Improving the crab: more sophisticated programming

Advanced note: Packages

(The notes labeled “Advanced note” are inserted for deeper information for those readers really interested in 
the details. They are not crucial to understand at this stage, and could safely be skipped.)

In the definition of the isTouching and removeTouching methods, we have seen a param-
eter type with the name java.lang.Class. What does this mean?

Many types are defined by classes. Many of those classes are in the standard Java class library. You 
can see the documentation of the Java class library by choosing Java Library Documentation from 
Greenfoot’s Help menu.

The Java class library contains thousands of classes. To make these a little easier to work with, they 
have been grouped into packages (logically related groups of classes). When a class name includes 
dots, such as java.lang.Class, only the last part is the name of the class itself, and the former 
parts are the name of the package. So here we are looking at the class named “Class” from the pack-
age “java.lang.”

Try to find that class in the Java library documentation.

 3.4 Creating new methods
In the previous few sections, we have added new behavior to the crab—turning at the 
edge of the world, occasional random turns, and eating worms. If  we continue to do 
this in the way we have done so far, the act method will become longer and longer, 
and eventually really hard to understand. We can improve this by chopping it up into 
smaller pieces.

We can create our own additional methods in the Crab class for our own 
 purposes.  For example, instead of  just writing some code that looks for a 
worm and removes it into the act method, we can add a new method for this 
purpose. To do this, we first have to decide on a name for this method. Let us say 
we call it lookForWorm. We can then create a new method by adding the follow-
ing code:

/**
 * Check whether we have stumbled upon a worm.
 * If we have, eat it. If not, do nothing.
 */
public void lookForWorm()
{
    if ( isTouching(Worm.class) )
    {
        removeTouching(Worm.class);
    }
}

Concept
A method def-
inition defines 
a new action for 
objects of this 
class. The action 
is not immedi-
ately executed, 
but the method 
can be called 
with a method 
call later to 
execute it.

M03_KOLL4292_02_SE_C03.indd   38 2/3/15   7:48 PM



3.4 Creating new methods      |       39   

The first four lines are a comment. A comment is ignored by the computer—it is writ-
ten for human readers. We use a comment to explain to other human readers what the 
purpose of this method is.

When we define this method, the code does not immediately get executed. In fact, by 
just defining this method, it does not get executed at all. We are just defining a new 
possible action (“looking for a worm”) that can be carried out later. It will only be 
carried out when this method is called. We can add a call to this method inside the act 
method:

lookForWorm();

Note that the call has the parentheses for the (empty) parameter list. The complete 
source code after this restructuring is shown in Code 3.3.

Concept
Comments are 
written into the 
source code as 
explanations for 
human read-
ers. They are 
ignored by the 
computer.

Code 3.3
Splitting code into 
separate methods

M03_KOLL4292_02_SE_C03.indd   39 2/3/15   7:48 PM



40      |       Chapter 3 ■ Improving the crab: more sophisticated programming

Note that this code change does not change the behavior of  our crab at all. It just 
makes the code easier to read in the long run. As we add more code to the class, meth-
ods tend to become longer and longer. Longer methods are harder to understand.  
By separating our code into a number of shorter methods, we make the code easier 
to read.

Exercise 3.8 Create another new method named randomTurn (this method has no 
parameters and returns nothing). Select the code that does the random turning, and 
move it from the act method to the randomTurn method. Then call this new random-
Turn method from your act method. Make sure to write a comment for this method.

Create yet another method named turnAtEdge (it also has no parameters and returns 
nothing). Move the code that checks whether we are at the edge of  the world (and 
does the turn if  we are into the turnAtEdge method). Call the turnAtEdge method 
from your act method. Your act method should now look like the version shown in 
Code 3.4.

Code 3.4
The new act 
method after creat-
ing methods for the 
sub-tasks

By convention, method names in Java always start with a lowercase letter. Method 
names cannot contain spaces (or many other punctuation characters). If  the 
method name logically consists of  multiple words, we use capitals in the middle of 
the method name to mark the start of  each word.

 3.5 Adding a Lobster
We are now at a stage where we have a crab that walks more or less randomly through 
our world, and eats worms if  it happens to run into them.

To make it a little more interesting again, let us add another creature: a lobster 
(Figure 3.4).

Lobsters, in our scenario, like to chase crabs.

M03_KOLL4292_02_SE_C03.indd   40 2/3/15   7:48 PM



3.6 Keyboard control      |       41   

We now want to program our new lobsters to eat crabs. This is quite easy to do, since 
the behavior is very similar to the behavior of crabs. The only difference is that lob-
sters look for crabs, while crabs look for worms.

Figure 3.4
Adding an 
enemy: a lobster

Exercise 3.9 Add a new class to your scenario. The class should be a subclass of Actor, 
called Lobster (with a capital “L”), and it should use the prepared image lobster.png.

Exercise 3.10 What do you expect lobsters to do when you place them into the world 
as they are? Compile your scenario and try it out.

Exercise 3.11 Copy the complete act method from the Crab class into the Lobster 
class. Also copy the complete lookForWorm, turnAtEdge, and randomTurn methods.

Exercise 3.12 Change the Lobster code so that it looks for crabs, rather than worms. 
You can do that by changing every occurrence of “Worm” in the source code to “Crab.” 
For instance, where Worm.class is mentioned, change it to Crab.class. Also change 
the name lookForWorm to lookForCrab. Make sure to update your comments.

Exercise 3.13 Place a crab, three lobsters, and many worms into the world. Run the 
scenario. Does the crab manage to eat all worms before it is caught by a lobster?

You should now have a version of your scenario where both crabs and lobsters walk 
around randomly, looking for worms and crabs, respectively.

Now let us turn this program into a game.

 3.6 Keyboard control
To get game-like behavior, we need to get a player involved. The player (you!) should 
be able to control the crab with the keyboard, while the lobsters continue to run ran-
domly by themselves, as they already do.

M03_KOLL4292_02_SE_C03.indd   41 2/9/15   10:57 AM



42      |       Chapter 3 ■ Improving the crab: more sophisticated programming

The Greenfoot environment has a method that lets us check whether a key on the 
keyboard has been pressed. It is called isKeyDown, and, like the getRandomNumber 
method that we encountered in Section 3.1, it is a method in the Greenfoot class. The 
method signature is

static boolean isKeyDown(String key)

We can see that the method is static (it is a class method) and the return type is 
boolean. This means that the method returns either true or false and can be used as a 
condition in an if-statement.

We also see that the method expects a parameter of type String. A String is a piece of 
text (such as a word or a sentence), written in double quotes. The following are exam-
ples of Strings:

“This is a String”
“name”
“A”

In this case, the String expected is the name of the key that we want to test. Every 
key on the keyboard has a name. For those keys that produce visible characters, that 
character is their name, e.g., the A-key is called “A.” Other keys have names too. For 
instance, the left cursor key is called “left.” Thus, if  we want to test whether the left 
cursor key has been pressed, we can write

if (Greenfoot.isKeyDown(“left”))
{
    ... // do something
}

Note that we need to write “Greenfoot.” in front of the call to isKeyDown, since this 
method is defined in the Greenfoot class.

If, for example, we want our crab to turn left by 4 degrees whenever the left cursor key 
is being pressed, we can write

if (Greenfoot.isKeyDown(“left”))
{
    turn(−4);
}

The idea now is to remove the code from the crab that does the random turning and 
also the code that turns automatically at the world edge and replace them with the 
code that lets us control the crab’s turn with our keyboard.

Exercise 3.14 Remove the random turning code from the crab.

Exercise 3.15 Remove the code from the crab that does the turn at the edge of the world.

M03_KOLL4292_02_SE_C03.indd   42 2/3/15   7:48 PM



3.7 Ending the game      |       43   

Try solving the tasks by yourself  first. If  you get stuck, have a look on the next page. 
Code 3.5 shows the crab’s complete act and checkKeypress methods after this 
change. The solution is also available in the book scenarios, as little-crab-3. This ver-
sion includes all the changes we have discussed so far.

You are now ready to have a first try at playing your game! Place a crab, some worms, 
and a few lobsters into the world, and see whether you can get all the worms before 
the lobsters catch you. (Obviously, the more lobsters you place, the harder it gets….)

 3.7 Ending the game
One simple improvement we can make is to end execution of the game when the crab 
is caught by a lobster. Greenfoot has a method to do this—we just need to find out 
what it is called.

To find out what the available methods in Greenfoot are, we can look at the documen-
tation of the Greenfoot classes.

In Greenfoot, choose Greenfoot Class Documentation from the Help menu. This  
will show the documentation for all the Greenfoot classes in a Web browser  
(Figure 3.5).

This documentation is also called the Greenfoot API (Application Programmers’ 
Interface). The API shows all available classes and for each class, all the avail-
able methods. You can see that Greenfoot offers seven classes: Actor, Greenfoot, 
GreenfootImage, GreenfootSound, MouseInfo, UserInfo, and World.

Tip
Greenfoot auto-
matically saves 
classes and 
scenarios when 
their windows 
are closed. To 
keep a copy of 
interim stages 
of scenarios, use 
Save as… from 
the Scenario 
menu.

Exercise 3.16 Add code into the crab’s act method that makes the crab turn left 
whenever the left cursor key is pressed. Test.

Exercise 3.17 Add another—similar—bit of code to the crab’s act method that 
makes the crab turn right whenever the right cursor key is pressed.

Exercise 3.18 If you have not done so in the first place, make sure that the code that 
checks the key-presses and does the turning is not written directly in the act method, 
but is instead in a separate method, maybe called checkKeypress. This method 
should be called from the act method.

Exercise 3.19 Currently, if you have simply copied the crab code to the lobster, both 
walk with the same speed. You can make them walk at different speeds by changing 
the parameter to the move(5) method call in either of them. Try making lobsters faster 
or slower. Try out how the game feels if you do that. Choose a speed for the crab and 
lobster that suits you.

Concept
The apI 
Documentation 
lists all classes and 
methods available 
in Greenfoot. We 
often need to look 
up methods here.

M03_KOLL4292_02_SE_C03.indd   43 2/3/15   7:48 PM



44      |       Chapter 3 ■ Improving the crab: more sophisticated programming

The method we are looking for is in the Greenfoot class.

Exercise 3.20 Open the Greenfoot API in your browser. Select the Greenfoot class. 
In its documentation, find the section titled “Method Summary.” In this section, try to find 
a method that stops the execution of the running scenario. What is this method called?

Exercise 3.21 Does this method expect any parameters? What is its return type?

We can see the documentation of the Greenfoot classes by selecting them in the list on the 
left. For each class, the main panel in the browser displays a general comment, details of its 
constructors, and a list of its methods. (Constructors will be discussed in a later chapter.)

If  we browse through the list of available methods in the class Greenfoot, we can find 
a method named stop. This is the method that we can use to stop execution when the 
crab gets caught.

We can make use of this method by writing

Greenfoot.stop();

into our source code.

Code 3.5
The Crab’s “act” 
method: control-
ling the crab with 
the keyboard

M03_KOLL4292_02_SE_C03.indd   44 2/3/15   7:48 PM



3.8 Adding sound      |       45   

We will use this class documentation frequently in the future to look up details of 
methods we need to use. We will know some methods by heart after a while, but there 
are always methods we need to look up.

 3.8 Adding sound
Another improvement to our game is the addition of sounds. Again, a method in the 
Greenfoot class helps us with this.

Figure 3.5
The Greenfoot API in a 
browser window

Exercise 3.22 Add code to your own scenario that stops the game when a lobster 
catches the crab. You will need to decide where this code needs to be added. Find the 
place in your code that is executed when a lobster catches a crab, and add this line of 
code there.

Exercise 3.23 Open the Greenfoot Class Documentation (from the Help menu) 
to find out about playing sounds. There is a GreenfootSound class for full sound 
control, and also a convenience method in the Greenfoot class to produce a sound 
quickly and easily. Find the details of the method in the Greenfoot class. What is its 
name? What parameters does it expect?

M03_KOLL4292_02_SE_C03.indd   45 2/3/15   7:48 PM



46      |       Chapter 3 ■ Improving the crab: more sophisticated programming

By looking through the documentation, we can see that the Greenfoot class has a 
method called playSound. It expects the name of a sound file (a String) as a param-
eter, and returns nothing.

Note

You may like to look at the structure of a Greenfoot scenario in your file system. If you look into the 
folder containing the book scenarios, you can find a folder for each Greenfoot scenario. For the crab 
example, there are several different versions (little-crab, little-clab-2, little-crab-3, etc.). Inside each sce-
nario folder are several files for each scenario class, and several other support files. There are also two 
media folders: images holds the scenario images and sounds stores the sound files.

You can see the available sounds by looking into this folder, and you can make more sounds available 
by storing them here.

In our crab scenario, two sound files are already included. They are called “slurp.wav” 
and “au.wav.”

We can now easily play one of the sounds by using the following method call:

Greenfoot.playSound(“slurp.wav”);

Try it out!

Exercise 3.24 Add playing of sounds to your scenario: when a crab eats a worm, 
play the “slurp.wav” sound. When a lobster eats the crab, play the “au.wav” sound. To do 
this, you have to find the place in your code where this should happen.

The little-crab-4 version of this scenario shows the solution to this. It is a version of 
the project that includes all the functionality we have discussed so far: worms, lob-
sters, keyboard control and sound (Figure 3.6).

 3.9 Making your own sounds
There are various ways to add your own sounds to a Greenfoot scenario. You can, for 
example, find sound effects in various sound libraries on the Internet or produce your 
own using some sound recording and effects software.

Using sounds sometimes gets a bit tricky because sounds on a computer can be stored 
in many different file formats, and Greenfoot can play some, but not others. Greenfoot 
can generally play sound files in MP3, AIFF, AU, and WAV formats (although certain 
WAV files cannot be played—it gets complicated).

M03_KOLL4292_02_SE_C03.indd   46 2/3/15   7:48 PM



3.9 Making your own sounds      |       47   

We will discuss sound more completely in Chapter 10; here, we will use the easiest 
method to get our own sounds into our scenario: recording them ourselves directly in 
Greenfoot.

Both of  the sound effects we used in the previous section were recorded by simply 
speaking into the microphone. Greenfoot has a sound recorder built-in for you to do 
the same.

To get started, use the Show Sound Recorder function from the Controls menu. You 
will see the Greenfoot sound recorder control (Figure 3.7).

Using this sound recorder, you can now record your own sounds by pressing the 
Record button and speaking into the microphone.1 Press Stop Recording when you are  
finished. You can use the Play button to check what your recording sounds like.

There is only one edit operation available: Trim to selection. The purpose is to cut off  
unwanted sections of the recording at the beginning and then end. Often you will have 
a bit of noise or silence at the beginning of the recording, and this will not sound good 
in your program: silence at the beginning will make your sound appear delayed.

To remove the unwanted parts, select the part of  the sound you want to keep with 
your mouse (Figure 3.8) and then press Trim to selection.

Finally, choose a name for your sound, type it into the filename field, and click Save. 
The sound will be saved in WAV format and will automatically receive a “.wav” file-
name suffix. So if  you, for example, call your sound file “bark,” it will be saved as 
“bark.wav.” Greenfoot will automatically save it to the right location (the “sounds” 
folder in your scenario folder).

Figure 3.6
The crab game with 
worms and lobsters

1 Obviously, this only works if  your computer has a microphone. Most recent laptops have 
microphones built-in. For some desktop computers, you will have to connect an external 
microphone. If you do not have a microphone, just skip this section.

M03_KOLL4292_02_SE_C03.indd   47 2/3/15   7:48 PM



48      |       Chapter 3 ■ Improving the crab: more sophisticated programming

You can then use it in your code using the method we have seen before:

Greenfoot.playSound(“bark.wav”);

It’s time to try for yourself.

Figure 3.7
The Greenfoot sound 
recorder

Figure 3.8
Selecting the good  
part of the sound  
for trimming

Exercise 3.25 If you have a microphone on your computer, make your own sounds to 
use when the worms or the crab get eaten. Record them, then use them in your code.

M03_KOLL4292_02_SE_C03.indd   48 2/3/15   7:48 PM



3.10 Code completion      |       49   

 3.10 Code completion
A useful productivity tip is to use code completion to enter your method calls 
(Figure 3.9). You can use code completion whenever you are about to type the name 
of a method you want to call. It is activated by typing CTRL+Space.

For example, if  you type

Greenfoot.

and the cursor is behind the dot, and then you type CTRL+Space, a dialog will 
pop up listing all the methods you can call here (in this case: all the methods of the 
Greenfoot class). If  you then start to type the beginning of  a method name (for 
example, in Figure 3.9 we have typed the letter “s”), the list of  methods reduces to 
those starting with what you have typed.

You can select methods from this list using your cursor keys or with your mouse, and 
insert them into your code by using the Return key.

Using code completion is useful to investigate which methods exist, to find a method 
that you know exists but cannot remember the exact name of, to look up parameters and 
documentation, or just to save yourself some typing and speed up entry of your code.

Figure 3.9
Using code comple-
tion (CTRL+Space)

Tip
Use code 
completion 
to make entry 
of method 
calls easier.

Summary of programming techniques

In this chapter we have seen more examples of  using an if-statement, this time for 
turning at random times and reacting to key presses. We have also seen how to call 
methods from another class, namely, the getRandomNumber, isKeyDown, and play-
Sound methods from the Greenfoot class. We did this by using dot notation, with the 
class name in front of the dot.

Altogether, we have now seen examples of calling methods from three different places: 
we can call methods that are defined in the current class itself  (called local methods), 
methods that were defined in a superclass (inherited methods), and static methods from 

M03_KOLL4292_02_SE_C03.indd   49 2/3/15   7:48 PM



50      |       Chapter 3 ■ Improving the crab: more sophisticated programming

other classes. The last of these uses dot notation. (There is one additional version of 
a method call: calling methods on other objects —we will encounter that a little later.)

Another important aspect that we explored was how to read the API documentation 
of an existing class to find out what methods it has and how to call them.

Finally, a very important concept we have encountered is the ability to define our own 
methods. We have seen how to define methods for distinct subtasks, and how to call 
them from other methods.

Concept summary
■ When a method we wish to call is not in our own class or inherited, we need to specify the  

class or object that has the method before the method name, followed by a dot. This is called 
 dot notation.

■ Methods that belong to classes (as opposed to objects) are marked with the keyword static in 
their signature. They are also called class methods.

■ A method definition defines a new action for objects of this class. The action is not immediately 
executed, but the method can be called with a method call later to execute it.

■ Comments are written into the source code as explanations for human readers. They are ignored 
by the computer.

■ The apI Documentation lists all classes and methods available in Greenfoot. We often need to 
look up methods here.

Drill and practice

The concepts that we want to reinforce here are if-statements (again), reading API 
documentation, calling a method from another class, and creating our own methods.

To do this, we will use another scenario: stickman. Find it in the book scenarios and 
open it.

reading apI documentation

Exercise 3.26 The Greenfoot class has a method to get the noise level from the 
computer’s microphone. Find this method in the API documentation. How many 
parameters does it have?

Exercise 3.27  What is the return type of this method? What does this tell us?

Exercise 3.28 What are the possible values returned from this method?

M03_KOLL4292_02_SE_C03.indd   50 2/3/15   7:48 PM



3.10 Code completion      |       51   

Calling class methods/if-statements

Exercise 3.29 Is this method static or not? What does that tell us?

Exercise 3.30 How do we call this method? Write down a correct method call to this 
method.

Defining methods

Exercise 3.31 In your stickman scenario, make the stickman move to the right, so 
that when you run your scenario, he walks over to the right side of the screen.

Exercise 3.32 Using an if-statement and the microphone input method you found 
above, make the stickman move right only when you make some noise. Experiment 
with different values for the noise level. This will depend on your microphone and your 
environment. A good starting point is to make him move when the microphone level 
is greater than 3. Test.

Exercise 3.33 Make the stickman move left when you make some noise, but move 
continuously right if there is no noise. Test. Try to keep him near the center of the 
screen by shouting.

Exercise 3.34 Move the code that moves left when you make noise into its own 
method. Call this method moveLeftIfNoise. Test. Make sure it works as before.

Exercise 3.35 Add another method to your class called gameOver. This method 
should be called if the stickman reaches the edge of the screen. When called, the 
method plays a game-over sound and stops the scenario.

Exercise 3.36 Move the check for the game-over condition itself into a separate 
method called checkGameOver. The act method should call checkGameOver, 
which in turn calls gameOver if appropriate.

Exercise 3.37 Make the stickman float up when there is noise. The height he floats 
should be proportionate to the noise level. He comes down if there is no noise. Note: 
the proportionate height requirement is quite difficult—it requires you to look up 
some things we have not discussed yet. If you find it too hard, leave this out.

Exercise 3.38 Introduce another actor (maybe an animal) that starts at the left 
screen edge and moves sideways. If it reaches the right edge of the screen, it gets 
reset to the left side. On its path across the screen, it should touch the stickman if he is 
resting. You can then make the stickman jump over the animal by making some noise.

Exercise 3.39 Stop the scenario (with game-over sound) when the stickman touches 
the animal.

M03_KOLL4292_02_SE_C03.indd   51 2/3/15   7:48 PM



Chapter

In this chapter, we will finish the crab game. “Finish” here means that this is where 
we stop discussing this project in this book. Of course, a game is never finished—you 
can always think of more improvements that you can add. We will suggest some ideas 
at the end of this chapter. First, however, we will discuss a number of improvements  
in detail.

 4.1 Adding objects automatically
We are now getting close to having a playable little game. However, a few more 
things need to be done. The first problem that should be addressed is the fact that 
we always have to place the actors (the crab, lobsters, and worms) manually into the 
world. It would be better if  that happened automatically.

There is one thing that happens automatically every time we successfully compile: 
the world itself  is created. The world object, as we see it on screen (the sand-colored 
square area), is an instance of the CrabWorld class. World instances are treated in a 
special way in Greenfoot: while we have to create instances of our actors ourselves, the 
Greenfoot system always automatically creates one instance of our world class and 
displays that instance on screen.

Let us have a look at the CrabWorld’s source code (Code 4.1). (If  you do not have 
your own crab game at this stage, use little-crab-4 for this chapter.)

Finishing the crab game

topics: world initialization, setting images, animating images

concepts:  constructors, state, variables (instance variables and local variables),  
assignment, new (creating objects programmatically)

4

M04_KOLL4292_02_SE_C04.indd   52 2/3/15   7:51 PM



 4.1 Adding objects automatically      |       53   

In this class, we see the usual import statement in the first line. (We will discuss this 
statement in detail later—for now it is enough to know that this line will always appear 
at the top of our Greenfoot classes.)

Then follows the class header, and a comment (the block of lines in a blueish color 
starting with asterisks—we have encountered them already in the last chapter). 
Comments usually start with a /** symbol and end with */.

Next comes the interesting part:

public CrabWorld()
{
    super(560, 560, 1);
}

This is called the constructor of  this class. A constructor looks quite similar to a 
method, but there are some differences:

■ A constructor has no return type specified between the keyword “public” and  
the name.

■ The name of a constructor is always the same as the name of the class.

A constructor is a special kind of method that is always automatically executed when-
ever an instance of this class is created. It can then do what it wants to do to set up this 
new instance into a starting state.

In our case, the constructor sets the world to the size we want (560 by 560 cells) and a res-
olution (1 pixel per cell). We will discuss world resolution in more detail later in the book.

Since this constructor is executed every time a world is created, we can use it to auto-
matically create our actors. If  we insert code into the constructor to create an actor, 
that code will be executed as well. For example:

Code 4.1 
Source code of the 
CrabWorld class

Concept
A constructor 
of a class is a 
special kind of 
method that 
is executed 
automatically 
whenever a 
new instance is 
created.

M04_KOLL4292_02_SE_C04.indd   53 2/3/15   7:51 PM



54      |       Chapter 4 ■ Finishing the crab game

public CrabWorld()
{
    super(560, 560, 1);
    Crab myCrab = new Crab();
    addObject(myCrab, 250, 200);
}

This code will automatically create a new crab, and place it at location x=250, y=200 
into the world. The location 250,200 is 250 cells from the left edge of the world, and 
200 cells from the top. The origin—the 0,0 point—of our coordinate system is at the 
top left of the world (Figure 4.1).

We are using four new things here: a variable, an assignment, the new statement to cre-
ate the new crab, and the addObject method. Let us discuss these elements one by one.

0

0

x

y

Figure 4.1 
The coordinate system 
of the world

Concept
Java objects can 
be created pro-
grammatically 
(from within 
your code) by 
using the new 
keyword.

 4.2 Creating new objects
If we want to add a crab into the world, the first thing we need is a crab. The crab in our 
case is an object of the Crab class. Previously, we have created crab objects interactively, 
by right-clicking the Crab class and selecting “new Crab()” from the pop-up menu.

Now, we want our constructor code to create the new crab object for us automatically.

The Java keyword new allows us to create new objects of any of the existing classes. For 
example, the expression

new Crab()

creates a new instance of class Crab. The expression to create new objects always starts 
with the keyword new, followed by the name of the class we wish to create and a param-
eter list (which is empty in our example). The parameter list allows us to pass param-
eters to the new object’s constructor. Since we did not specify a constructor for our Crab 
class, the default parameter list is empty. (You might have noticed that the instruction 
that we select from the class’s pop-up menu to create objects is exactly this statement.)

M04_KOLL4292_02_SE_C04.indd   54 2/3/15   7:51 PM



 4.4 Assignment      |       55   

In our constructor code above, you find the new Crab() instruction as the right half  
of the first line we inserted.

When we create a new object, we have to do something with it. In our case, we assign 
it to a variable.

 4.3 Variables
In programming, we often need to store some information to remember and use it 
later. This is done by using variables.

A variable is a bit of storage space. It always has a name to refer to it. When we draw 
diagrams of our objects or code fragments, we usually draw variables as white boxes 
with their name to the left side.

Figure 4.2, for example, shows a variable called age. (We might want to store the age 
of the crab.)

age
Figure 4.2 
An (empty) variable

Concept
Variables can 
be used to store 
information 
(objects or val-
ues) for later use.

Concept
Variables can be 
created by writ-
ing a variable 
declaration.

Concept
We can store 
values into vari-
ables by using 
an assignment 
statement (=).

Variables also have a type. The type of a variable states what kind of data can be stored 
in it. For example, a variable of type int can store whole numbers, a variable of type 
boolean can store true/false values, and a variable of type Crab can store crab objects.

In our source code, when we need a variable, we can create one by writing a variable 
declaration. A variable declaration is very simple: we just write the type and the name 
of the variable we want, followed by a semicolon. For example, if  we want an age 
variable as shown in Figure 4.2 to store whole numbers, we can write

int age;

This will create our age variable, ready to store int values.

 4.4 Assignment
Once we have a variable, we are ready to store something in it. This is done using an 
assignment statement.

An assignment is a Java instruction written as an equal sign: =.

For example, to store the number 12 into our age variable, we can write

age = 12;

It is best to read assignment statements from right to left: The value 12 is stored into the 
variable age. After this assignment statement is executed, our variable will hold the value 
12. In our diagrams, we show this by writing the value into the white box (Figure 4.3).

M04_KOLL4292_02_SE_C04.indd   55 2/3/15   7:51 PM



56      |       Chapter 4 ■ Finishing the crab game

The general form of an assignment statement is

variable = expression;

That is, on the left hand side is always the name of a variable, and on the right hand 
side is an expression that is evaluated, and its value is stored into the variable.

Often in our programs, we want to declare a variable and store a value in it. So often 
we will find the variable declaration and assignment statements together:

int age;

age = 12;

Because this is so common, Java allows us to write these two statements together in 
one line:

int age = 12;

This single line creates the integer variable age and assigns the value 12 to it. It does 
exactly the same as the two-line version above.

Assignments overwrite any value previously stored in it. Thus, if  we have our age vari-
able now storing the value 12, and then we write

age = 42;

the age variable will now store the value 42. The 12 is overwritten, and we cannot get 
it back.

 4.5 Object variables
We mentioned above that variables cannot only store numbers, they can also store objects.

Java distinguishes primitive types and object types. Primitive types are a limited set 
of  often used data types, such as int, boolean and char. There are not many of 
them—Appendix D lists all primitive types in Java.

Every class in Java also defines a type, and these are called object types. So with our 
class Crab, for example, we get a type Crab, our Lobster class defines a type Lobster, 
and so on. We can declare variables of these types:

Crab myCrab;

Note that again, as before, we write the type at the front (Crab), followed by the name 
which we can make up (myCrab), and a semicolon.

12age
Figure 4.3 
A variable storing an 
integer value

Concept
Variables of 
primitive 
types store 
numbers, 
booleans and 
characters; 
variables of 
object types 
store objects.

M04_KOLL4292_02_SE_C04.indd   56 2/3/15   7:51 PM



 4.5 Object variables      |       57   

Once we have an object variable, we can store objects into it. We can now put this 
together with our instruction to create a crab object, which we saw in Section 4.2.

Crab myCrab;

myCrab = new Crab();

As before, we can also write this in a single line:

Crab myCrab = new Crab();

This single line of code does three things:

■ It creates a variable called myCrab of  type Crab.

■ It creates a crab object (an object of type Crab).

■ It assigns the crab object to the myCrab variable.

When we have an assignment statement, the right hand side of  the assignment is 
always executed first (the crab object is created), and then the assignment to the vari-
able on the left takes place.

In our diagrams, we draw object variables storing objects using an arrow (Figure 4.4). 
Here, the variable myCrab stores a reference to the crab object. The fact that object 
variables always store references to the objects (and not objects directly) will become 
important later, so we will be careful to always accurately draw it like this.

The type of the variable and the type of the value assigned to it must always match. 
You can assign an int value to an int variable, and you can assign a Crab object to 
a Crab variable. But you cannot assign a Crab object to an int variable (or any other 
non-matching combination).1

Concept
Objects are 
stored in varia-
bles by storing 
a reference to 
the object.

myCrab

Crab

Figure 4.4 
An object variable 
storing a reference 
to an object

1 When we say “the types must match,” this does not actually mean that they must be the same. 
There are situations where types match that are not the same. For example, we can assign a 
subclass to a superclass type, such as assigning a Crab to an Actor variable (because a crab is 
an actor). These are subtleties that we shall discuss later.

Exercise 4.1 Write a variable declaration for a variable of type int where the variable 
has the name “score.”

Exercise 4.2 Declare a variable named “isHungry” of type boolean, and assign the 
value “true” to it.

M04_KOLL4292_02_SE_C04.indd   57 2/3/15   7:51 PM



58      |       Chapter 4 ■ Finishing the crab game

 4.6 Using variables
Once we have declared a variable and assigned a value, we can use it by just using the 
name of the variable.

For example, the following code declares and assigns two integer variables:

int n1 = 7;

int n2 = 13;

We can then use them on the right hand side of another assignment:

int sum = n1 + n2;

After this statement, sum contains the sum of n1 and n2. If  we write

n3 = n1;

then the value of n1 (7, in this case) will be copied into n3 (assuming a variable n3 has 
been declared previously). n1 and n3 now both contain the value 7.

Exercise 4.3 Declare a variable named “year” and assign the value 2014 to it. Then 
assign the value 2015.

Exercise 4.4 Declare a variable of type Crab, named “littleCrab,” and assign a new 
crab object to it.

Exercise 4.5 Declare a variable of type Control, named “inputButton,” and create 
and assign an object of type Button.

Exercise 4.6 What is wrong with the following statement: int myCrab = new Crab();

 4.7 Adding objects to the world
We have now seen how we can create a new crab and store it in a variable. The last 
thing to do is to add this new crab into our world.

Exercise 4.7 Declare a variable called children (of type int). Then write an assign-
ment statement that assigns to this variable the sum of two other variables named 
daughters and sons.

Exercise 4.8 Declare a variable named area of type int. Then write an assignment 
statement that assigns to area the product of two variables called width and length.

Exercise 4.9 Declare two variables x and y of type int. Assign the values 23 to x and 
17 to y. Then write some code to swap those values (so that afterwards x contains 17, 
and y contains 23).

M04_KOLL4292_02_SE_C04.indd   58 2/3/15   7:51 PM



 4.7 Adding objects to the world      |       59   

In the code fragment in the constructor code shown in Section 4.1, we have seen that 
we can use the following line:

addObject(myCrab, 250, 200);

The addObject method is a method of the World class, and it allows us to add an 
actor object to the world. We can look it up by looking at the class documentation for 
class World. There we see that it has the following signature:

void addObject(Actor object, int x, int y)

Reading the signature from start to finish, this tells us the following:

■ The method does not return a result (void return type).

■ The name of the method is addObject.

■ The method has three parameters, named object, x, and y.

■ The type of the first parameter is Actor, the type of the other two is int.

This method can be used to add a new actor into the world. Since the method belongs 
to the World class and CrabWorld is a World (it inherits from the World class), this 
method is available in our CrabWorld class, and we can just call it.

We have just created a new crab and stored it in our myCrab variable. Now we can use 
this crab (by using the variable it is stored in) as the first parameter to the addObject 
method call. The remaining two parameters specify the x and y coordinate of the posi-
tion where we wish to add the object.

All the constructs together (variable declaration, object creation, assignment, and 
adding the object to the world) look like this:

Crab myCrab = new Crab();

addObject(myCrab, 250, 200);

We can use an object of type Crab for the Actor parameter, because a crab is an actor 
(class Crab is a subclass of class Actor).

Exercise 4.10 Add code to the CrabWorld constructor of your own project to  
create a crab automatically, as discussed above.

Exercise 4.11 Add code to automatically create three lobsters in the CrabWorld. 
You can choose arbitrary locations for them in the world.

Exercise 4.12 Add code to create two worms at arbitrary locations in the CrabWorld.

M04_KOLL4292_02_SE_C04.indd   59 2/3/15   8:20 PM



60      |       Chapter 4 ■ Finishing the crab game

 4.8 Save the World
We will now introduce an easier method to achieve the same thing.

First, remove the code again that you introduced in the last set of exercises, so that 
the objects are not created automatically. When you compile your scenario again, the 
world should be empty. Then do the following exercises.

Exercise 4.13 Compile your scenario. Then place the following actors into your world 
(interactively): one crab, three lobsters, and ten worms.

Exercise 4.14 Right-click on the world background. The world’s context menu will 
pop up. From this menu, select Save the World.

Figure 4.5 
The “Save the World” 
function

When you place some objects into your world and then select the Save the World  
function (Figure 4.5), you will notice that your CrabWorld source code opens, and 
some new code has been inserted in this class. Study this code carefully.

M04_KOLL4292_02_SE_C04.indd   60 2/3/15   8:20 PM



 4.9 Animating images      |       61   

You will see that this code does the following:

■ The constructor now includes a call to a new method named prepare().

■ A method definition for this method has been added.

■ The prepare() method contains code that creates and adds all the actors that we 
have just created interactively.

So what is happening here?

When we create objects interactively, and then select Save the World, Greenfoot writes 
code into our world class to recreate the situation just as we set it up by hand. It does 
this by creating and calling a method called prepare().

The effect is that now, every time we click Compile or Reset, the actors are immedi-
ately created again.

Our previous exercises to write the code manually to create and place the actors help 
us understand how this method works. In many cases, we do not need to write this 
code manually—and can use Save the World instead—but is important to understand 
it in detail. There are other occasions where we want a more sophisticated setup, where 
we will still write the initialization code by hand.

 4.9 Animating images
Now that we have managed to start our game off  with a good setup automatically, we 
can spend a bit of time improving some details.

We will next work on animating the image of the crab. To make the movement of the 
crab look a little better, we plan to change the crab so that it moves its legs while it is 
walking.

Animation is achieved with a simple trick: we have two different images of the crab 
(in our scenario, they are called crab.png and crab2.png), and we simply switch the 
crab’s image between these two versions fairly quickly. The position of the crab’s legs 
in these images is slightly different (Figure 4.6).

The effect of this (switching back and forth between these images) will be that the crab 
looks as if  it is moving its legs.

In order to do this, we have to use some more variables and also discuss how to work 
with Greenfoot images.

Figure 4.6 
Two slightly different 
images of the crab

a) crab with legs out b) crab with legs in

M04_KOLL4292_02_SE_C04.indd   61 2/3/15   7:51 PM



62      |       Chapter 4 ■ Finishing the crab game

 4.10 Greenfoot images
Greenfoot provides a class called GreenfootImage that helps in using and manipulat-
ing images. We can obtain an image by constructing a new GreenfootImage object—
using Java’s new keyword—with the file name of the image file as a parameter to the 
constructor. For example, to get access to the crab2.png image, we can write

new GreenfootImage(“crab2.png”)

The file we name here must exist in the scenario’s images folder.

All Greenfoot actors have images. By default, actors get their image from their class. 
We assign an image to the class when we create it, and every object created from that 
class will receive, upon creation, a copy of  that same image. That does not mean, 
however, that all objects of the same class must always keep the same image. Every 
individual actor can decide to change its image at any time.

Exercise 4.15 Check the documentation of the Actor class. There are two methods 
that allow us to change an actor’s image. What are they called, and what are their 
parameters? What do they return?

If  you did the exercise above, you will have seen that one method to set an actor’s 
image expects a parameter of type GreenfootImage. This is the method we shall use. 
We can create a GreenfootImage object from an image file as described above and 
assign it to a variable of type GreenfootImage. Then we use the actor’s setImage 
method to use it for the actor. Here is a code snippet to do this:

GreenfootImage image2 = new GreenfootImage(“crab2.png”);

setImage(image2);

To set the image back to the original image, we write:

GreenfootImage image1 = new GreenfootImage(“crab.png”);

setImage(image1);

This creates the image objects from the named image files (crab.png and crab2.png) 
and assigns them to the image1 and image2 variables. Then we use these variables 
to set our new image as the actor’s image. To create the animation effect, we just have 
to set it up somehow so that these two code fragments are executed in alternating 
sequence: first one, then the other, back and forth.

We could go ahead now and add code similar to this to our act method. However, 
before doing this, we shall discuss one improvement: we want to separate the creation 
of the image objects from the setting of the image.

The reason is efficiency. When our program runs with the image animation, we will 
change the image many times, several times per second. With the code as we have  
written it, we would also read the image from the image file and create the image 

Concept
Greenfoot actors 
maintain their 
visible image 
by holding an 
object of type 
GreenfootImage.

M04_KOLL4292_02_SE_C04.indd   62 2/3/15   7:51 PM



 4.11 Instance variables (fields)      |       63   

objects many times. This is not necessary, and it is wasteful. It is enough to create the 
image objects once and then just set them back and forth many times. In other words, 
we want to separate the code fragments like this:

Do this only once at the beginning:

 GreenfootImage image1 = new GreenfootImage(“crab.png”);

 GreenfootImage image2 = new GreenfootImage(“crab2.png”);

Do this many times over and over:

 setImage(image1);

 or 

 setImage(image2);

Thus, we shall first create the images and store them, and later we shall use the stored 
images (without creating them again) over and over to alternate our displayed image.

To achieve this, we need a new construct that we have not used before: an instance variable.

 4.11 Instance variables (fields)
Java provides different kinds of variables. The ones we have seen before are called local 
variables, and the ones we shall discuss now are instance variables. (Instance variables 
are also sometimes called fields.)

The first difference is the place where they are declared in our source code 
(Code 4.2): local variables are declared inside a method, while instance variables are 
declared inside the class, but before any methods.

Instance variables

Local variables

Code 4.2 
Instance variables 
and local variables in 
a class

Concept
Instance 
variables (also 
called fields) 
are variables 
that belong to 
an object (rather 
than a method).

M04_KOLL4292_02_SE_C04.indd   63 2/3/15   7:51 PM



64      |       Chapter 4 ■ Finishing the crab game

The next easily visible difference is that instance variables have the keyword private 
in front of them (see Code 4.2).

More important, however, is the difference in behavior: local variables and instance 
variables behave differently, especially regarding their lifetime.

Local variables belong to the method they are declared in, and disappear as soon 
as the method finishes executing. Every time we call the method, the variables are 
created again, and can be used while the method executes, but they do not survive 
between method calls. Values or objects stored in them are lost when the method 
ends.2

Instance variables, on the other hand, belong to the object they are declared in, and 
survive as long as the objects exist. They can be used over and over again, over multi-
ple method calls and by multiple methods. Thus, if  we want an object to store infor-
mation for a longer time, an instance variable is what we need.

Instance variables are defined at the top of  the class,3 following the class header, 
using the keyword private followed by the type of  the variable and the variable 
name:

private variable-type variable-name;

In our case, since we want to store objects of type GreenfootImage, the variable type 
is GreenfootImage and we use the names image1 and image2 as in our code snip-
pets before (Code 4.3).

Concept
Lifetime of 
local variables: 
Local variables 
persist only 
during a 
 single method 
 execution.

2 To be exact: local variables belong to the scope they are declared in and exist only to the end 
of that scope. Often this is a method, but if  the variable is declared, for example, inside an  
if-statement, it will disappear at the end of that if-statement.

3 Java does not enforce instance variables being at the top of the class, but we will always do 
this as it is good practice and helps us find the variable declarations easily when we need to see 
them.

Code 4.3 
The Crab class with 
two instance  
variables

Concept
Lifetime of 
instance vari-
ables: Instance 
variables persist 
as long as the 
object exists that 
holds them.

M04_KOLL4292_02_SE_C04.indd   64 2/3/15   7:51 PM



 4.11 Instance variables (fields)      |       65   

Exercise 4.16 Before adding this code, right-click a crab object in your world and 
select Inspect from the crab’s pop-up menu. Make a note of all the variables that are 
shown in the crab object.

Exercise 4.17 Why do you think the crab has any variables at all, even though we 
have not declared any in our crab class?

Exercise 4.18 Add the variable declarations shown in Code 4.3 above to your ver-
sion of the Crab class. Make sure that the class compiles.

Exercise 4.19 After adding the variables, inspect your crab object again. Take a 
note of the variables and their values (shown in the white boxes).

In our diagrams, we show objects as colored boxes with rounded corners, and instance 
variables as white boxes inside an object (Figure 4.7). Note that the declaration of 
these two GreenfootImage variables does not give us two GreenfootImage objects. 
It just gives us some empty space to store two objects.

Figure 4.7
A crab object with 
two empty instance 
variables

Crab

image1

image2

Next we have to create the two image objects and store them into the instance vari-
ables. The statement for the creation of the objects has already been shown above. It 
was achieved with the code snippet

new GreenfootImage(“crab2.png”)

Now we just need to create both image objects and assign them to our instance vari-
ables:

image1 = new GreenfootImage(“crab.png”);

image2 = new GreenfootImage(“crab2.png”);

Following these statements, we have three objects (one crab and two images), and the 
crab’s variables contain references to the images. This is shown in Figure 4.8.

The last remaining question is where to put the code that creates the images and stores 
them into the variables. Since this should be done only once when the crab object is 
created, and not every time we act, we cannot put it into the act method. Instead, we 
put this code into a constructor.

M04_KOLL4292_02_SE_C04.indd   65 2/3/15   7:51 PM



66      |       Chapter 4 ■ Finishing the crab game

 4.12 Using actor constructors
At the beginning of this chapter we have seen how to use the constructor of the world 
class to initialize the world. In a similar manner, we can use a constructor of an actor 
class to initialize the actor. The code in the constructor is executed once when the 
actor is created. Code 4.4 shows a constructor for the Crab class that initializes the 
two instance variables by creating images and assigning them to the variables.

Crab

image1

image2

GreenfootImagegg

GreenfootImagegg

Figure 4.8 
A crab object with 
two variables, 
pointing to image 
objects

Code 4.4 
Initializing the  
variables in the 
constructor

M04_KOLL4292_02_SE_C04.indd   66 2/3/15   7:51 PM



 4.12 Using actor constructors      |       67   

The same rules described for the World constructor apply to the Crab constructor:

■ The signature of a constructor does not include a return type.

■ The name of the constructor is the same as the name of the class.

■ The constructor is automatically executed when a crab object is created.

The last rule—that the constructor is automatically executed—ensures that the image 
objects are automatically created and assigned when we create a crab. Thus, after cre-
ating the crab, the situation will be as depicted in Figure 4.8.

Pitfall

Note carefully that there is no type before the variable name in the assignment in the constructor. 
The variable is defined before the constructor using the statement

 private GreenfootImage image1;

and assigned in the constructor using the line

 image1 = new GreenfootImage(“crab.png”);

If instead we write in the constructor

 GreenfootImage image1 = new GreenfootImage(“crab.png”);

then something entirely different happens: we would declare an additional local variable called 
image1 in the constructor (we then have two variables called image1: one local, one instance) 
and assign our image to the local one. It would then be lost as soon as the constructor ends, and our 
instance variable is still empty.

This is a very subtle error, easy to make and difficult to find. So make sure you have your variable dec-
laration at the top, and only an assignment without the declaration in the constructor.

The last line of the constructor sets the first of the two created images as the crab’s 
current image:

setImage(image1);

We can later use a similar method call to swap the images in the act method.

Exercise 4.20 Add this constructor to your Crab class. You will not yet see any 
change in the behavior of the crab, but the class should compile, and you should be 
able to create crabs.

Exercise 4.21 Inspect your crab object again. Take a note again of the variables and 
their values. Compare those to the notes you took previously.

M04_KOLL4292_02_SE_C04.indd   67 09/02/15   4:34 PM



68      |       Chapter 4 ■ Finishing the crab game

 4.13 Alternating the images
We have now reached a stage where the crab has two images available to do the 
animation. But we have not done the animation itself  yet. This is now relatively 
simple.

To do the animation, we need to alternate between our two images. In other words, 
at every step, if  we are currently showing image1, we now want to show image2, and 
vice versa. Here is some pseudo-code to express this:

if (our current image is image1) then

    use image2 now

else

    use image1 now

Pseudo-code, as used here, is a technique expressing a task in a structure that is partly 
like real Java code, and partly plain English. It often helps in working out how to write 
our real code. We can now show the same in real Java code (Code 4.5).

In this code segment, we notice several new elements:

■ The method getImage can be used to receive the actor’s current image.

■ The operator == (two equal signs) can be used to compare one value with another. 
The result is either true or false.

■ The if-statement has an extended form that we have not seen before. This form 
has an else keyword after the first body of  the if-statement, followed by an-
other block of  statements. We investigate this new form of  the if-statement in 
the next section.

Code 4.5 
Alternating 
between two 
images

Concept
We can test 
whether two 
things are equal 
by using a 
double equals 
symbol: ==.

Pitfall

It is a common mistake to get the assignment operator (=) and the operator to check equality (==) 
mixed up. If you want to check whether two values or variables are equal, you must write two equal  
symbols.

M04_KOLL4292_02_SE_C04.indd   68 2/3/15   7:51 PM



 4.14 The if/else statement      |       69   

Exercise 4.22 Add the image switching code, as shown in Code 4.5, to the act 
method of your own Crab class. Try it out! (If you get an error, fix it. This should work.) 
Also try clicking the Act button instead of the Run button in Greenfoot—this allows 
us to observe the behavior more clearly.

Exercise 4.23 In Chapter 3, we discussed using separate methods for subtasks, 
rather than writing more code directly into the act method. Do this with the image 
switching code: Create a new method called switchImage, move your image 
switching code to it, and call this method from within your act method.

Exercise 4.24 Call the switchImage method interactively from the crab’s pop-up 
menu. Does it work?

 4.14 The if/else statement
Before moving on, let us investigate the if-statement again in some more detail. As we 
have just seen, an if-statement can be written in the form

if ( condition )
{
    statements;
}
else
{
    statements;
}

This if-statement contains two blocks (pairs of  curly brackets surrounding a list of 
statements): the if-clause and the else-clause (in this order).

When this if-statement is executed, first the condition is evaluated. If  the condi-
tion is true, the if-clause is executed, and then execution continues below the else-
clause. If  the condition is false, the if-clause is not executed; instead we execute the 
else-clause. Thus, one of  the two statement blocks is always executed, but never 
both.

The else part with the second block is optional—leaving it off  leads to the shorter  
version of the if-statement we have seen earlier.

We have now seen everything we need to finalize this task. It is time to get our hands 
on the keyboard again to try it out.

Concept
The if/else 
statement exe-
cutes a segment 
of code when a 
given condition 
is true, and a dif-
ferent segment 
of code when it 
is false.

M04_KOLL4292_02_SE_C04.indd   69 2/3/15   7:51 PM



70      |       Chapter 4 ■ Finishing the crab game

 4.15 Counting worms
The final thing we want to achieve is to add functionality so that the crab counts how 
many worms it has eaten. If it has eaten eight worms, we win the game. We also want to 
play a short “winning sound” when this happens.

To make this happen, we will need a number of additions to our crab code. We need

■ an instance variable to store the current count of worms eaten;

■ an assignment that initializes this variable to zero at the beginning;

■ code to increment our count each time we eat a worm; and

■ code that checks whether we have eaten eight worms, and stops the game and plays 
the sound if  we have.

Let us do the tasks in the order in which we have listed them here.

We can define a new instance variable by following the pattern introduced above. 
Below our two existing instance variable definitions, we add the line

private int wormsEaten;

Here the type int indicates that we want to store integers (whole numbers), and the 
name wormsEaten indicates what we intend to use it for.

Next we add the following line to the end of our constructor:

wormsEaten = 0;

This initializes the wormsEaten variable to zero when the crab is created. Strictly 
speaking, this is redundant, since instance variables of type int are initialized to zero 
automatically. However, sometimes we want the initial value to be something other 
than zero, so writing our own initialization statement is good practice.

The last bit is to count the worms and check whether we have reached eight. We need 
to do this every time we eat a worm, so we find our lookForWorm method, where we 
have our code that does the eating of the worms. Here, we add a line of code to incre-
ment the worm count:

wormsEaten = wormsEaten + 1;

As always in an assignment, the right hand side of the assignment symbol is evaluated 
first (wormsEaten + 1). Thus, we read the current value of wormsEaten and add 1 to 
it. Then we assign the result back to the wormsEaten variable. As a result, the variable 
will be incremented by 1.

Following this, we need an if-statement that checks whether we have eaten eight 
worms yet, and plays the sound and stops execution if  we have. Code 4.6 shows the 
complete lookForWorm method with this code. The sound file used here (fanfare.wav) 
is included in the sounds folder in your scenario, so it can just be played.

M04_KOLL4292_02_SE_C04.indd   70 2/3/15   7:51 PM



 4.16 More ideas      |       71   

 4.16 More ideas
The scenario little-crab-5, in the book scenarios folder, shows a version of the project 
that includes all the extensions discussed here.

We will leave this scenario behind now and move on to a different example, although 
there are many obvious things (and probably many more less obvious things) you can 
do with this project. Ideas include

■ using different images for the background and the actors;

■ using different kinds of actors;

■ not moving forward automatically, but only when the up-arrow key is pressed;

■ building a two-player game by introducing a second keyboard-controlled class that 
listens to different keys;

■ making new worms pop up when one is eaten (or at random times); and

■ many more that you can come up with yourselves.

Code 4.6 
Counting worms 
and checking 
whether we win

Exercise 4.26 As a further test, open an object inspector for your crab object (by 
selecting Inspect from the crab’s pop-up menu) before you start playing the game. 
Leave the inspector open and keep an eye on the wormsEaten variable while you play.

Exercise 4.25 Add the code discussed above into your own scenario. Test it, and 
make sure that it works.

M04_KOLL4292_02_SE_C04.indd   71 2/3/15   7:51 PM



72      |       Chapter 4 ■ Finishing the crab game

Summary of programming techniques

In this chapter, we have seen a number of  important new programming concepts.  
We have seen how constructors can be used to initialize objects—constructors are 
always executed when a new object is created.

We have seen instance variables and local variables. Instance variables, also called fields, 
are used—together with assignment statements—to store information in objects, which 
can be accessed later. Local variables are used to store information for a short period 
of time—within a single method execution—and are discarded at the method end.

We have used the new statement to programmatically create new objects, and finally, 
we have seen the full version of the if-statement, which includes an else part that is 
executed when the condition is not true.

With all these techniques together we can now write quite a good amount of code already.

Exercise 4.27 The crab image changes fairly quickly while the crab runs, which 
makes our crab look a little hyperactive. Maybe it would look nicer if the crab image 
changed only on every second or third act cycle. Try to implement this. To do this, you 
could add a counter that is incremented in the act method. Every time it reaches two 
(or three), the image changes, and the counter is reset to zero.

Concept summary

■ A constructor of a class is a special kind of method that is executed automatically whenever a new 
instance is created.

■ Java objects can be created programmatically (from within your code) by using the new keyword.

■ Variables can be used to store information (objects or values) for later use.

■ Variables can be created by writing a variable declaration.

■ We can store values into variables by using an assignment statement (=).

■ Variables of primitive types store numbers, booleans, and characters; variables of object types  
store objects.

■ Objects are stored in variables by storing a reference to the object.

■ Greenfoot actors maintain their visible image by holding an object of type GreenfootImage.  
These are stored in an instance variable inherited from class Actor.

■ Instance variables (also called fields) are variables that belong to an object (rather than a method).

■ Lifetime of instance variables: Instance variables persist as long as the object exists that holds them.

■ Lifetime of local variables: Local variables persist only during a single method execution.

■ We can test whether two things are equal by using a double equals symbol: ==.

■ The if/else statement executes a segment of code when a given condition is true, and a different 
segment of code when it is false.

M04_KOLL4292_02_SE_C04.indd   72 2/3/15   7:51 PM



 4.16 More ideas      |       73   

Drill and practice

This time, we do some more exercises with calling methods, including a new inherited 
Actor method, and practice more use of variables.

More crab work

Exercise 4.29 Add a time counter to the crab. You can do this by adding an int 
variable that is incremented each time the crab acts. (You are, in effect, counting act 
cycles.) Should this be a local variable or an instance variable? Why?

Exercise 4.28 Make the lobsters a bit more dangerous. The Actor class has a 
method called turnTowards. Use this method to make the lobsters turn toward the 
center of the screen occasionally. Experiment with the frequency of doing this, and 
also with different walking speeds for lobsters and the crab.

Exercise 4.30 Play your game. Once you manage to win (eat eight worms), inspect 
the crab object and check how long you took. How many act cycles did it take?

Exercise 4.31 Move your time counter from the Crab class to the CrabWorld class. 
(It makes more sense for the world to manage time, than an individual crab.) The vari-
able is easy to move. To move the statement that increments the time, you need to 
define an act method in the CrabWorld class. World subclasses can have act meth-
ods just like Actor subclasses. Just copy the signature of the crab’s act method to cre-
ate a new act method in CrabWorld and place your time counting statement here.

Exercise 4.32 Modify your game’s time counter to be a game timer. That is: Initialize 
the time variable to some value (for example, 500), and count down (decrement the 
variable by one) at every act step. If the timer reaches zero, make the game end with 
a “time is up” sound. Experiment with different values for the game time.

Exercise 4.33 Investigate the showText method of the World class. How many 
parameters does it have? What are they? What does it return? What does it do?

Exercise 4.34 Display the game timer on screen using the showText method. You 
can do this in the CrabWorld’s act method. You need a statement similar to this:

showText(“Time left: “+ time, 100, 40);

where time is the name of your timer variable. (Note: this statement uses the plus 
operator and a text string, which we will explain in Chapter 5.)

M04_KOLL4292_02_SE_C04.indd   73 2/3/15   7:51 PM



74      |       Chapter 4 ■ Finishing the crab game

Bouncing ball practice

Exercise 4.35 Create a new scenario. In it, create a World and an Actor class called 
Ball. (Give it a ball-like image.) Program the ball so that it moves at constant speed, 
and bounces off the edges of the world.

Exercise 4.36 Program your ball so that it counts how often it has bounced off the 
edge. Run your scenario with the ball’s object inspector open to test.

Exercise 4.37 Program your scenario so that three balls are automatically present 
at the start.

Exercise 4.38 Change your setup code, so that the three balls appear at random 
locations.

Exercise 4.39 Change the bouncing-off-the-edge code so that the balls bounce 
off the edge at somewhat random angles.

M04_KOLL4292_02_SE_C04.indd   74 2/3/15   7:51 PM



In this section, we will not introduce new programming techniques but rather go on 
a quick detour to discuss how you can share what you have created with others. The 
“others” may be your friend sitting next to you or another Greenfoot programmer on 
the other side of the world.

 I1.1 Sharing your scenario
When you have finished writing a scenario—maybe a game or a simulation—you may 
want to enable others to use it. Those users should have the opportunity to start (and 
restart) the game, but they do not need access to the class diagram or the source code. 
They should not modify the game; instead they just use it.

For a scenario to work well when shared, it is important that it automatically creates 
all the actors you want to see on the screen at the start of the game. Users will not be 
able to create objects interactively.

In Greenfoot, this is done by sharing the scenario. You can share your scenario by 
clicking the Share button at the top right of  the Greenfoot main window. This will 
show a dialog that lets you choose from four options: Publish, Webpage, Application, 
and Project.

 I1.2 Publishing to the Greenfoot website
The most common way to share your scenario is to publish it to the Greenfoot web-
site. The Greenfoot site is a public website (at the address http://www.greenfoot.org 
/home) that allows Greenfoot users to upload their Greenfoot scenarios. When you 
share your scenario on the Greenfoot site, it becomes public to the world—anyone 
with Internet access can see it and run it.

The share dialog (Figure I1.1) shows the site address at the top. Click here to open the 
website and see what is there. It is probably best if  you have a look through the site 
first.

Sharing your 
scenarios Interlude 1 

M04_KOLL4292_02_SE_INT1.indd   75 2/3/15   7:29 AM



76      |       Interlude 1 ■ Sharing your scenarios

On the Greenfoot site, everyone can view and run scenarios, but if  you want to rate 
them, leave comments, or upload your own scenarios, you need to create an account 
on the site. This is quick and easy.

After creating an account, you can easily upload your own scenario using the dialog 
shown in Figure I1.1. The dialog allows you to add an icon, a description, and tags 
that identify your scenario.

If  you choose to publish the source code (using the Publish source code checkbox), 
your full source code will be copied to the Greenfoot site, where everybody else can 
then download it, read it, and make their own versions of your scenario.

You can change and improve your published scenarios later just by exporting again 
with the same title.

Figure I1.1 
Publish to the  
Greenfoot website

M04_KOLL4292_02_SE_INT1.indd   76 2/3/15   7:29 AM



I1.3 Export to a Web page      |       77   

Publishing your scenarios to the Greenfoot site can be a good way to get feedback 
from other users: comments on what works and what doesn’t, and suggestions what 
you could add to the program. The Greenfoot site is also a good place to get ideas 
for further functionality, or to learn how to do things. It includes a discussion section 
where you can ask and answer questions, and discuss programming techniques and 
ideas. Or you can look for scenarios with source code, download the source, and check 
how other programmers have implemented their classes.

 I1.3 Export to a Web page
The second option is to export your scenario to your own Web page (Figure I1.2). 
You can choose a location and a name for your export, and Greenfoot will create a 
folder with your chosen name. In this folder, Greenfoot creates a Web page (in HTML 
format) and converts your scenario to an applet that will run in that Web page. An 
applet is a version of your Java program that can run embedded in a Web page in a 
Web browser.

You can execute your scenario by opening the generated Web page in a Web browser.

Initially, this Web page will be usable only on your own computer. If  you want to 
include it in a Web page visible by others, you need to have access to a Web server 
somewhere to publish it.

The “Lock scenario” option disables the moving of actors in the world before starting 
the application, as well as removing the Act button and the execution speed slider. If  
you have a game, you typically want to lock the scenario, whereas for simulations or 
other more experimental scenarios you may want to leave it unlocked to allow users 
to experiment more.

Concept
An applet is a 
version of a Java 
program that 
can run on a 
web page inside 
a web browser.

Figure I1.2 
Export to a Web page

M04_KOLL4292_02_SE_INT1.indd   77 2/3/15   7:29 AM



78      |       Interlude 1 ■ Sharing your scenarios

 I1.4 Export to application
The next export option is an export to an application. An application is a stand-alone 
program that users can execute locally on their computer.

To do this, choose Application in the export dialog. You can then choose a location 
and a name for the executable scenario that you are about to create (Figure I1.3). 

Using this function will create an executable jar file. This is a file with a “.jar” suffix 
(short for Java Archive), which can be executed on many different operating systems 
(as long as Java has been installed on that machine). Just double-click the jar file to 
execute it.

 I1.5 Export to Greenfoot archive
The last export option is an export to a single-file Greenfoot archive (Figure I1.4). It 
creates a file with the suffix “.gfar” (Greenfoot Archive). gfar files contain the entire 
Greenfoot scenario, including all files from the scenario folder. When double-clicked, 
they expand to a standard Greenfoot scenario folder and start Greenfoot, opening the 
scenario.

gfar files make it easier to transfer Greenfoot scenarios between computers, for exam-
ple, by attaching them to an email.

Concept
A gfar file is 
a single file 
that contains 
a Greenfoot 
scenario. It can 
be opened with 
Greenfoot.

Figure I1.3 
Exporting a 
scenario to an 
application.

Concept
A jar file is a 
single file with 
the suffix jar 
that contains all 
Java classes that 
belong to a Java 
application.

M04_KOLL4292_02_SE_INT1.indd   78 2/3/15   7:29 AM



I1.5 Export to Greenfoot archive      |       79   

Concept summary

■ An applet is a version of a Java program that can run on a Web page inside a Web browser.

■ A jar file is a single file with the suffix jar that contains all Java classes that belong to a Java  
application.

■ A gfar file is a single file that contains a Greenfoot scenario. It can be opened with Greenfoot.

Figure I1.4 
Export to Greenfoot  
archive

M04_KOLL4292_02_SE_INT1.indd   79 2/3/15   7:29 AM



Chapter

One obvious element that is missing from our crab example is keeping score. We 
have done a part of  it: the crab internally keeps track of  the number of  worms it 
has eaten, using an integer variable. We have seen that variables are an important 
part of  keeping a score, but this is not a complete solution. Firstly, we might want 
other actions to contribute to gaining or losing points, and secondly, we have not yet 
displayed the score on the screen.To get some more variety, we shall discuss this with 
a different example. After reading this chapter, you can, if  you like, go back to the 
crab game and add a scoring system there as well—you should have learnt how to do 
this by the end of  this chapter.

For this discussion, we shall use a scenario called “WBC” (for “White Blood Cell,” 
Figure 5.1). This is a little game where we control a white blood cell floating in the 
bloodstream of some creature, and we have the job to catch and remove bacteria. To 
make things a bit more interesting, there are viruses, too, and we imagine that our type 
of white blood cell can only neutralize bacteria but not viruses. The virus is too strong 
for us and damages our cell, so it must be avoided.

This chapter is divided into three parts: we first have a quick look at the starting sce-
nario and analyze it (Sections 5.1 to 5.4), then add some more objects and function-
ality, using techniques we have already encountered in previous chapters (Sections 
5.5 to 5.10). We shall go over these parts fairly quickly, since we have covered the 
concepts before. Lastly, we shall move on to investigate some new constructs to add 
the scoring.

Scoring

topics:  constrained movement, displaying text messages, keeping score, object  
interaction

concepts: Strings, String concatenation, abstraction (first look), casting, this (keyword)

5

M05_KOLL4292_02_SE_C05.indd   80 2/3/15   7:37 AM



 5.2 WhiteCell: constrained movement      |       81   

Exercise 5.1 Open the scenario WBC-1 and run it. Describe what you observe.

Exercise 5.2 For each of the classes in the scenario, write a short (one- or two- 
sentence) description about what they represent.

Exercise 5.3 Open the source code for each of the four classes. Study the code and 
try to work out how it works. Note any section in the code that is unclear to you.

 5.1 WBC: The starting point
Open the scenario WBC-1, which you find in the book projects, and try it out.

Figure 5.1
The WBC (“White 
Blood Cell”)  
scenario

You should be able to work out most of what is going on. We will quickly go through 
the interesting elements of these classes.

The Lining class is trivial—it does not do anything. Objects of this class are just for 
decoration; they are placed along the upper and lower edge of the screen, and do not 
interact with any of the other objects.

The other classes are worth a closer look.

 5.2 WhiteCell: constrained movement
The WhiteCell class defines a white blood cell—this is our game object which we 
control with our keyboard. The structure of its code is quite straightforward: its act 
method only calls one method to check for key input, which reacts to the “up” and 
“down” keys (Code 5.1).

M05_KOLL4292_02_SE_C05.indd   81 2/3/15   7:37 AM



82      |       Chapter 5 ■ Scoring

Code 5.1
The WhiteCell 
methods

Exercise 5.4 Look up these three methods in the documentation for class Actor. 
Write down their signature.

The only interesting parts are two lines of the form

setLocation(getX(), getY()-4);

This is the line that actually moves the object. We use three methods from the Actor 
class that we have not seen before: setLocation(x,y), getX(), and getY().

The getX(), and getY() methods return the current x- and y-coordinates, respec-
tively, as an integer value.

The setLocation method expects two parameters, an x- and a y-coordinate, and 
places the actor at that location. Its signature is

void setLocation(int x, int y)

So, for example, calling this method with coordinates 120,200, like this:

setLocation(120, 200);

would teleport our blood cell to location 120,200.

We can now use the getX() and getY() methods in place of  the expected  
coordinates:

setLocation(getX(), getY());

Concept
The setLocation 
method sets an 
actor’s location to 
a position speci-
fied by x- and 
y-coordinates.

M05_KOLL4292_02_SE_C05.indd   82 2/3/15   7:37 AM



 5.2 WhiteCell: constrained movement      |       83   

When a method call (getX()) is written as a parameter to another method call  
(setLocation(..)), the inner method call is evaluated first, and the result is used as 
the parameter for the outer method call.

Written like this, we would first retrieve our current x-coordinate, then retrieve the 
current y-coordinate, and then set our location to these coordinates. Thus, this state-
ment would have no visible effect: we would position us where we already are.

However, with one small modification we can create movement:

setLocation(getX(), getY()-4);

Here, we retrieve our y-coordinate, then subtract 4, and set the result as our new 
y-coordinate. We leave the x-coordinate unchanged. This places us four cells higher 
than where we were before.

We have chosen this method of movement, instead of using the move() method as 
before, because this way movement is independent from turning. The move() method 
moves in the direction the object is facing, whereas we want to move always up or 
down without changing our rotation.

Concept

private  
methods are 

only visible 

from within 

the class they 

are declared in. 

They are used 

to improve the 

structure of 

the code.

Concept
access modi-
fiers (private or 
public) deter-
mine who can 
call a method.

Note: private versus public

You may have noticed that we used the word private in the declaration of the checkKeyPress 
method:

private void checkKeyPress()

This is called a private method. Previously, we have declared all methods public. 

The keywords private and public are called access modifiers, and they determine who can 
see and call a method. When a method is public, it can be called from other classes in our program. 
When a method is private, it can be called only from methods within the same class. It will not be vis-
ible from the outside.

For example, when you right-click the WhiteCell object in your current scenario, you will see the 
act method in its popup menu (it is public), but not the checkKeyPress method (it is private).

The purpose of public methods is to offer functionality to other parts of the system, so that our 
object can be called to do something. The purpose of private methods is to improve the structure 
of our code by breaking tasks down into smaller subtasks. They are not intended to be called from 
outside.

From now on, we will declare methods private if they are intended to be called only internally. We 
will declare them public if they are to be called from other classes.

Variables will always be private. (Java allows them to be made public, but this is considered very bad 
style.)

M05_KOLL4292_02_SE_C05.indd   83 2/3/15   7:37 AM



84      |       Chapter 5 ■ Scoring

 5.3 Bacteria: making yourself disappear
You have seen that the bacteria objects float from right to left, slowly rotating. The 
Bacteria’s act method makes this happen (Code 5.2).

The first line uses the same method to create movement as we have seen in the 
WhiteCell class: setLocation(x,y) together with getX() and getY(). This time 
we move to the left by subtracting from the x-coordinate. Again, we cannot use the 
move() method, because we want the direction of movement to be independent of 
the rotation.

Code 5.2
The Bacteria act 
method

The second line is simple: we call the turn method to do the slow rotation.

After this follows an if-statement to remove the object from the world when it reaches 
the left edge of the screen. We can check that we have reached the left edge by check-
ing whether the x-coordinate is zero and, if  it is, remove ourselves from the world 
using the following line of code:

getWorld().removeObject(this);

Here, we use the removeObject method from the World class. Its signature is

void removeObject(Actor object)

We can call this method to remove an object from the world. We need to be aware of 
two aspects:

■ We must pass an object as a parameter. This is the object to be removed from  
the world.

■ This method is defined in the World class. It must be called on a World object.

M05_KOLL4292_02_SE_C05.indd   84 2/3/15   7:37 AM



 5.4 Bloodstream: creating new objects      |       85   

The this keyword
To pass an object as a parameter, we use the Java keyword this. The “this” key-
word refers to the current object that is executing at the moment. Thus, by saying that 
“this” should be removed from the world, the bacterium removes itself.

Chaining method calls
The removeObject method belongs to the world object, but we are writing code in 
the Bacteria class. So we cannot just call

removeObject(this);

This would try to invoke the method on the Bacteria object, but this object does not 
have such a method.

To invoke a method on another object, we must specify that object first, then use a 
dot, and then the method call:

my-world-object.removeObject(this);

Thus, we need to get access to the world object—the world we are currently in. Luckily, 
the Actor class has a method to do just that. It is called

getWorld()

and returns a reference to the current world object. We can now use this method call 
in place of the world object:

getWorld().removeObject(this);

Here we chain two method calls: getWorld() and removeObject(..). First  
getWorld() is called, and it returns the world object to us. Then removeObject(..) 
is called on that world object that we just received. Thus, we are telling the world 
object to remove ourselves from the world.

 5.4 Bloodstream: creating new objects
The last class to look at is our world subclass, called Bloodstream. It has the usual 
constructor, including a call to the prepare() method to place the initial objects (the 
white blood cell and lining).

The interesting part of  this class is its act method (Code 5.3). When the scenario 
runs, this method will place new Bacteria objects into the world at random intervals. 
When a random number out of 100 is less than three—that is, on average three times 
in every 100 act cycles—a new bacterium will be created.

The x-coordinate to place this new object is always 779—the right edge of the screen 
(note that the world has a size of  780 by 360 cells, so 779 is the largest possible  
x-coordinate).

Concept
The keyword 
this can be used 
to refer to the 
current object.

Concept
The getWorld 
method gives 
us access to the 
world from an 
actor object.

M05_KOLL4292_02_SE_C05.indd   85 2/3/15   7:37 AM



86      |       Chapter 5 ■ Scoring

Exercise 5.5 Make the Lining objects move continuously left. They should move by 
one cell per act cycle. You can do this by copying the first line of the Bacteria’s act 
method, and changing the movement distance to 1.

Exercise 5.6 Make the Lining objects disappear when they reach the left edge. 
Again, an example of this is in the Bacteria class, and you can use this for guidance.

Exercise 5.7 Write a suitable comment for the act method.

The y-coordinate is a random number out of 360—the height of the world. Thus, the 
y-position of the new bacterium is a random position at any possible height.We have 
seen all these constructs before; they are just used here for a new purpose.

 5.5 Side-scroll movement
You should now be able to understand the code as it is present, and be ready to add 
some more objects and functionality to make this project more interesting. We will do 
this in a series of exercises that apply some of the constructs we already know.

First, we want to create the impression that our white blood cell is continuously 
moving right through the blood stream. However, we do not actually want to move 
the blood cell, as we want to keep it permanently on screen. Instead, we move the 
background—the lining objects—to the left to create the impression of  movement. 
This is an often used technique in many side-scrolling video games.

To do this, we need to do three things:

■ Move the Lining objects slowly to the left.

■ Remove the Lining objects when they reach the left edge.

■ Create new Lining objects on the right.

Code 5.3
The Bloodstream 
act method

M05_KOLL4292_02_SE_C05.indd   86 2/3/15   7:37 AM



 5.6 Adding viruses      |       87   

The last exercise can be done by copying the if-statement in the Bloodstream’s 
act method two more times: once for Lining objects at the top of  the screen, and 
once for objects at the bottom. Change the 3 in the if-statement to 1 to make them 
less frequent. Then change the class of  the object to be created to Lining, and the 
y-coordinate from a random value to a fixed value: 0 for the top of  the screen, and 
359 for the bottom. For example,

addObject(new Lining(), 779, 359);

adds a Lining object at the bottom of the screen.

If  you have trouble, you can find all the exercises we are discussing here implemented 
in the scenario WBC-2.

Figure 5.2
A virus

Exercise 5.8 Make new Lining objects appear on the right of the screen. Do this in 
the Bloodstream’s act method. They should appear with a one percent probability 
(on average once every 100 act cycles).

 5.6 Adding viruses
Our task in this game will be to catch the floating bacteria. To make this a bit more 
challenging, let us add some danger: viruses. Viruses also float through the blood-
stream, but our cell must avoid them.

Exercise 5.9 Add a new class for a virus to your scenario (as a subclass of Actor). Call 
it Virus. There is an image already prepared in the scenario for you to use (Figure 5.2).

Exercise 5.10 Extend the Bloodstream’s act method to add new virus objects at 
the right edge of the screen. Make the y-coordinate random. Make the probability of 
new objects 1 percent (one in a hundred act cycles). Test it. (Virus objects should occa-
sionally appear at the right edge, but not yet move.)

M05_KOLL4292_02_SE_C05.indd   87 2/3/15   12:15 PM



88      |       Chapter 5 ■ Scoring

A solution to all the exercises set so far is included in the scenario version WBC-2.

Note

If you look carefully, you might notice that you sometimes lose and the game stops when the white 
blood cell is near a virus, but not actually touching it yet. There is still a little distance between them.

This is caused by the way images are stored in computers, and is discussed in more detail in Chapter 9. 
Look at Figure 9.2 and the surrounding explanation if you are curious.

 5.7 Collision: removing bacteria
Next let us check whether we are touching bacteria (and remove them if  we do), or a 
virus (in which case we lose and the game ends). This is very similar to what we have 
done with the crab, worms, and lobsters.

Exercise 5.13 Create a new private method in class WhiteCell, called checkColli-
sion. The method body can initially be empty. Call this method from your act method.

Exercise 5.14 In the checkCollision method, add code that removes bacteria if we 
are touching any. (Use the isTouching() and removeTouching(..) methods, just 
like in the crab scenario.)

Exercise 5.15 Play a sound when removing bacteria. The “slurp.wav” sound is 
included again in the scenario—you can use this one.

Exercise 5.16 Using the same sound effect again is a bit lazy. Make and use a new 
sound for removing bacteria.

Exercise 5.17 Add similar code to the checkCollision method again (another  
if-statement) to check whether we are touching a virus. If we are, play a sound  
(a sound  called “game-over.wav” is included for this purpose) and stop Greenfoot.

Exercise 5.11 Make Virus objects move left and rotate (just like bacteria). However, 
viruses move four cells per act cycle (not two), and rotate anti-clockwise.

Exercise 5.12 Comment your Virus class. (That is: fill in the class comment at the 
top and the method comment above the act method.)

M05_KOLL4292_02_SE_C05.indd   88 2/3/15   7:37 AM



 5.9 Red blood cells      |       89   

 5.8 Variable speed
To create more interesting looking movement (and more interesting gameplay), we 
want to make the movement speed of the bacteria variable. Currently, the speed is 2 
(bacteria move two cells per act cycle). We want to change this so that the movement 
speed is a random value between 1 and 3.

To do this, we will create a variable for the speed, initialize it to an appropriate ran-
dom value, and use it in our movement statement.

Exercise 5.18 In your Bacteria class, add an instance variable of type int, named speed.

Exercise 5.19 In the Bacteria constructor, assign a random value to the speed 
 variable, in the range 1 to 3.

You may wonder how to set a random range of  1 to 3, when we have previously 
learned that random numbers coming from Greenfoot’s getRandomNumber method 
always start at 0. The answer is simple: Get a number from 0 to 2, and then add 1:

speed = Greenfoot.getRandomNumber(3) + 1;

Adding 1 is important, because we never want a speed of  0—the bacterium would 
never move away.

Exercise 5.20 Change the movement statement in your act method so that you 
subtract the variable speed from your x-coordinate, instead of subtracting 2. Test.

This is all that is needed. Each bacterium now gets its own speed assigned when it is 
created, between one and three, and will move at that speed. Watch carefully, and you 
should see some bacteria moving faster than others.

 5.9 Red blood cells
Let us add some red blood cells to the mix. This is purely cosmetic: our other objects 
do not interact with red blood cells, and they do not influence the gameplay. But they 
look good!

Exercise 5.21 Add a new class called RedCell. You will find an image for it in your scenario.

Exercise 5.22 Make the red cells move just like bacteria, that is: They move right to 
left at variable speed, slowly rotating. There is one small difference: The speed range of 
red cells is only 1 to 2 (instead of 1 to 3). Our red cells are slow.

M05_KOLL4292_02_SE_C05.indd   89 2/3/15   7:37 AM



90      |       Chapter 5 ■ Scoring

1 There is another way we could deal with this problem: we could create an unbounded world, 
which would allow us to place actors outside of the world boundary, and then slowly move 
them in. This can be done by invoking another World superclass constructor, which you can 
find documented in the World class documentation. However, this gets more complicated, and 
we will not do this here.

Exercise 5.25 Create a new Actor subclass called Border. There is a prepared image 
for it.

This is looking better! It is getting a bit crowded in our bloodstream now, and that is good.

Before moving on to the next task, we can make one very minor improvement. Red 
blood cells, when they are created, all have the same rotation (they are all created with 
rotation 0). As a result, all blood cells created closely together rotate in unison. This 
looks a bit too much like synchronized swimming, and not random enough.

To fix this, we want red blood cells to start off  with random rotation. We can do 
this by adding a statement in the red blood cell’s constructor to set the rotation to a  
random number:

setRotation(Greenfoot.getRandomNumber(360));

Exercise 5.24 Initialize your red blood cells with a random rotation, using the state-
ment shown above.

 5.10 Adding borders
We will make one last cosmetic improvement before moving on to the more interesting 
new material: adding borders at the sides of the screen.

The main reason is to deal with an annoying effect: in Greenfoot, objects are posi-
tioned by specifying the coordinate of  the center of  the object’s image. Therefore, 
when we place a new object on the right edge of the screen, half  of its image suddenly 
appears at once, instead of moving in slowly from the side. The same problem exists 
at the other end when disappearing: Objects disappear when half  their image is still  
visible on screen. This makes our objects look a bit jerky. It does not look nice.

To deal with this problem, we use a simple trick: we place black border objects on the left 
and right sides of our screen to cover the problematic space. This is intended to look as 
if we are looking at our blood stream through a microscope (see Figure 5.1). The objects 
will now appear behind the borders, out of view, and then slowly move into view.1

Exercise 5.23 Extend your act method in class Bloodstream to create red blood 
cells. This is very similar to creating bacteria or viruses, but red blood cells are more fre-
quent: give them a 6 percent chance (6 out of every 100 act cycles) to appear.

M05_KOLL4292_02_SE_C05.indd   90 2/3/15   7:37 AM



 5.10 Adding borders      |       91   

We could now add a border object on the right and left side of the screen manually, 
and use the Save the World function to save them there. However, we want to place 
them at very precise locations, and that is hard to do by hand. So it is easier to write 
code to place the objects.

In the Bloodstream’s prepare() method, we can add the following code:

Border border = new Border();
addObject(border, 0, 180);
Border border2 = new Border();
addObject(border2, 770, 180);

Exercise 5.26 Add the code shown above to the Bloodstream’s prepare() 
method. Test it. What remaining problems do you observe?

We need to fix two minor problems: first, our white blood cell is now partly obscured, 
and second, our objects appear on top of the border, instead of below it. Let us fix both.

Exercise 5.27 In the Bloodstream’s prepare() method, find the place where the 
initial x-coordinate for the white blood cell is defined. Change it to a larger value, so 
that the cell is a bit further to the right.

Exercise 5.28 In the constructor of Bloodstream, add the following statement:

setPaintOrder(Border.class);

This will make the border objects appear on top of the other objects. Test it.

The setPaintOrder method lets us specify which objects should be painted on top 
of other objects. The method has a variable length parameter list, and we are allowed 
to specify as many classes as we like. For example:

setPaintOrder(Class1.class, Class2.class, Class3.class);

In this example, objects of Class1 would be painted on top, objects of Class2 below 
it, Class3 objects below that, and all objects of classes not mentioned below these in 
an unspecified order.

By writing

setPaintOrder(Border.class);

M05_KOLL4292_02_SE_C05.indd   91 2/3/15   7:37 AM



92      |       Chapter 5 ■ Scoring

we state that Border objects should be on top (and we do not care about the ordering 
of any other objects).

All exercises discussed so far are included in the scenario version WBC-3. If  you had 
any trouble, you may like to compare your own scenario to that one.

Exercise 5.32 Look up the showText method from the World class. How many 
parameters does it have? What are they?

Exercise 5.29 Add the ability for the white blood cell to move right and left as well 
as up and down.

 5.11 Finally: adding a score
We will now move on to introduce a few rules for gaining a game score, and implement 
them. The first obvious idea is that we should get points for neutralizing bacteria.  
Let us say that we get 20 points for every bacterium we catch.

We can start by implementing this in the WhiteCell class. We will need an integer 
variable to hold our score, count the score every time we catch a bacterium, and dis-
play the score on screen.

Exercise 5.30 Add an instance variable of type int to your WhiteCell class. Name it 
score.

Exercise 5.31 Add a statement to increment the score by 20 when we catch a bacterium.

We have seen in the previous chapter how to add instance variables. We write

private int score;

at the top of the class, above the first method.

We can then add 20 points to our score by using the following statement immediately 
after removing the Bacteria object:

score = score + 20;

What is left to do is to display the score on screen. To do this, we use a method called 
showText(..) from the World class.

M05_KOLL4292_02_SE_C05.indd   92 2/3/15   7:37 AM



 5.11 Finally: adding a score      |       93   

Again, we have to call a method from the world class, as we already did earlier to 
remove an object from the world. We use the same technique as before: we call 
getWorld() to get access to the world object, and then chain our showText(..) 
method call to the end of it:

getWorld().showText(…);

What is left is to work out the parameters for the showText method. Its signature is

void showText(String text, int x, int y)

The last two parameters are simple: they are the x- and y-coordinates where we want 
the text to appear. The first parameter is the text we want to show, and it is of a type 
we have seen but not really discussed before: String.

Variables of type String can store text, such as characters, words or sentences. Strings 
are written in double quotes. For example:

String name = “Fred”;

String message = “Game over”;

We have seen a String before when we played a sound:

Greenfoot.playSound(“slurp.wav”);

The playSound method expects a String parameter, and the value “slurp.wav” is a 
String we passed into it. We can do the same with the showText method. For example:

getWorld().showText(“Hello”, 80, 25);

will show the word “Hello” on our screen at the specified location.

Concept
The type String 
is used to repre-
sent text, such 
as words or sen-
tences. Strings 
are written in 
double quotes.

Concept
Variables of type 
String can store 
String objects.

Exercise 5.33 Insert the statement above so that it writes the word “Hello” to the 
screen when you catch a bacterium.

Exercise 5.34 Change the statement to write your name instead.

Exercise 5.35 Change the text again to show the word “Score:” (including the colon).

String concatenation
We have seen how we can display some text—all that is left is to find out how to 
display our score, which is held in an int variable. We will use String concatenation. 

Concept
String concat-
enation merges 
two Strings into 
one. It is written 
with a plus  
symbol (+).

M05_KOLL4292_02_SE_C05.indd   93 2/3/15   7:37 AM



94      |       Chapter 5 ■ Scoring

String concatenation is written using a plus symbol (+) and joins two Strings together 
into one:

“abc” + “def”

becomes

“abcdef”

and

“Wolfgang” + “Amadeus” + “Mozart”

becomes

“WolfgangAmadeusMozart”

(Note that String concatenation does not automatically insert spaces. If  you want a 
space between the two parts, you need to write it.)

The same works with a String and an integer variable. If  we “add” a String and an 
integer, the integer value is converted to a String and then concatenated:

“Score: ” + 20

becomes

“Score: 20”

We can also use a variable in place of the integer value:

“Score: ” + score

that will convert the value stored in our score variable to a String, and then join it 
with the “Score: ” String. And now we have everything we need to display our score 
on screen. All elements together are shown in Code 5.4.

Exercise 5.36 Show the score in your game.

Exercise 5.37 The game currently seems a bit too easy. Speed it up! You might like 
to try the following values: Bacteria have a random speed (cells per act cycle) between 
1 and 5. The white cell moves sideways with speed 4, and up and down with speed 8. 
Viruses move at speed 8. Also, speed up the whole scenario using the speed slider at 
the bottom of the main window: set it just over 50 percent. Experiment with your own 
speeds to make it challenging, but not impossible.

 5.12 Scoring in the World
So far, adding the scoring has been quite straightforward. However, there is a disad-
vantage to doing the scoring in the WhiteCell class: it makes it hard to add scores for 
other events.

Concept
String concat-
enation can 
also be used 
with a String 
and an integer.

M05_KOLL4292_02_SE_C05.indd   94 2/3/15   7:37 AM



 5.12 Scoring in the World      |       95   

Consider this: we want our full scoring rules to be:

■ Neutralizing a bacterium scores 20 points. (That’s done.)

■ We lose 15 points for any bacterium that reaches the left screen edge.

■ Being hit by a virus does not immediately end the game; instead, we lose 100 points.

■ If  our points fall below zero, we lose and the game ends.

These are more interesting scoring rules. However, we have a problem. The second 
event (a bacterium escaping) will be noticed in a Bacteria object. From here, we 
do not have access to our score variable, which is held in the WhiteCell object. We 
could try to get access to the WhiteCell object to tell it to update the score. However, 
it is easier to move the score variable to our World subclass (Bloodstream), since all 
other objects can easily get access to this object (using the getWorld() method).

Then, the Bloodstream object holds the current score, and the WhiteCell and 
Bacteria objects will call the Bloodstream object to tell it to update the score when 
necessary.

Code 5.4
Scoring in the 
WhiteCell class

M05_KOLL4292_02_SE_C05.indd   95 2/3/15   7:37 AM



96      |       Chapter 5 ■ Scoring

Lastly, we have to get the WhiteCell object to notify the world object when it wants 
a score recorded. A first—unfortunately incorrect—attempt, might be to try to write

getWorld().addScore();

This is a reasonable idea, but it will not work because of  a tricky problem: the  
getWorld() method, as defined in Greenfoot’s World class, returns an object of type 
World. And World does not have an addScore() method. However, our world object 
is actually a Bloodstream object, and does have this method.

We need to use a construct—called a cast—to tell the Greenfoot compiler that our 
world is of  type Bloodstream and then store it in a Bloodstream variable. After 
doing this, we can call the addScore() method.

A cast is written by writing the type (Bloodstream) in parentheses in front of  the 
method call:

Bloodstream bloodstream = (Bloodstream)getWorld();

bloodstream.addScore();

Casting is a tricky concept, and you will most likely not understand it completely at 
this stage. Don’t worry—we will come back to this and discuss it more fully later (in 
Section 9.6), when we know a bit more about the details of typing and subtyping.

Exercise 5.38 Move the score variable from WhiteCell to Bloodstream.

Exercise 5.39 Add a line to the Bloodstream’s constructor to initialize the score 
to zero. This is not strictly necessary, because the default value for instance variables is 
zero, but it is good practice.

Exercise 5.40 Add a public method called addScore() to the Bloodstream class. 
Move the code to increment the score and to show it on screen into this method. Note 
that you can now omit the getWorld() call at the beginning of the showText(..) 
call, because we are already in the world (see Code 5.5).

Exercise 5.41 Comment your new method.

Code 5.5
A first attempt at an 
addScore method

Let’s get started.

M05_KOLL4292_02_SE_C05.indd   96 2/3/15   7:37 AM



 5.13 Abstraction: generalizing the scoring      |       97   

Exercise 5.42 Add the code to call the Bloodstream’s addScore() method to your 
WhiteCell class. Test it. Your scenario should now run again, and catching bacteria 
should score points.

On the surface, we are back to where we were: catching bacteria scores points, and 
these are displayed when they change. Moving the code to keep score from the white 
blood cell to the world has—so far—no visible effect. But we now have one big  
advantage: we can now add other scoring events.

 5.13 Abstraction: generalizing the scoring
Our next task is to implement the second scoring rule: we lose 15 points when a bacte-
rium escapes to the left edge of the screen.

Calling the Bloodstream’s addScore() method is now easy: we can add the same 
code to the Bacteria class that we used in the WhiteCell class. However, this would 
then add a score (20 points), rather than subtract it.

We could make a new method in Bloodstream, called losePoints() or something 
similar, which subtracts 15 points from the score, and call that one. While this would 
work, we will use a more elegant solution: we will generalize our addScore() method 
so that it can be used to add or subtract any number of points.

We can do this by changing the addScore method to expect a parameter for the actual 
number of points to be added (see Code 5.6).

Code 5.6
The addScore 
method with a 
parameter

Our improved addScore method now receives the number of points to be added to 
the score as a parameter. Where the new score is assigned, we now add the parameter 
points instead of just adding 20.

Having defined our new addScore method, we can now use it to add different scores:

bloodstream.addScore(20);

M05_KOLL4292_02_SE_C05.indd   97 2/3/15   7:37 AM



98      |       Chapter 5 ■ Scoring

would add 20 points, while

bloodstream.addScore(100);

adds 100 points. We can also easily subtract points by using a negative number:

bloodstream.addScore(-15);

What we have just done here is an example of abstraction—an important concept in 
programming. Instead of  writing a method that can do one specific thing—adding  
20 points—we write a method that can do many similar things—adding any number of 
points—so that it can be used more generally in different situations.

Generalizing methods by adding parameters so that they are more flexible is generally 
a good idea.

Concept
parameterizing 
methods (adding 
parameters) can 
make them more 
flexible and more 
useful.

Exercise 5.43 Change your addScore method to expect a parameter for the points, as  
discussed above.

Exercise 5.44 Change the code in the WhiteCell class accordingly: pass a param-
eter to addScore, so that neutralizing a bacterium scores 20 points again.

Exercise 5.45 Add code in your Bacteria class, so that you lose 15 points when a 
bacterium exits the screen.

When adding the scoring code to the Bacteria class, it is important not to call  
getWorld() again after removing the object itself  from the world. If  the object has 
been removed from the world, a call to getWorld() afterwards will not work, because 
we are not in a world anymore. (It would return the special value null, and trying to 
access the world would result in an error called a NullPointerException.) Code 5.7 
is carefully written to ensure this. It also shows that we can now use the bloodstream 
variable to call the removeObject method, instead of  calling getWorld() again.  
We do not need to get the world again, because we have already stored it in our local 
variable.

Another small glitch is that the score is not displayed on screen until we score the first 
points. It would really be nicer if  it were displayed from the start. The following exer-
cises make this change.

M05_KOLL4292_02_SE_C05.indd   98 2/3/15   7:37 AM



 5.13 Abstraction: generalizing the scoring      |       99   

In addition to showing the score from the constructor, we have also made a separate 
method for it. It is always good practice to make a dedicated method for any task that 
needs to be done more than once, even if  that task is short.

We are now ready to implement our last two scoring rules.

Code 5.7
Bacteria: losing 
points, then disap-
pearing

Exercise 5.46 In Bloodstream, make a new private method called showScore(). It has 
no parameters and returns nothing. Move the showText statement that displays the score 
into this method. Where showText was called previously, call showScore instead now.

Exercise 5.47 In the constructor of Bloodstream, add a call to showScore. This will 
cause the score to be displayed at the start.

Exercise 5.48 Change your program so that touching a virus does not immediately 
end the game. Instead, the virus is removed and you lose 100 points. (Note: it is impor-
tant to remove the virus. Otherwise we would keep touching it and lose 100 points 
repeatedly in every act cycle!)

Exercise 5.49 Make a new sound for touching a virus.

Exercise 5.50 Move the game-over functionality (playing the game-over sound and 
stopping Greenfoot) into the addScore method, so that the game is over if the score 
falls below zero. (You need an if-statement after changing and displaying the score.)

If  you have problems, the scenario WBC-4 shows the full implementation of this (as 
well as the additional changes discussed below). However, try to solve it yourself  if  
you can—you should know everything you need by now.

M05_KOLL4292_02_SE_C05.indd   99 2/3/15   7:37 AM



100      |       Chapter 5 ■ Scoring

 5.14 Adding game time
The one last thing missing now is a way to win this game.

We will do this by adding a timer that counts down; if  we make it to the end of the 
timer without losing, we win.

Adding the timer uses very similar constructs to those we have used when adding the 
score, so we should be able to do this now in the following sequence of exercises.

Exercise 5.51 In class Bloodstream, add an instance variable of type int, called time.

Exercise 5.52 In the constructor, initialize the time to 2000. (We will try to survive for 
2000 act cycles.)

Exercise 5.53 Define a new private method called showTime that displays the time 
left (the time variable) near the top right of the screen. Call this method from the 
 constructor to show the initial time.

Exercise 5.54 Define a new private method called countTime that decrements the 
time by 1 every time it is called and then shows the current time (by calling show-
Time). Call this method from your act method.

Exercise 5.55 In your countTime method, add an if-statement that stops execution 
when the timer reaches 0.

Exercise 5.56 Add a new private method called showEndMessage. When called, it 
displays a message telling us that we won, and how many points we have, near the 
middle of the screen. For example:

Time is up—you win!

Your final score: 1455 points

Call this method when the timer runs out and we win.

Summary of programming techniques

In this chapter we have gained more practice with important concepts that we really 
need to know: using variables and defining and calling methods.

We have also seen a first example of object interaction: our actor objects had to call 
our world object to ask it to do something (changing the score or removing an object). 
We encountered the String type and String concatenation.

M05_KOLL4292_02_SE_C05.indd   100 2/3/15   7:37 AM



 5.14 Adding game time      |       101   

Importantly, we have seen a first example of  abstraction for generalization: we saw 
that adding a parameter to a method can make the method more generally useful, so 
that we can call the method from different contexts to carry out slightly different (but 
related) actions. This is better than writing separate methods for every case.

We will see more of abstraction throughout the coming chapters.

Concept summary
■ The setLocation method sets an actor’s location to a position specified by x- and y-coordinates.

■ access modifiers (private or public) determine who can call a method.

■ private methods are only visible from within the class they are declared in. They are used to 
improve the structure of the code.

■ The keyword this can be used to refer to the current object.

■ The getWorld method gives us access to the world from an actor object.

■ The type String is used to represent text, such as words or sentences. Strings are written in  
double quotes.

■ Variables of type String can store String objects.

■ String concatenation merges two Strings into one. It is written with a plus symbol (+).

■ String concatenation can also be used with a String and an integer.

■ parameterizing methods (adding parameters) can make them more flexible and more useful.

Drill and practice

In this chapter we will not have the usual drill-and-practice section; the last section— 
adding game time—already served this purpose and gave us the chance to practice our 
new constructs and techniques.

Instead, you can do some work to personalize your scenario.

Exercise 5.57 Experiment with the parameters of this game to make it more play-
able and more interesting. You can adjust

■ the speed with which each of the actors moves;
■ the numbers of points you gain and lose;
■ the amount of time available;

M05_KOLL4292_02_SE_C05.indd   101 2/3/15   7:37 AM



102      |       Chapter 5 ■ Scoring

■ the sound effects;
■ the frequency of new actors appearing;
■ the execution speed of the scenario;
and anything else you can think of.

Exercise 5.58 Change the scenarios images to put the game into an entirely new 
setting. For example, you could make it a spaceship flying through space, collecting 
astronauts and avoiding asteroids, or a rabbit running over a field, catching carrots, and 
avoiding dogs.

Anything you like really. Make up something. Be creative.

If you are happy with your idea and images, it would be good to change the class 
names, too.

Different settings might give you different ideas for additional functionality.

M05_KOLL4292_02_SE_C05.indd   102 2/3/15   7:37 AM



Chapter

In this chapter we shall start on a new scenario: a piano that we can play with our 
computer keyboard. Figure 6.1 shows what it could look like once we’re finished.

We start again with opening a scenario from the book scenarios: piano-1. This is a 
version of our project that has the resources in it that we will need (the images and the 
sound files), but not much else. We shall use this as the base scenario to start writing 
the code to build the piano.

Making music:  
an on-screen piano

topics: sound

concepts: abstraction, loops, arrays, OO structure

6

Figure 6.1
The goal for this 
chapter: an  
on-screen piano

Exercise 6.1 Open the scenario piano-1 and examine the code for the two existing 
classes, Piano and Key. Make sure you know what code is there and what it does.

M06_KOLL4292_02_SE_C06.indd   103 2/3/15   7:55 PM



104      |       Chapter 6 ■ Making music: an on-screen piano 

 6.1 Animating the key
When you examine the existing code you see that not much is there at present:  
The Piano class only specifies the size and resolution of the world, and the Key class 
contains only method stubs (empty methods) for the constructor and the act method 
(shown in Code 6.1).

Exercise 6.2 Create an object of class Key and place it into the world. Create several 
of them and place them next to each other.

Code 6.1
The initial “Key” class

We can start experimenting by creating an object of class Key and placing it into the 
world. You see that its image is that of a simple white key, and it does nothing at all 
when we run the scenario.

Our first task will be to animate the piano key: when we press a key on the keyboard, 
we would like the piano key on screen to change so that it appears to be pressed down. 
The scenario as it is already contains two image files named white-key.png and white-
key-down.png, which we can use to show these two states. (It also contains two more 
image files, black-key.png and black-key-down.png, which we will use later for the black 
keys.) The white-key.png image is the one that we currently see when we create a key.

We can create the effect of  the key being pressed quite easily by switching between 
the two images when a specific key on the keyboard is pressed. Code 6.2 shows a first 
attempt at this.

M06_KOLL4292_02_SE_C06.indd   104 2/3/15   7:55 PM



 6.1 Animating the key      |       105   

In this code, we have chosen an arbitrary key on the computer keyboard (the “g” key) 
to react to. Which key we use at this stage does not really matter—eventually we want to 
attach different piano keys to several of our keyboard keys. When the key is pressed on the 
keyboard we show the “down” image; when it is not being pressed we show the “up” image.

Code 6.2
First version of 
the act method: 
 changing images

Exercise 6.3 Implement this version of the act method in your own scenario. Test 
it—make sure it works.

While this version works, it has a problem: the image is set not only once when it 
changes, but continuously. Every time the act method executes, the image is set to 
either one of the two images, even though it might already show the correct image. For 
example, if  the “g” key is not being pressed, the image will be set to “white-key.png,” 
even if  this was already the displayed image.

This problem does not seem too serious at first. After all, setting the image when it is 
not needed is merely unnecessary, but not incorrect. There are several reasons why we 
want to fix this, though. One reason is that it is good practice to not waste processor 
resources by doing unnecessary work. Another reason is that we will add sound for 
the key soon, and then it does matter. When we press a key, it makes a big difference 
whether the key’s sound is heard once, or over and over again.

So, let us improve our code by ensuring that the image is only set when it actually 
changes. To do this, we add a boolean field to our class to remember whether the key is 
currently down or not. We call this field isDown, and its declaration looks as follows:

private boolean isDown;

We will store true in this field while the piano key is down, and false while it isn’t.

We can then check whether our keyboard key has just now been pressed: if  our isDown 
field is false, but the “g” key on the keyboard is being pressed, it must have been 
pressed just a moment ago. Conversely, if  our isDown field is true (we think the key 
is down), but the “g” key on the keyboard is not down, then it must have been released 
just now. In these two situations, we can then change the image. Code 6.3 shows the 
complete act method implementing this idea.

M06_KOLL4292_02_SE_C06.indd   105 2/3/15   7:55 PM



106      |       Chapter 6 ■ Making music: an on-screen piano 

In both cases, we make sure to set the isDown field to the new state if we detect a change.

This code makes use of two new symbols: the exclamation mark (!) and the double 
ampersand (&&).

Both are logical operators. The exclamation mark means NOT, while the double 
ampersand means AND.

Thus, the following lines from the act method

if ( !isDown && Greenfoot.isKeyDown(“g”) ) {
    setImage (“white-key-down.png”);
    isDown = true;
}

can be read a little more informally (attention: not Java code!) as

if ( (not isDown) and Greenfoot.isKeyDown(“g”) ) …

The same code, even more informally, can be read as

if ( the-piano-key-is-not-down and the-keyboard-key-is-down ) {
  change the image to show the “down” image;
  remember that the piano key is down now;
}

Have a look at Code 6.3 again, and make sure you understand the code shown there.

A full list of all available logic operators is given in Appendix D.

Code 6.3
Only set the image 
when it needs to 
change

Concept
Logic opera-
tors, such as 
&& (AND) and 
! (NOT) can be 
used to combine 
multiple boolean 
expressions into 
one boolean 
expression.

Exercise 6.4 Implement the new version of the act method in your own scenario. It will 
not appear to do anything different from before, but it is a necessary preparation for what 
we shall do next. Don’t forget that you also have to add the boolean isDown field at the 
beginning of your class.

M06_KOLL4292_02_SE_C06.indd   106 2/3/15   7:55 PM



 6.2 Producing the sound      |       107   

 6.2 Producing the sound
The next thing we shall do is to ensure that pressing the key makes a sound. To do this, 
we add a new method to the Key class, called play. We can add this method in the 
editor, below the act method. For a start, we can write the comment, signature, and 
an empty body for the new method:

/**
 * Play the note of this key.
 */
public void play()
{
}

While this code does not do anything (the method body is empty) it should compile.

The implementation for this method is quite simple: we just want to play a single 
sound file. The piano-1 scenario, which you used to start this project, has a collection 
of sound files included (in the sounds subfolder), each of which contains the sound of 
a single piano key. The names of the sound files are 2a.wav, 2b.wav, 2c.wav, 2c#.wav, 
2d.wav, 2d#.wav, 2e.wav, and so on. Of these, let us just pick a more or less random 
note—say 3a.wav, a middle a—to play for our test key.

To actually play this note, we can use the playSound method from the Greenfoot class 
again:

Greenfoot.playSound(“3a.wav”);

This is the only code needed in the play method. The complete method  implementation 
is shown in Code 6.4.

Code 6.4
Playing the note for 
the key

Exercise 6.5 Implement the play method in your own version of the scenario. Make 
sure that the code compiles.

Exercise 6.6 Test your method. You can do this by creating an object of class Key, 
right- clicking the object, and invoking the play method from the object’s pop-up menu.

M06_KOLL4292_02_SE_C06.indd   107 2/3/15   7:55 PM



108      |       Chapter 6 ■ Making music: an on-screen piano 

We are almost there now. We can produce the key’s sound by interactively invoking the 
play method, and we can run the scenario and press a keyboard key (“g”) to create 
the appearance of the piano key being pressed.

All we need to do now is to play the sound when the keyboard key is pressed.

To play the sound programmatically (from your code), we can just call our own play 
method, like this:

play();

Exercise 6.7 Add code to your Key class so that the key’s note is played when the 
associated keyboard key is pressed. To do this, you need to figure out where the call to 
the play method should be added. Test it.

Exercise 6.8 What happens when you create two keys, run the scenario, and press 
the “g” key? Do you have any ideas what we need to do to make them react to different 
keyboard keys?

All the changes described thus far are available in the book scenarios as piano-2. If  
you had problems that you could not solve, or if  you just want to compare your solu-
tion to ours, have a look at this version.

 6.3 Abstraction: creating multiple keys
We have reached a stage where we can create a piano key that reacts to one key on our 
computer keyboard and plays a single piano note. The problem now is obvious: when 
we create multiple keys, they all react to the same keyboard key, and all produce the 
same note. We need to change that.

The current limitation comes from the fact that we hard-coded the keyboard key name 
(“g”) and the sound file name (“3a.wav”) into our class. That means: we used these 
names directly, without a chance to change them short of changing the source code 
and recompiling.

When writing computer programs, writing code that can solve one very specific task—
such as finding the square root of 1,764 or playing a middle-a piano key sound—is 
not very useful. Generally, we would like to write code that can solve a whole class of  
problems (such as finding the square root of any number, or playing a whole range 
of  piano key sounds). If  we do this, our program becomes much more useful. We 
have seen an example of  this in the previous chapter, when we parameterized our 
addScore method so that instead of adding 20 points every time it was able to add 
any number of points. We need to do something similar now.

The principle we shall use is called abstraction. Abstraction occurs in computing in 
many different forms and contexts—this is one of them.

Concept
abstraction 
occurs in many 
different forms 
in programming. 
One of them is 
the technique 
to write code 
that can solve a 
whole class of 
problems, rather 
than a single 
specific problem.

M06_KOLL4292_02_SE_C06.indd   108 2/3/15   7:55 PM



 6.3 Abstraction: creating multiple keys      |       109   

We will use abstraction to turn our Key class from a class that can create objects that 
play a middle-a when the “g” key is pressed on the keyboard into one that can create 
objects that can play a range of notes when different keyboard keys are pressed.

The way to achieve this is to use a variable for the name of the keyboard key we react 
to, and another variable for the name of the sound file we then want to play.

Code 6.5 shows the start of a solution to this. Here, we use two additional fields—key 
and sound—to store the name of the key and the sound file we want to use. We also 
add two parameters to the constructor, so that these bits of information can be passed 
in when the key object is being created, and we make sure that we store these param-
eter values into the fields in the constructor body.

Code 6.5
Generalizing for 
multiple keys: 
 making the key  
and note variable

We have now made an abstraction of our Key class. Now, when we create a new Key 
object, we can specify which keyboard key it should react to, and which sound file 
it should play. Of  course, we haven’t written the code yet that actually uses these 
 variables—that remains to be done.

We will leave this as an exercise for you.

Exercise 6.9 Implement the changes discussed above. That is: add fields for the key 
and the sound file, and add a constructor with two parameters that initializes those fields.

Exercise 6.10 Modify your code so that your key object reacts to the key and plays 
the sound file specified on construction. Test it! (Construct multiple keys with different 
sounds.)

M06_KOLL4292_02_SE_C06.indd   109 2/3/15   7:55 PM



110      |       Chapter 6 ■ Making music: an on-screen piano 

We have now reached a point where we can create a set of  keys to play a range of 
notes. (Currently, we have only white keys, but we can already build half  a piano with 
this.) This version of the project is in the book scenarios as piano-3.

Constructing all the keys, however, is a bit tedious. Currently, we have to create every 
piano key by hand, typing in all the parameters. What’s worse: every time we make a 
change to the source code, we have to start all over again. It is time to write some code 
to create the keys for us.

 6.4 Building the piano
We would now like to write some code in the Piano class that creates and places the 
piano keys for us. Adding a single key (or a few keys) is quite straight forward: by 
 adding the following line to the Piano’s constructor, a key is created and placed into 
the world each time we re-initialize the scenario:

addObject(new Key(“g”, “3a.wav”), 300, 180);

Remember that the expression

new Key(“g”, “3a.wav”)

creates a new key object (with a specified key and sound file), while the statement

addObject( some-object , 300, 180);

inserts the given object into the world at the specified x- and y-coordinates. The exact 
coordinates 300 and 180 are picked somewhat arbitrarily at this stage.

Exercise 6.11 Add code to your piano class so that it automatically creates a piano 
key and places in into the world.

Exercise 6.12 Change the y-coordinate at which the key is placed, so that the piano 
key appears exactly at the top of the piano (that is: the top of the piano key should line 
up with the top of the piano itself). Hint: the key image is 280 pixels high and 63 pixels 
wide.

Exercise 6.13 Write code to create a second piano key that plays a middle-g (sound 
file name “3g.wav”) when the “f” key is pressed on the keyboard. Place this key exactly 
to the left of the first key (without any gap or overlap).

Earlier in this book, we have discussed the value of using separate methods for separate 
tasks. Creating all the keys is a logically distinct task, so let us place the code for it into a 
separate method. It will do exactly the same thing, but the code is clearer to read.

M06_KOLL4292_02_SE_C06.indd   110 2/3/15   7:55 PM



 6.5 Using loops: the while loop      |       111   

We could now go ahead and insert a whole list of addObject statements to create all 
the keys we need for our keyboard. That is, however, not the best way of achieving 
what we want to do.

 6.5 Using loops: the while loop
Programming languages offer you a specific construct to do a similar task repeatedly: 
a loop.

A loop is a programming language construct that allows us to express commands such 
as “Do this statement 20 times” or “Call these two methods 3 million times” easily and 
concisely (without writing 3 million lines of code). Java has several different kinds of 
loop. The one we shall investigate now is called a while loop.

A while loop has the following form:

while ( condition )
{
    statement;
    statement;
    ...
}

The Java keyword while is followed by a condition in parentheses and a block (a pair of 
curly brackets) containing one or more statements. These statements will be  executed 
over and over, as long is the condition is true.

A very common pattern is a loop that executes some statements a given number of 
times. To do this, we use a loop variable as a counter. It is common practice to name a 
loop variable i, so we shall do this as well. Here is an example that executes the body 
of the while loop 100 times:

int i = 0;
while (i < 100)
{
    statement;
    statement;
    ...
    i = i + 1;
}

Exercise 6.14 In the Piano class, create a new method named makeKeys(). Move 
your code that creates your keys into this method. Call this method from the Piano’s 
constructor. Make sure to write a comment for your new method.

Concept
A loop is a 
statement in 
programming 
languages that 
can execute a 
section of code 
multiple times.

Concept
A loop variable 
is a local variable 
that is used for 
 counting the 
number of itera-
tions in a loop. 
For a while loop, 
it should be 
declared imme-
diately before 
the loop.

M06_KOLL4292_02_SE_C06.indd   111 2/3/15   7:55 PM



112      |       Chapter 6 ■ Making music: an on-screen piano 

There are several things worth noting in this code. First, it uses a construct that we 
have seen before: a local variable. Our variable is called i and we initialize it to zero. 
Then we repeatedly execute the body of the while loop, counting up i every time we do 
so. We continue this as long as i is less than 100. When we reach 100, we stop the loop. 
Execution will then continue with the code following the loop body.

There are two further details worth pointing out:

■ We use the statement i = i + 1; at the end of the loop body to increment our 
loop variable by one every time we have executed the loop. This is important. It is 
a common error to forget to increment the loop counter. The variable would then 
never change, the condition would always remain true, and the loop would continue 
looping forever. This is called an infinite loop, and is the cause of many errors in 
programs.

■ Our condition says that we execute the loop while i is less than (<) 100, not less than 
or equal (<=). So the loop will not be executed when i is equal to 100. At first glance, 
one might think that this means that the loop executes only 99 times, not 100 times. 
But this is not so. Because we started counting at zero, not at one, we do execute 
100 times (counting from 0 to 99). It is very common to start counting from zero in 
computer programs—we will see some advantages of doing so soon.

Now that we know about a while loop, we can use this construct to create all our 
piano keys.

Our piano will have 12 white keys. We can now create 12 keys by placing our statement 
to create a key inside the body of a loop that executes 12 times:

int i = 0;
while (i < 12)
{
     addObject (new Key (“g”, “3a.wav”), 300, 140);
     i = i + 1;
}

Exercise 6.15 Replace the code in your own makeKeys method with the loop 
shown here. Try it out. What do you observe?

Trying out this code, it first looks as if  only one key was created. This is deceptive, 
however. We do indeed get 12 keys, but since they have all been placed at exactly the 
same coordinates, they are all lying right on top of each other, and we cannot see them 
very well. Try moving the keys in the piano world with your mouse pointer and you 
will see that they are all there.

M06_KOLL4292_02_SE_C06.indd   112 2/3/15   7:55 PM



 6.5 Using loops: the while loop      |       113   

Exercise 6.16 How can you change your code so that the keys do not all appear at 
exactly the same place? Can you change your code so that they get placed exactly 
next to each other?

The reason the keys all appeared on top of  each other is that we inserted them all 
at the fixed location 300,140 into the world. We now want to insert every key at a 
 different location. This is now actually quite easy to do: we can make use of our loop 
variable i to achieve this.

Exercise 6.17 How many times does our loop body execute? What are the values of 
i during each of the executions?

We can now replace the fixed x-coordinate 300 with an expression that includes the 
variable i:

addObject(new Key(“g”, “3a.wav”), i*63, 140);

(The asterisk “*” is the operator for multiplication. Appendix D lists other operators 
that you can use with integer numbers.)

We have chosen i*63, because we know that the image of each key is 63 pixels wide. 
The values for i, as the loop executes, are 0, 1, 2, 3, and so on. So the keys will be 
placed at x-coordinates 0, 63, 126, 189, and so on.

When we try this, we notice that the left-most key is not placed very well. Since object 
placement in Greenfoot refers to the center point of an object, the center of the first 
key is placed at x-coordinate zero, which places the key half  out of the screen. To fix 
this, we just add a fixed offset to each key coordinate. The offset is chosen so that the 
keys as a whole appear in the middle of our piano:

addObject(new Key(“g”, “3a.wav”), i*63 + 54, 140);

The y-coordinate can remain constant, since we want all keys at the same height.

Exercise 6.18 Challenge exercise (Do this exercise only if you are fairly confident 
about your programming. If you are just beginning, you may like to skip this exercise.)

Using fixed numbers in your code, such as the 140 or 63 in the statement above, is 
usually not the best solution, since it makes your code vulnerable to breaking when 
things change. For example, if we replace the key images with nicer images that have 
a different size, our code would not place them correctly.

M06_KOLL4292_02_SE_C06.indd   113 2/3/15   7:55 PM



114      |       Chapter 6 ■ Making music: an on-screen piano 

Our code now places our white keys nicely—that’s a good step forward. The most 
obvious problem now is that all piano keys react to the same keyboard key and play 
the same note. Fixing this requires a new programming construct: an array.

 6.6 Using arrays
Currently, our 12 keys are created, and placed at appropriate locations on the 
screen, but they all react to the “g” key, and they all play the same note. This is 
despite the fact that we have prepared our keys to accept different keyboard keys 
and sound files in the constructor. However, since all our keys are created by the 
same line of  source code (executed in a loop), they are all created with “g” and  
“3a.wav” as parameters.

The solution is similar to the change we made in regards to the x-coordinate: we should 
use variables for the keyboard key and the sound file name, and assign  different values 
to them each time the loop executes.

This is more problematic than in the case with the x-coordinate, though. The correct keys 
and sound file names cannot be computed as easily. So where do we get the values from?

The answer is: we will store them in an array.

An array is an object that can hold many variables, and thus can store many values. 
We can show this in a diagram. Assume we have a variable named “name” of type 
String. To this variable, we assign the String “Fred”:

String name;

name = “Fred”;

Figure 6.2 illustrates this example.

We can avoid using those numbers directly by calling the getWidth() and getH-
eight() methods of the key’s image. To do this, first assign the key object to a 
local variable of type Key when you create it, and then use key.getImage().
getWidth() in place of the 63. Do a similar thing with the height.

Replacing the 54 requires you to also use the getWidth() method of the piano’s image.

After doing this, our code will always place the keys nicely, even if their size changes.

Concept
An array is 
an object that 
holds multiple 
variables. These 
can be accessed 
using an index.

Figure 6.2
A simple String 
variable

"Fred"String name

M06_KOLL4292_02_SE_C06.indd   114 2/3/15   7:55 PM



 6.6 Using arrays      |       115   

This case is very simple. The variable is a container that can hold a value. The value is 
stored in the variable.

In case of an array, we get a separate object—the array object—that holds many varia-
bles. We can then store a reference to that array object in our own variable (Figure 6.3).

Figure 6.3
An array of Strings

String [] names

String[ ]

"a"

0

"b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l"

1 2 3 4 5 6 7 8 9 10 11

The Java code to create this situation is as follows:

String[] names;

names = { “a”,“b”,“c”,“d”,“e”,“f”,“g”,“h”,“i”,“j”,“k”,“l” };

In the variable declaration, the pair of square brackets ([ ]) indicates that the type of 
the variable is an array. The word before the brackets indicates the element type of  
the array, that is the type that each entry in the array should have. Thus, String[] 
denotes an array of Strings, while int[] denotes an array of integers.

The expression

{ “a”,“b”,“c”,“d”,“e”,“f”,“g”,“h”,“i”,“j”,“k”,“l” }

creates the array object and fills it with the Strings “a” to “l.” This array object is then 
assigned to our variable names. We can see from the diagram that, when an array 
object is assigned to a variable, the variable then contains a pointer to that object.

Once we have our array variable in place, we can access individual elements in the 
array by using an index—a position number in the array object. In Figure 6.3, the 
index of each individual String is shown above each array element. Note that counting 
again starts at zero, so the String “a” is at position 0, “b” is at position 1, and so on.

In Java, we access array elements by attaching the index in square brackets to the 
array name. For example:

names[3]

accesses the element in the names array at index 3—the String “d.”

For our piano project, we can now prepare two arrays: one with the names of  the 
 keyboard keys (in order) for our piano keys, and one with the names of  the sound 
files for those piano keys. We can declare fields in the Piano class for those arrays and 
store the filled arrays. Code 6.6 illustrates this.

Concept
Individual 
elements in 
an array are 
accessed using 
square brackets 
([ ]) and an 
index to specify 
the array  
element.

M06_KOLL4292_02_SE_C06.indd   115 2/3/15   7:55 PM



116      |       Chapter 6 ■ Making music: an on-screen piano 

Note that the values in the whiteKeys array are the keys on the middle row of my 
computer keyboard. Keyboards are slightly different on different systems and in dif-
ferent countries, so you may have to change these to match your own keyboard. The 
other slightly odd thing here is the String “\\.” The backslash character (\) is called 
an escape character and has a special meaning in Java Strings. To create a String that 
contains the backslash as a normal character, you have to type it twice. So typing the 
String “\\” in your Java source code actually creates the String “\.”

Now we have arrays available listing the keys and sound file names that we want 
to use for our piano keys. We can now adapt our loop in the makeKeys method 
to make use of  the array elements to create appropriate keys. Code 6.7 shows the 
resulting source code.

Code 6.6
Creating arrays for 
keys and notes

Code 6.7
Creating piano keys 
with keyboard keys 
and notes from 
arrays

A number of things are worth noting:

■ We have moved the creation of the new key out of the addObject method call into 
a separate line, and assigned the key object initially to a local variable called key. 
This was just done for clarity: the line got very long and busy, and it was quite hard 
to read. Splitting it into two steps makes it easier to read.

M06_KOLL4292_02_SE_C06.indd   116 2/3/15   7:55 PM



 6.6 Using arrays      |       117   

■ The parameters for the Key constructor access whiteKeys[i] and whiteNotes[i]. 
That is, we use our loop variable i as the array index to access all the different key 
strings and note file names in turn.

■ We use a plus symbol (+) with whiteNotes[i] and a String (“.wav”). The variable 
whiteNotes[i] is also a String, so this is string concatenation again, as we encoun-
tered in the previous chapter. We append the String “.wav” to the whiteNotes[i] 
value. This is because the name stored in the array is of the form “3c,” while the file 
name on disk is “3c.wav.” We could have stored the full file name in the array, but 
since the suffix is the same for all notes files, this seemed unnecessary. Just adding it 
here saves us some typing.

■ We have also replaced the 12 in the condition of the while loop with whiteKeys.
length. The “.length” attribute of an array will return the number of elements 
in this array. In our case, we do have 12 elements, so leaving the 12 in place would 
have worked. However, using the length attribute is safer. Should we one day decide 
to use more or fewer keys, our loop will still do the right thing, without the need to 
change the condition.

With these changes, our piano should now be playable with the middle row of keys on 
our keyboard, and it should produce different notes for different keys.

Exercise 6.19 Make the changes discussed above in your own scenario. Make sure 
that all keys work. If your keyboard layout is different, adapt the whiteKeys array to 
match your keyboard.

Exercise 6.20 The sounds folder of the piano scenario contains more notes than the 
ones we are using here. Change the piano so that the keys are one octave lower than they 
are now. That is, use the sound “2c” instead of “3c” for the first key, and move up from there.

Exercise 6.21 If you like, you can make your keys produce entirely different sounds. 
You can record you own sounds using Greenfoot’s built-in sound recorder or other 
sound recording software, or you can find sound files on the Internet. Move the sound 
files into the sounds folder, and make your keys play them.

The version we have now is in the book scenarios as piano-4.

The missing part now is quite obvious: we have to add the black keys.

There is nothing really new in this. We essentially have to do very similar things again 
as we did for the white keys. We will leave this as an exercise for you to do. However, 
doing it all in one chunk is quite a substantial job. In general, when approaching a 
larger task, it is a good idea to break it down into several smaller steps. Thus, we will 
break this task down into a sequence of exercises that approaches the solution one 
step at a time.

M06_KOLL4292_02_SE_C06.indd   117 2/3/15   7:55 PM



118      |       Chapter 6 ■ Making music: an on-screen piano 

Exercise 6.22 Currently, our Key class can only produce white keys. This is because 
we have hard-coded the file names of the key images (“white-key.png” and “white-key-
down.png”). Use abstraction to modify the Key class so that it can show either white or 
black keys. This is similar to what we did with the key name and sound file name: intro-
duce two fields and two parameters for the two image file names, and then use the vari-
ables instead of the hard-coded file names. Test by creating some black and white keys.

Exercise 6.23 Modify your Piano class so that it adds two black keys at an arbitrary 
location.

Exercise 6.24 Add two more arrays to the Piano class for the keyboard keys and 
notes of the black keys.

Exercise 6.25 Add another loop in the makeKeys method in the Piano class that 
creates and places the black keys. This is made quite tricky by the fact that black keys 
are not as evenly spaced as white keys—they have gaps (see Figure 6.1). Can you come 
up with a solution to this? Tip: create a special entry in your array where the gaps are, 
and use that to recognize the gaps. (Read the note below these exercises first before 
you start. This is a hard task! You may want to look at the solution in piano-complete if 
you cannot figure it out.)

Note: The String class

We have now used the String class several times and discussed some of its characteristics in the pre-
vious chapter. It is time to find out a bit more about it. Find this class in the Java library documen-
tation and have a look at its methods. There are many, and some of them are often very useful.

You will see methods to create substrings, to find out the length of a string, to convert the case, and 
much more.

Especially interesting for Exercise 6.25 above may be the equals method that allows you to  
compare the string with another string. It will return true if the two strings are the same.

This is as far as we go with this project. The piano is more or less complete now. We 
can play simple tunes, and we can even play chords (multiple keys at the same time).

Feel free to extend this if  you like. How about adding a second set of sounds, and then 
adding a switch on screen that allows you to switch from the piano sounds to your 
alternate sounds?

M06_KOLL4292_02_SE_C06.indd   118 2/3/15   7:55 PM



 6.6 Using arrays      |       119   

Summary of programming techniques

In this chapter, we have seen two very fundamental and important concepts for more 
sophisticated programming: loops and arrays. Loops allow us to write code that exe-
cutes a sequence of statements many times over. The loop construct we have discussed 
is called a while loop. Java has other loops as well, which we will encounter shortly. We 
will use loops in many of our programs, so it is essential to understand them.

Within the loop, we often use the loop counter to perform calculations or to generate 
different values in every loop iteration.

The other major new concept we used was an array. An array can provide many vari-
ables (all of the same type) in one single object. Often, loops are used to process an 
array if  we need to do something to each of its elements. Elements are accessed using 
square brackets.

Another very fundamental technique we encountered was abstraction. In this case, it 
appeared through the use of constructor parameters to create code that could handle 
a whole class of problems instead of a single specific problem.

We have also encountered a few new operators: we have seen the AND and NOT 
(&& and !) operators for boolean expressions, and we have again encountered string 
 concatenation using the plus operator (+) on String operands. The String class is 
 documented in the Java API documentation and has many useful methods.

Concept summary
■ Logic operators, such as && (AND) and ! (NOT) can be used to combine multiple boolean  

expressions into one boolean expression.

■ abstraction occurs in many different forms in programming. One of them is the technique to 
write code that can solve a whole class of problems, rather than a single specific problem.

■ A loop is a statement in programming languages that can execute a section of code multiple 
times.

■ A loop variable is a local variable that is used for counting the number of iterations in a loop.  
For a while loop, it should be declared immediately before the loop.

■ An array is an object that holds multiple variables. These can be accessed using an index.

■ Individual elements in an array are accessed using square brackets ([ ]) and an index to specify the 
array element.

■ The type String is defined by a normal class. It has many useful methods, which we can look up in 
the Java library documentation.

M06_KOLL4292_02_SE_C06.indd   119 2/3/15   7:55 PM



120      |       Chapter 6 ■ Making music: an on-screen piano 

Figure 6.4
Floating bubbles

 Drill and practice
This time, we will practice the most fundamental construct we have just learned: using 
the while loop. We will do this with a different scenario called bubbles (Figure 6.4). 
Open that scenario, and then do the following exercises.

Exercise 6.26 Open the bubble scenario. You will see that the world is empty. 
Place some Bubble objects into the world, using the default constructor. (The default 
 constructor is the one without parameters.) Remember: you can also do this by shift-
clicking into the world. What do you observe?

Exercise 6.27 What is the initial size of a new bubble? What is its initial color? What is 
its initial direction of movement?

Exercise 6.28 In the world subclass, Space, create a new private method called 
setup(). Call this method from the constructor. In this method, create a new bubble, 
using the default constructor, and place it in the center of the world. Compile, then click 
Reset a few times to test.

Exercise 6.29 Change your setup() method so that it creates 21 bubbles. Use a 
while loop. All bubbles are placed in the center of the world. Run your scenario to test.

M06_KOLL4292_02_SE_C06.indd   120 2/3/15   7:55 PM



 6.6 Using arrays      |       121   

Exercise 6.30 Place the 21 bubbles at random locations in the world.

Exercise 6.31 Place the bubbles on a diagonal, with x and y distances of 30. The first 
bubble at 0,0, the next one at 30,30, the next at 60,60, and so on. The last one will be at 
600,600 (for 21 bubbles). Use your loop counter variable to achieve this.

Exercise 6.32 Place the bubbles on a slightly different diagonal line, so that they 
go from the top left corner of the world to the bottom right corner. The last bubble 
should be at 900,600.

Exercise 6.33 Add a second while loop to your setup() method that places some 
more bubbles. This loop places 10 bubbles, in a horizontal line, starting at x=300, 
y=100, with x increasing by 40 every time and y being constant. (That is, the bubbles 
are at 300,100, then 340,100, then 380,100, and so on.) The size of the bubble should 
also increase, starting with 10 for the first bubble, then 20, then 30, etc. Use the second 
Bubble constructor for this (the one with one parameter).

Exercise 6.34 Remove the existing loops from your setup() method. Write a new 
while loop that does the following: it creates 18 bubbles. The bubbles are all placed 
in the center of the world, and have sizes starting from 190, decreasing by 10. The last 
bubble has size 10. Make sure to create the largest first, and the smallest last, so that 
you have bubbles of sizes 190, 180, 170, etc., all lying on top of each other.

Use the third constructor of Bubble—the one with two parameters. It also lets you 
specify the initial direction. Set the direction as follows: the first bubble has direction 0, 
the next 20, the next 40, etc. That is, the direction between each two bubbles increases 
by 20 degrees.

Test.

M06_KOLL4292_02_SE_C06.indd   121 2/3/15   7:55 PM



Chapter

This chapter introduces two very important concepts in preparation of  the follow-
ing chapter: communicating with other objects, and dealing with lists of  objects. In 
Chapter 8, we will develop a fairly complex example—involving planets in space—
that makes use of many new constructs, some of which require a bit of explanation 
and practice. To approach things step by step and not do too much at once, we will 
first introduce these two concepts with a smaller example here.

The scenario we discuss in this chapter is a practice ground for these constructs con-
structs; it is called autumn (Figure 7.1).

Object interaction:  
an introduction

topics:  communication with other objects, using classes from the Java library, using 
lists of objects

concepts: null, Java class library, collection, list, for-each loop

7

Figure 7.1
The “autumn”  
scenario

M07_KOLL4292_02_SE_C07.indd   122 2/3/15   12:29 PM



 7.2 Object references      |       123   

Exercise 7.1 Open the autumn-1 scenario and investigate it. Run it and note what 
it does. Read the source code of the three scenario classes and note every bit of code 
that you do not fully understand.

 7.1 Interacting objects
Objects can interact with (“talk to”) other objects by calling methods on those other 
objects.

We have seen several examples of this in the previous chapters, but it is time to gather 
everything we have seen so far and discuss it systematically to make sure we have 
covered everything important. Object interaction is so central to object-oriented pro-
gramming that we cannot afford to miss anything here.

 7.2 Object references
For one object to talk to another, it must always have a reference to that other object. 
This reference is usually stored in a variable. If, for example, our Block object from 
the autumn scenario wants to talk to the MyWorld object, it must first have a refer-
ence to the MyWorld object. Figure 7.2 shows this situation: The object of type Block 
holds a reference to a MyWorld object in a variable called world.

Figure 7.2
A Block object  
holding a  
reference to a 
MyWorld object

Block

world

MyWorld

Once the block has a reference to the MyWorld object in a variable, it can call methods 
on it. For example:

world.addObject(new Leaf(), 100, 100);

Calling a method on another object serves to “talk to” that object. Often, this is to 
give instructions to that other object (in this case saying to the world object: “Please 
add a new leaf at location 100,100.”)

M07_KOLL4292_02_SE_C07.indd   123 2/3/15   7:53 AM



124      |       Chapter 7 ■ Object interaction: an introduction 

 7.3 Interacting with the world
Since we always need an object reference to talk to an object, one obvious question is: 
Where do we get this object reference from? Well, there are several possibilities.

In the example above, our block is talking to the world object. We can get a reference 
to the world object by using the getWorld() method that every actor possesses.

The getWorld() method gives us a reference to the currently instantiated world, 
which is always of  the subclass of  the World class. We can declare a variable of 
type World and store our world object into it. Doing this before calling our method  
gives us:

World world = getWorld();

world.addObject(new Leaf(), 100, 100);

Exercise 7.2 Add code to your Block class so that the block adds new leaves to the 
world whenever it hits the edge of the world. First, add the leaves at location 100,100, 
as in the example above.

Exercise 7.3 Modify your code so that the new leaf is added at the current location 
of the block. You can use the block’s getX() and getY() methods to achieve this.

 7.4 Interacting with actors
In the example above, we have seen how to call a method on the world object. (We 
had, in fact, already encountered this in a previous chapter.) Next we investigate how 
to call a method on another actor object.

The example we will use is that we want to program our block so that whenever it 
touches a leaf, it tells this leaf to turn.

Since Leaf is a subclass of Actor, and Actor has a turn method, we can call

leaf.turn(9);

This assumes that we have a variable called leaf which holds a reference to a Leaf 
object. The number 9 is an arbitrary value to turn the leaf a bit.

We can see that calling a method on an actor object looks just the same as with the 
world object. The difference is in obtaining the reference to the leaf in the first place—
where do we get the reference from?

One way to get references to other actors in the world is via Greenfoot’s collision detec-
tion methods. These are methods that check whether our actor intersects with another 
actor, and gives us a reference to that other actor if  it does. Once we have a reference 
to the leaf we are touching, the rest is easy.

We will use a method called getOneIntersectingObject. This method returns 
to us a reference to the intersecting actor. (There are various other collision 

M07_KOLL4292_02_SE_C07.indd   124 2/3/15   7:53 AM



 7.5 The null value      |       125   

 detection methods; they are further discussed in Chapter 9, and a full list is given in  
Appendix C.)

We call our method like this:

Leaf leaf = (Leaf) getOneIntersectingObject(Leaf.class);

Exercise 7.4 Look up the method getOneIntersectingObject in Greenfoot’s 
class documentation. Which class does it belong to? What type does it return?

Here is what this line of code does in detail:

■ We call the getOneIntersectingObject method. The parameter lets us specify 
what kinds of object we are interested in. We must specify a class. By using Leaf.
class as the parameter, we are saying we want to check whether we are intersecting 
any Leaf objects.

■ On the left hand side, we are declaring a new local variable called leaf (of  type 
Leaf) to be ready to store a leaf object.

■ If  getOneIntersectingObject finds an intersecting leaf, it will return a refer-
ence to that leaf object to us, and we assign it to our leaf variable.

■ We need to use a cast: (Leaf). This is because the getOneIntersectingObject 
method is declared to return an Actor, not a Leaf. We need to tell our compiler 
that we are actually expecting an object of type Leaf here.

 7.5 The null value
We have seen what happens if  our method finds an intersecting leaf: It returns 
the reference and we are storing it in a variable. What if  we are not intersecting 
any leaf ?

If  we call getOneIntersectingObject, but we are not intersecting any object of the 
requested type at the moment, the method will return the special value null.

The null value can be assigned to any object variable. If  it is stored in a variable, it 
means that this variable is not currently holding any reference; it is essentially empty.

The getOneIntersectingObject method returns either null or an object refer-
ence, depending on whether we are intersecting an object. We can check this after the 
call to find out whether we were actually touching anything:

Leaf leaf = (Leaf) getOneIntersectingObject(Leaf.class);
if (leaf != null)
{
    // if we get here, we are touching a leaf
}

Concept
The value null 
is a special value 
that can be 
assigned to any 
object variable. 
If a variable con-
tains null, it does 
not currently 
reference any 
object.

M07_KOLL4292_02_SE_C07.indd   125 2/3/15   8:54 AM



126      |       Chapter 7 ■ Object interaction: an introduction 

Here, we look at the leaf variable: If  it is not null, then we know we touched a leaf, 
and the reference is stored in our variable. Thus, we can complete this task by entering 
our request for the leaf to turn in the body of the if-statement:

leaf.turn(9);

Exercise 7.5 In your class Block, create a new private method called checkLeaf(). 
The method does not return a value. In this method, enter the code as discussed 
above, to check whether we are intersecting a leaf, and ask it to turn if we do.

Exercise 7.6 Make sure you are actually checking for leaves: From your act method, 
call your checkLeaf() method. Test.

Exercise 7.7 Remove your code that adds leaves when the block hits the world 
edge. Instead, add some code to the setUp() method in the MyWorld class to add 18 
leaves. Use a while loop. Add the leaves at random locations. Test.

 7.6 Interacting with groups of actors
We have now seen one way to get a reference to another actor, and then to communi-
cate with that actor by calling one of its methods.

The next interesting case is communication with several actors at once: sometimes 
we want to do something to every actor of a given class, or every actor within a given 
range around us.

The example we use here is somewhat artificial, but serves well to practice this: If  the 
user clicks the mouse, we want to change the image of all leaves.

Exercise 7.8 The Leaf class has a method called changeImage() to set a different 
image. Try it out: With your scenario paused, call the changeImage() method interac-
tively on some leaves (by right-clicking and choosing it from the leaf’s menu).

The Block class already has a method to check for mouse clicks (Code 7.1). We can 
enter our code here. All we need to do is to work out how to call the changeImage() 
method on all leaves in the world.

M07_KOLL4292_02_SE_C07.indd   126 2/3/15   7:53 AM



 7.7 Using Java library classes      |       127   

The World class in Greenfoot has methods that give us access to objects within it.

Exercise 7.9 Look up Greenfoot’s World class in the Greenfoot class documentation. 
Find all methods that give us access to objects within the world. Write them down.

Code 7.1
A method to check 
for mouse clicks

Concept
The Java class 
library is a 
large collection 
of ready-made 
classes, provided 
with the Java 
system. We 
can use these 
classes by writ-
ing an import 
 statement.

Exercise 7.10 Find the class Color in the class list. Select it. Look at the documenta-
tion of this class. How many constructors does it have?

The most interesting of those methods for us is this one:

java.util.List getObjects(java.lang.Class cls)

This method gives us a list of all objects in the world of a particular class. It uses two 
types that look unusual: java.lang.Class for its parameter, and java.util.List 
as the return type. To understand this properly, we have to discuss two things: Java 
class libraries and the List type.

 7.7 Using Java library classes
The classes Class and List are two of the many classes from the Java Standard Class 
Library1. The Java system comes with a large collection of useful classes which we can 
just use. Over time, we will get to know many of them.

We can see documentation for all the classes in the class library by selecting Java 
Library Documentation from Greenfoot’s Help menu. This will open the documenta-
tion for the Java libraries in a web browser (Figure 7.3).

The bottom left pane in this window shows a list of  all classes in the Java library. 
(There are many of them!) We can look at the documentation for any particular class 
by finding it in this list and selecting it. When selected, the main part of the window 
will display the documentation for this class.

1 List is actually an Interface, not a class—we will discuss this later.

M07_KOLL4292_02_SE_C07.indd   127 2/3/15   7:53 AM



128      |       Chapter 7 ■ Object interaction: an introduction 

You can see that there are literally thousands of  classes in the Java library. To get 
some sort of order into this long list, classes are grouped into packages. A package 
is a group of logically related classes. At the top of the documentation of any class, 
we can see what package the class is in. The class Color, for instance, is in a package 
called java.awt.

When we want to use any of the classes from the Java library in our own scenario, we 
need to import the class, using an import statement. The import statement is written at 
the very top of the class’s source code and names the package and the class we want to 
use, with a dot in-between. For example, the List type is in the package java.util. To 
use it in our own code, we write

import java.util.List;

Figure 7.3
The Java library 
documentation

Exercise 7.11 Write the import statement for List into your own Block class, just 
below the import statement for greenfoot.* that is already there.

Using an asterisk (*) imports all classes from a given package. For example, import 
greenfoot.* imports all classes from the greenfoot package.

Importing a class makes it usable within our own scenario, just as if  it were one of our 
own classes. After importing it, we can declare variables of  this type, call methods, 

M07_KOLL4292_02_SE_C07.indd   128 2/3/15   7:53 AM



 7.8 The List type      |       129   

and do anything else we can do with any other class. Thus, in our own code, we could 
now declare a variable of type List:

List myList;

The package java.lang is special: it contains the most commonly used classes, and we 
do not need to import it explicitly; it is always automatically imported. Thus, we do 
not need to write an import statement for java.lang.Class.

The Java library is quite intimidating at first, because it has so many classes. Don’t 
worry—we shall use only a small number of them, and we shall introduce them one by 
one when we need them.

Now that we know how to import the List type, let us have a closer look at how to 
use it.

 7.8 The List type
Dealing with collections of objects is important both in Greenfoot programming and 
in programming in general. Several of  the Greenfoot methods return collections of 
objects as their result, usually in the form of a list. The type of the returned object 
then is the List type from the java.util package.

Concept
A collection is 
a kind of object 
that can hold 
many other 
objects.

Concept
A List is an 
example of a 
collection. Some 
methods from 
the Greenfoot 
API return List 
objects.

Exercise 7.12 Look up java.util.List in the Java library documentation. What 
are the methods called to add an object to the list, remove an object from the list, and 
to find out how many objects are currently in the list?

Exercise 7.13 What is the full name of this type, as given at the top of the 
 documentation?

When we looked at the getObjects method in the previous section, we noticed that 
it returns an object of  type java.util.List. Thus, in order to store this object, 
we need to declare a variable of this type. We will do this in our checkMouseClick 
method.

Side Note: Interfaces

The List type is a little different from other object types we have seen: It is not a class, but an 
interface. Interfaces are a Java construct that provides an abstraction over different possible imple-
menting classes. The details are not important to us right now—it is sufficient to know that we can 
deal with the List type in similar ways as with other types: We can look it up in the Java Library 
Documentation, and we can call the existing methods on the object. We cannot, however, create 
objects directly of type List. We will come back to this later.

M07_KOLL4292_02_SE_C07.indd   129 2/3/15   8:22 PM



130      |       Chapter 7 ■ Object interaction: an introduction 

The List type, however, is different from other types we have seen before. The docu-
mentation shows at the top

Interface List<E>

Apart from the word interface in place of class, we notice another new notation: the 
<E> after the type name.

Formally, this is called a generic type. This means that the type List needs an addi-
tional type specified as a parameter. This second type specifies the type of  the  
elements held within the list.

For example, if  we are dealing with a list of strings, we would specify the type as

List<String>

If, instead, we are dealing with a list of actors, we can write

List<Actor>

In each case, the element type within the angle brackets (<>) is the type of some other 
known kind of object.

 7.9 A list of leaves
In our case, we shall call the getObjects method on our world to receive a list of 
leaves, so our variable declaration will read:

List<Leaf> leaves

We can then assign the list which we retrieve from the getObjects method to this 
variable. Together with getting the world object itself, this is what it looks like:

World world = getWorld();

List<Leaf> leaves = world.getObjects(Leaf.class);

After executing these lines, our variable leaves holds a list of all leaves that currently 
exist in the world. The last thing left to do is to call the changeImage() method for 
every leaf in our list. We will use a new kind of loop to achieve this: the for-each loop.

 7.10 The for-each loop
We will now go through our list of  leaves one by one, changing the image of  each  
in turn.

Java has a specialized loop for stepping through every element of a collection, and we 
can use this loop here. It is called a for-each loop, and it is written using the following 
pattern:

Concept
A generic type 
is a type that 
receives a sec-
ond type name 
as a parameter.

Concept
The for-each 
loop is another 
kind of loop. It is 
well suited to pro-
cess all elements 
of a collection.

M07_KOLL4292_02_SE_C07.indd   130 2/3/15   7:53 AM



 7.10 The for-each loop      |       131   

for (ElementType variable : collection)
{
    statements;
}

In this pattern, ElementType stands for the type of  each element in the collection, 
variable is a variable that is being declared here, so we can give it any name we 
like, collection is the name of  the collection we wish to process, and statements is 
a sequence of  statements we wish to carry out. This will become clearer with an 
example.

Using our list named leaves, we can write

for (Leaf leaf : leaves)
{
    leaf.changeImage();
}

(Remember that Java is case sensitive: Leaf with an uppercase “L” is different from 
leaf with a lowercase “l”. The uppercase name refers to the class, the lowercase name 
refers to a variable holding an object. The plural version—leaves—is another vari-
able that holds the whole list.)

We can read the for-each loop a little more easily if  we read the keyword for as “for 
each,” the colon as “in,” and the opening curly bracket as “do.” This then becomes:

for each leaf in leaves do: …

This reading also gives us a hint as to what this loop does: It will execute the state-
ments within the curly brackets once for each element in the list ‘leaves’. If, for 
example, there are ten elements in that list, the statements will be executed ten times. 
Every time, before the statements are executed, the variable leaf (declared in the loop 
header) will be assigned one of the list elements. Thus, the sequence of action will be

leaf = first element from ‘leaves’;
execute loop statements;
leaf = second element from ‘leaves’;
execute loop statements;
leaf = third element from ‘leaves’;
execute loop statements;
…

The variable leaf is available to be used in the loop statements to access the cur-
rent element from the list. We could then, for example, call a method on that object,  
as in the example shown above, or pass the object on to another method for further 
processing.

We are now ready to put it all together and add the for-each loop to our code. 
Code 7.2 shows the complete method that implements the example we have just 
 discussed.

M07_KOLL4292_02_SE_C07.indd   131 2/3/15   7:53 AM



132      |       Chapter 7 ■ Object interaction: an introduction 

If  you are unsure about your solutions and want to compare them with ours: the 
autumn-2 scenario includes all the functionality discussed in this chapter.

Summary of programming techniques

We have seen some important constructs in this chapter, and these constructs may 
at first not be easy to fully understand. You will need some time (and much more  
practice) to get used to them.

The first part was relatively easy: We have seen how to get access to the world object 
and call a method on it. Then we have discussed how to get access to another actor 
and call one of its methods. We gained access to that actor using one of Greenfoot’s 
collision detection methods.

Finally—and this is the hard bit—we have seen how to receive a list of  multiple 
objects, and we used a for-each loop to call a method on each of  the objects in  
the list.

Working with lists and processing their elements is a very important concept, 
not only in Greenfoot, but in programming in general. This was just a brief  look 
at a first example. We shall do more of  this in the following chapters, and you 
will hopefully become more familiar with these techniques as you practice them 
repeatedly.

Exercise 7.14 Implement the functionality to change all leaves with a mouse click in 
your own scenario. Test.

Code 7.2
Changing the 
images of all leaves 
in the world

M07_KOLL4292_02_SE_C07.indd   132 2/3/15   7:53 AM



 7.10 The for-each loop      |       133   

Concept summary

■ The value null is a special value that can be assigned to any object variable. If a variable contains 
null, it does not currently reference any object.

■ The Java class library is a large collection of ready-made classes, provided with the Java system. 
We can use these classes by writing an import statement.

■ A collection is a kind of object that can hold many other objects.

■ A List is an example of a collection. Some methods from the Greenfoot API return List objects.

■ A generic type is a type that receives a second type name as a parameter.

■ The for-each loop is another kind of loop. It is well suited to process all elements of a collection.

Drill and practice

The most important concepts to practice here are working with lists and the for-each 
loop. Here are some exercises to give you some practice with this. We will continue to 
use the autumn scenario.

Exercise 7.15 In your autumn scenario, introduce a new class called Apple. Give it an 
apple image. Write code in the MyWorld class to place 12 apples at random locations.

Exercise 7.16 Write code in your Block class to turn all apples by 90 degrees when-
ever the block hits the edge of the world.

Exercise 7.17 Create yet another class: Pear. Use a suitable image. Write code to place  
8 pears into the world.

Exercise 7.18 Write code in the Block class so that every time the block hits the 
edge, all pears are moved 20 cells to the right (in addition to turning the apples).

Exercise 7.19 Modify your pear-moving code so that pears are only moved right if 
they are not already at the right edge. If they are at the right edge, they are moved to 
the left edge instead.

Exercise 7.20 Modify your method that handles the mouse click so that only the 
images of leaves in the left half of the world are changed (instead of changing all images).

This should be sufficient preparation for the next chapter: We will now move on 
and look at the next scenario, and get some more practice with lists as a part of  
that example.

M07_KOLL4292_02_SE_C07.indd   133 2/3/15   7:53 AM



Chapter

In this chapter, we will investigate more sophisticated interactions between objects 
in a world. As a start, we will look at one of the most universal interactions between 
objects anywhere: gravity.

In this scenario, we are dealing with celestial bodies (such as stars and planets). We 
shall simulate the motion of these bodies through space, using Newton’s law of uni-
versal gravitation. (We now know that Newton’s formulas are not quite accurate, 
and that Einstein’s theory of general relativity describes the motions of planets more  
precisely, but Newton is still good enough for our simple simulation.) 

If  you are a little worried about dealing with physics and formulas, don’t worry. 
We do not need to go very deeply into it, and the formula we will use is really 
quite simple. At the end, we will turn this scenario into an artistic experiment 
with sound and visual effects. If  you are more technically interested, you can work 
more on the physics. If  your interest is more artistic, you can concentrate on this 
aspect instead.

 8.1 The starting point: Newton’s Lab
We shall start this project by investigating a partly implemented version of this sce-
nario. Open the Newtons-Lab-1 scenario from the book scenario folder. You will see 
that a world subclass already exists (called Space). We also have classes SmoothMover, 
Body, and Vector (Figure 8.1).

Interacting objects:  
Newton’s Lab

topics: more about objects interacting, using helper classes

concepts: overloading, more practice with lists, for-each loop

8

M08_KOLL4292_02_SE_C08.indd   134 2/3/15   8:06 AM



 8.1 The starting point: Newton’s Lab      |       135   

Figure 8.1
The Newton’s Lab 
scenario

Exercise 8.1 Open the Newtons-Lab-1 scenario. Try it out (place some bodies into 
space). What do you observe?

When you try to run this scenario, you will notice that you can place objects (of type Body) 
into space, but these bodies do not move, and they do not act in any interesting way yet.

Figure 8.2
Isaac Newton and 
Albert Einstein1

1 Newton: from Georgios Kollidas/Shutterstock. Einstein: Courtesy of Library of Congress Prints  
and Photographs Division.

M08_KOLL4292_02_SE_C08.indd   135 2/3/15   7:59 PM



136      |       Chapter 8 ■ Interacting objects: Newton’s Lab 

Before we get into extending the implementation, let us investigate the scenario a little 
more closely.

By right-clicking on the world background, we can see and invoke the public methods 
of the Space class (Figure 8.3).

Exercise 8.2 Invoke the different public methods of the Space object. What do they do?

Exercise 8.3 When you have a star or planet in your world, right-click it to see what 
public methods it has. What are they?

Exercise 8.4 Invoke the sunPlanetMoon method from the public methods of 
Space. Find out and write down the mass of the sun, the planet, and the moon.

Exercise 8.5 Have a look at the source code of the Space class and see how the public  
methods here are implemented.

Figure 8.3
The World  
methods in 
Newton’s Lab

 8.2 Helper classes: SmoothMover and Vector
In this scenario, we are using two general purpose helper classes: SmoothMover and 
Vector. These are classes that add functionality to a given scenario, and can be used 
in different scenarios for similar purposes. (These two classes are in fact used in a 
number of different existing projects.)

The SmoothMover class provides smoother movement for actors by storing the actor’s 
coordinates as decimal numbers (of type double), rather than integers. Fields of type 
double can store numbers with decimal fractions (such as 2.4567), and thus are more 
precise than integers.

For displaying the actor on screen, the coordinates will still be rounded to integers, 
since the location for painting on screen must always be a whole pixel. Internally, how-
ever, the location is held as a decimal number.

M08_KOLL4292_02_SE_C08.indd   136 2/3/15   7:59 PM



 8.2 Helper classes: SmoothMover and Vector      |       137   

A SmoothMover can, for example, have the x-coordinate 12.3. If  we now move this 
actor along the x-coordinate in increments of 0.6, its successive location will be

12.3, 12.9, 13.5, 14.1, 14.7, 15.3, 15.9, 16.5, 17.1, …

and so on. We will see the actor on screen at rounded x-coordinates. It will be painted 
at x-coordinate

12, 13, 14, 14, 15, 15, 16, 17, 17, …

and so on. Altogether, even though it is still rounded to integers for display, the effect 
is smoother looking movement than could be achieved by use of int fields.

The second bit of  functionality that the SmoothMover adds is a velocity vector—a 
vector that indicates a current direction and speed of movement. We can think of a 
vector as an (invisible) arrow with a given direction and length (Figure 8.4).

Figure 8.4
A SmoothMover 
object with a 
 movement vector

The SmoothMover class has methods to change its movement by modifying its veloc-
ity vector, and a move method that moves the actor according to its current vector.

Side note: Abstract classes

If you right-click the SmoothMover class, you will notice that you cannot create objects of this 
class. No constructor is shown.

When we examine the source code of that class, we can see the keyword abstract in the class 
header. We can declare classes as abstract to prevent creation of instances of these classes. Abstract 
classes serve only as superclasses for other classes, not for creating objects directly.

Exercise 8.6 Place an object of class Body into the world. By examining the object’s 
pop-up menu, find out what methods this object inherits from class SmoothMover. 
Write them down.

Exercise 8.7 Which of the method names appears twice? How do the two versions 
differ?

M08_KOLL4292_02_SE_C08.indd   137 2/3/15   8:07 AM



138      |       Chapter 8 ■ Interacting objects: Newton’s Lab 

The second helper class, Vector, implements the vector itself, and is used by the 
SmoothMover class. Note that Vector is not listed in the Actor group of classes. It 
is not an actor—it will never appear in the world on its own. Objects of this class are 
only ever created and used by other actor objects.

Vectors can be represented in two different ways: either as a pair of distances in their  
x- and y-coordinates (dx, dy), or as a pair of values specifying the direction and its length 
(direction, length). The direction is usually specified as the angle from the horizontal.

Figure 8.5 shows the same vector with both possible specifications. We see that either 
the (dx, dy) pair, or the (direction, length) pair can describe the same vector.

Terminology: Overloading

It is perfectly legal in Java to have two methods that have the same name, as long as their parameter 
lists are different. This is called overloading. (The name of the method is overloaded—it refers to 
more than one method.)

When we call an overloaded method, the runtime system figures out which of the two methods we 
mean by examining the parameters we supply.

We also say that the two methods have different signatures.

Concept
Overloading 
is the use of the 
same method 
name for two  
different methods 
or constructors.

Figure 8.5
Two possible ways 
to specify a vector

The first representation, using the x and y offsets, is called a Cartesian representation. 
The second, using the direction and length, is a polar representation. You will see 
these two names used in the source code of the Vector class.

For our purposes, sometimes the Cartesian representation and sometimes the polar 
representation is easier to use. Therefore our vector class is written in a way that it can 
deal with both. It will do the necessary conversions internally automatically.

Exercise 8.8 Familiarize yourself with the methods of the SmoothMover and 
Vector classes by opening the editor and studying their definition in Documentation 
view. (Remember: you can switch to Documentation view using the menu in the top 
right corner of the editor.) You can also read the source code, if you like, but this is not 
strictly necessary at this stage.

M08_KOLL4292_02_SE_C08.indd   138 2/3/15   8:07 AM



 8.3 The existing Body class      |       139   

 8.3 The existing Body class

Exercise 8.9 Place a Body object into the world. Which of the methods inherited 
from SmoothMover can you call interactively (through the object’s menu)? Which can 
you not call at this stage?

Exercise 8.10 Open the source code of the Body class and examine it.

Looking at the source code of the Body class, two aspects are worth discussing a bit 
further. The first is the fact that the class has two constructors (Code 8.1). This is 
another example of  overloading: it is absolutely fine to have two constructors in a 
class if  they have different parameter lists.

In our case, one constructor has no parameters at all, and the other has four parameters.

Code 8.1
Constructors of 
class Body

M08_KOLL4292_02_SE_C08.indd   139 2/3/15   8:07 AM



140      |       Chapter 8 ■ Interacting objects: Newton’s Lab 

Terminology

A constructor without any parameters is also called a default constructor.

Concept
The keyword this 
is used to call 
one constructor 
from another, or 
to refer to the 
current object.

The default constructor makes it easy for us to create bodies interactively without  
having to specify all the details. The second constructor allows creation of a body with 
custom size, mass, velocity, and color. This constructor is used, for example, in the 
Space class to create the sun, planet, and moon.

The second constructor initializes the state of the actor using all its parameter values 
that have been passed in. The first constructor looks more mysterious. It has only one 
line of code:

this (20, 300, new Vector(90, 1.0), defaultColor);

The line looks almost like a method call, except that it uses the keyword this instead 
of  a method name. Using this call, the constructor executes the other constructor 
(the one with the four parameters), and provides default parameters for all the four  
values. Using the this keyword in this way (like a method name) is only possible within  
constructors to call another constructor as part of the initialization.

There is a second use of the this keyword:

this.mass = mass;

Here we have another example of overloading: the same name is used for two variables 
(a parameter and an instance field). When we assign these values, we need to specify 
which of these two variables named mass we mean on each side of the assignment.

When we write mass without any qualification, then the closest definition of a vari-
able with that name is used—in this case, the parameter. When we write this.mass, 
we specify that we mean the mass field of the current object. Thus, this line of code 
assigns the parameter named mass to the field named mass.

Exercise 8.11 Remove the “this.” segment before the mass in the line of code shown 
above, so that it reads

mass = mass;

Does this code compile? Does it execute? What do you think this code does? What is its 
effect? (Create an object and use its Inspect function to examine the mass field. When 
you are finished experimenting, restore the code to how it was before.)

The second aspect worth exploring a little further are the two lines near the top of the 
class, shown in Code 8.2.

M08_KOLL4292_02_SE_C08.indd   140 2/3/15   8:07 AM



 8.4 First extension: creating movement      |       141   

These two declarations look similar to field declarations, except that they have the two 
keywords static final inserted after the keyword private.

This is what we call a constant. A constant has similarities to a field, in that  
we can use the name in our code to refer to its value, but the value can never change  
(it is constant). It is the final keyword that makes these declarations constants.

The effect of the static keyword is that this constant is shared between all actors of 
this class, and we do not need separate copies of it in every object. We encountered the 
static keyword before (in Chapter 3), in the context of class methods. Just as static 
methods belong to the class itself  (but can be called from objects of that class), static 
fields belong to the class and can be accessed from its instances.

In this case, the constants declared are a value for gravity2 (to be used later), and a 
default color for the bodies. This is an object of type Color, which we will discuss in 
more detail below.

It is good practice to declare fields constant that should not change in a program. 
Making the field constant will prevent accidental change of the value in the code.

 8.4 First extension: creating movement
Okay, enough looking at what is there. It is time to write some code and make  
something happen.

The first obvious experiment is to make the bodies move. We have mentioned that the 
SmoothMover class provides a move() method, and since a Body is a SmoothMover, 
it, too, has access to this method.

Code 8.2
Declaration of  
constants

Concept
A constant is 
a named value 
that can be used 
in ways similar 
to a variable, 
but can never 
change.

2 Our value of gravity has no direct relationship to any particular unit in nature. It is an arbi-
trary value made up for this scenario. Once we start implementing gravitation for our bodies, 
you can experiment with different amounts of gravity by changing this value.

Exercise 8.12 Add a call to the move() method into the act method of Body. (Make 
sure to call the move() method without a parameter, and not the one with an int 
parameter inherited from Actor.) Test it. What is the default direction of  movement? 
What is the default speed?

M08_KOLL4292_02_SE_C08.indd   141 2/3/15   8:07 AM



142      |       Chapter 8 ■ Interacting objects: Newton’s Lab 

As we see when we perform these experiments, just telling the bodies to move is enough 
to make them move. They will, however, move in a straight line. This is because move-
ment (speed and direction) is dictated by their velocity vector, and currently nothing 
changes this vector. Thus, movement is constant.

 8.5 The Color class
While reading the code above, in both the Body and Space classes, we have come 
across the Color class. The second constructor of the Body class expects a parameter 
of type Color, and the code in the Space class creates Color objects with expressions 
such as

new Color(248, 160, 86)

We have come across this class briefly in the previous chapter, as we read through the 
Java library documentation.

Exercise 8.13 Create multiple Body objects. How do they behave?

Exercise 8.14 Call the public Space methods (sunAndPlanet(), etc.) and run the 
scenario. How do these objects move? Where is their initial movement direction and 
speed defined?

Exercise 8.15 Change the default direction of a body to be towards the left. That is, 
when a body is created using the default constructor, and its move() method is exe-
cuted, it should move left.

Exercise 8.16 Open the documentation of class Color again.

The three parameters of the Color constructor are the red, green, and blue compo-
nents of  this particular color. Every color on a computer screen can be described 
as a composite of  these three base colors. (We will discuss color a little more in 
Chapter 10. There, in Section 10.9, you can also find a table of RGB color values. You 
can use any good graphics program to experiment with these yourself.)

Exercise 8.17 Look at the documentation of class Color. How many constructors 
does it have?

Exercise 8.18 Find the description of the constructor we have used (the one with 
three integers as parameters). What is the legal range for these integer numbers?

M08_KOLL4292_02_SE_C08.indd   142 2/3/15   8:07 AM



 8.6 Adding gravitational force      |       143   

As we know, if  we want to use any class from the Java library (other than those from 
the java.lang package), we have to import it. For the Color class, the import state-
ment is:

import java.awt.Color;

Exercise 8.19 Where in the Body class do you find the import statement for class 
Color?

Exercise 8.20 What error would you get if you attempted to use class Color, but 
forgot the import statement? (Try it out!)

The Color class is useful in Greenfoot when we want to draw on images. In this case, 
for every celestial body we draw a colored circle onto the actor’s image. We will see this 
class used again in later chapters.

What we want to do next is to add gravity to this scenario. That is, when we have more 
than one body in our space, the gravitational pull between these bodies should change 
each body’s movement.

 8.6 Adding gravitational force
Let us start by looking at the current act method in our Body class (Code 8.3). (If  you 
have not done Exercise 8.12, then the call to the move method will not be there—you 
can add it now.)

Code 8.3
The current act 
method

While the code currently contains only the move call, the comment actually describes 
correctly what we have to do: before we move, we should apply the forces caused by 
the gravitational pull of all other objects in space.

M08_KOLL4292_02_SE_C08.indd   143 2/3/15   8:24 PM



144      |       Chapter 8 ■ Interacting objects: Newton’s Lab 

We can give an outline of the task in pseudo-code:

apply forces from other bodies:
     get all other bodies in space;
     for each of those bodies:
     {
        apply gravity from that body to our own;
     }

We can see that this again is a situation where we want to use a list of objects and a 
for-each loop, as we practiced in the previous chapter.

Since this is not a trivial thing to do, we start by making a separate method for this 
task (Code 8.4). At first, creating a separate (initially empty) method might seem not 
to accomplish much, but it greatly helps in breaking down our problem into smaller 
sub-problems, and it helps structuring our thoughts.

Code 8.4
Preparing to apply 
forces of gravity

Exercise 8.21 If you feel confident in the use of the world’s getObjects method, 
the List class, and the for-each loop, try to implement this now in your own Body 
class. (If you are less sure—read on. We will now do this step by step.)

M08_KOLL4292_02_SE_C08.indd   144 2/3/15   8:07 AM



 8.6 Adding gravitational force      |       145   

Our pseudo-code of  the task above gives us the outline of  our applyForces() 
method. We can see that the first thing we need to do is to get access to all other bod-
ies in space. We do this using the same getObjects method as in the previous chapter.

Exercise 8.22 Write, on paper, the call to get access to all objects of type Body in 
space. The objects will be returned as a list. Declare a variable for this list and assign the 
list of bodies you receive.

Exercise 8.23 Write, on paper at first, a for-each loop that iterates through the list of bodies.

The code we need to write here is very similar to the code we wrote for changing the 
images of all leaves in the previous chapter. Look at that code again if  you are unsure.

Exercise 8.24 Once you are satisfied that your loop is correct on paper, write it into 
the  applyForces() method in your Body class. Remember to add the import state-
ment for java.util.List. Compile to check that the syntax is correct.

Once we have worked out how to write our loop, we have to decide what to write 
inside the loop’s body. Our pseudo-code tells us that we want to apply the force of 
gravity from the other body to our own. Again, as before, when we encounter a some-
what difficult task where we do not immediately know how to solve it, we just insert a 
method call to a new method with an appropriate name, and worry about implement-
ing this method afterwards.

Exercise 8.25 Make a method stub (empty method) for a private method named 
applyGravity(Body  body). Call this method from within the loop in your  
applyForces() method, passing the current list element as a parameter.

If  you managed to do the exercises so far, you are almost finished. The full imple-
mentation of  the applyForces() method is shown in Code 8.5. If  you study this 
code, you will notice that there is one more construct added: the loop now contains 
an  if-statement:

if (body != this)
{

    ...

}

M08_KOLL4292_02_SE_C08.indd   145 2/3/15   8:07 AM



146      |       Chapter 8 ■ Interacting objects: Newton’s Lab 

The reason for this is that the bodies list contains all bodies in space, including the 
current object (the one we want to apply gravity to). We do not need to apply gravity 
of an object to itself, so we can add an if-statement that calls applyGravity only if  
the element from the list is not the current object itself. Note how the this keyword is 
used here to refer to the current object.

Exercise 8.26 Compare your own code with our code shown below. If necessary, 
complete your own applyForces method.

Code 8.5
Applying gravity 
from all other  
bodies in space

 8.7 Applying gravity
In Code 8.9, we have solved the task of  accessing each object in space, but we 
have deferred the task of  actually applying the gravitational force. The method  
applyGravity still needs to be written.

This is now a little easier than before, though, since this method now only needs to 
deal with two objects at a time: the current object, and one other object specified in its 
parameter. We now want to apply the gravitational force from the other object to this 
one. This is where Newton’s Law comes into play.

M08_KOLL4292_02_SE_C08.indd   146 2/3/15   8:07 AM



 8.7 Applying gravity      |       147   

Newton’s formula for gravitation looks like this:

force =
mass1 * mass2

distance2  G

In other words, to calculate the force we need to apply to the current object, we 
need to multiply the mass of  this object with the mass of  the other object, and 
then divide by the square of  the distance between the two objects. Finally, the 
value gets multiplied by the constant G—the gravitational constant. (You may 
remember that we have already defined a constant for this value in our class, 
named GRAVITY.)

If  you are very confident or adventurous, you may like to try to implement  
the applyGravity method yourself. You need to create a vector in the direction 
from the current body to the other body, with a length specified by this formula. 
For the rest of  us, we now look at the finished implementation of  that method 
(Code 8.6).

Code 8.6
Calculating and 
applying gravity 
from another body

This method is not quite as complicated as it looks. First we calculate the distances 
between our object and the other object in the x- and y-coordinates (dx and dy). Then 
we create a new vector using these values. This vector now has the right direction, but 
not the correct length.

Next we calculate the distance between the two objects using the Pythagoras theorem 
(a2 + b2 = c2 in right-angled triangles, see Figure 8.6).

M08_KOLL4292_02_SE_C08.indd   147 2/3/15   8:07 AM



148      |       Chapter 8 ■ Interacting objects: Newton’s Lab 

Exercise 8.29 Map the variables in Code 8.6 to Newton’s formula, the Pythagoras 
theorem, and the acceleration formula given above. Which variable corresponds to 
which part of which formula?

This tells us that the distance is the square root of  dx squared plus dy squared. 
In our code (Code 8.6), we use a method called sqrt from the Math class  
to calculate the square root. (Math is a class in java.lang, and thus automatically 
imported.)

Figure 8.6
The distance in 
 relation to dx 
and dy

Exercise 8.27 Look up the class Math in the Java documentation. How many param-
eters does the sqrt method have? What types are they? What type does this method 
return?

Exercise 8.28 In the Math class, find the method that can be used to find the maxi-
mum of two integers. What is it called?

The next line in our code calculates the force of  the gravitational pull by using 
Newton’s formula of gravitation given above.

The final thing to do is to calculate the acceleration, since the actual velocity change 
to our object is not only determined by the force of gravity, but also the mass of our 
object: The heavier the object, the slower it will accelerate. Acceleration is computed 
using the following formula:

acceleration =
force
mass

Once we have calculated the acceleration, we can set our new vector to the correct 
length and add this vector to the velocity of our body. Doing this is easy, using the 
addToVelocity method that is provided by the SmoothMover class.

M08_KOLL4292_02_SE_C08.indd   148 2/9/15   11:37 AM



 8.8 Trying it out      |       149   

With this, our task is completed. (An implementation of the code described so far is 
also available in the book scenarios as Newtons-Lab-2.)

This task clearly involved more background knowledge in maths and physics than the 
others we have seen. It may seem complicated at first, and you may feel that you could 
not have written this on your own. Don’t worry—that is normal. At this stage, the 
aim is for you to study and understand this code. If  you understand it and can explain 
it, you are doing well. We do not expect you to be able to write code using unknown 
concepts on your own the first time they come up. Studying it here will help you write 
similar code later when you encounter related problems.

If maths and physics are not your favorite areas—don’t worry, we shall return to less 
mathematical projects shortly. Remember: programming can do anything you like. You 
can make it very mathematical, but you can also make it very creative and artistic.

 8.8 Trying it out
Now that we have completed our implementation of gravitational forces, it is time to try 
it out. We can start by using the three ready-made scenarios defined in the Space class.

Exercise 8.30 With your completed gravity code, try out the three initialization 
methods from the Space object again (sunAndPlanet(), sunAndTwoPlanets(), 
and sunPlanetMoon()). What do you observe?

Exercise 8.31 Experiment with changes in gravity (the GRAVITY constant at the top 
of the Body class).

Exercise 8.32 Experiment with changes to the mass and/or initial movement of the 
bodies (defined in the Space class).

Exercise 8.33 Create some new set-ups of stars and planets and see how they inter-
act. Can you come up with a system that is stable?

Pitfall

Be careful when using the constructor of class Vector. The constructor is overloaded: one version 
expects an int and a double as parameters, the other expects two doubles. Thus

new Vector(32, 12.0)

will call one constructor, while

new Vector(32.0, 12.0)

will call the other constructor, resulting in an entirely different vector.

M08_KOLL4292_02_SE_C08.indd   149 2/3/15   8:07 AM



150      |       Chapter 8 ■ Interacting objects: Newton’s Lab 

You will quickly see that it is very hard to configure the parameters so that the system 
remains stable for a long time. The combination of mass and gravity will often result 
in objects crashing into each other or escaping from orbit. (Since we have not imple-
mented “crashing into each other,” our objects can essentially fly through each other. 
However, when they get very close, their forces become very large and they often cata-
pult each other onto strange trajectories.)

Some of  these effects are similar to nature, although our simulation is somewhat 
inaccurate due to some simplifications we have made. The fact, for example, that all 
objects act in sequence, rather than simultaneously, will have an effect on their behav-
ior and is not a realistic representation. It introduces small errors that add up and have 
an effect over time. To make the simulation more accurate, we would have to calculate 
all forces first (without moving) and then execute all moves according to the previous 
calculations. Also, our simulation does not model the forces accurately when two bod-
ies get very close to each other, adding more unrealistic effects.

We can also ask the stability question about our own solar system. While the orbits of 
the planets in our solar system are quite stable, precise details about their movement 
are hard to predict accurately for a long time into the future. We are quite certain that 
none of the planets will crash into the Sun in the next few billion years, but small vari-
ations in orbit may happen. Simulations such as ours (just much more accurate and 
detailed, but similar in principle) have been used to try to predict the future orbits. We 
have seen, however, that this is very hard to simulate accurately. Simulations can show 
that minute differences in the initial conditions can make huge differences after a few 
billion years.3

Seeing how difficult it is to come up with parameters that create a system that is sta-
ble even for a limited time, we might be surprised that our solar system is as stable as 
it is. But there is an explanation: when the solar system formed, material from a gas 
cloud surrounding the Sun formed into lumps that slowly grew by colliding with other 
lumps of  matter and combining to form ever-growing objects. Initially, there were 
countless of these lumps in orbit. Over time, some fell into the Sun, some escaped into 
deep space. This process ends when the only chunks left are well separated from one 
another and on generally stable orbits.

It would be possible to create a simulation that models this effect. If  we correctly 
modeled the growth of  planets out of  billions of  small, random lumps of  matter, 
we would observe the same effect: some large planets form that are left in fairly sta-
ble orbits. For this, however, we would need a much more detailed and complicated  
simulation and a lot of time; simulating this effect would take a very, very long time, 
even on very fast computers.

3 If  you are interested to read more, Wikipedia is a good starting point: http://en.wikipedia.org 
/wiki/Stability_of_the_solar_system

M08_KOLL4292_02_SE_C08.indd   150 2/3/15   8:07 AM



 8.9 Gravity and music      |       151   

 8.9 Gravity and music
Before we leave our Newton’s Lab scenario behind, we have one more thing to play 
with: adding music. Well, noise, in any case.4

The idea is as follows: we add a number of Obstacles into our world. When obstacles 
are touched by our planets, they make a sound. Then we create a few planets or stars, 
let them fly around, and see what happens.

We will not discuss this implementation in detail. Instead, we leave you to study it 
yourself, and just point out some of the more interesting features. You can find an 
implementation of this idea in the book scenarios as Newtons-Lab-3.

4 The idea to add sound to a gravity project was inspired by Kepler’s Orrery (see http://www.art 
.net/~simran/GenerativeMusic/kepler.html or search for “Kepler’s Orrery” on YouTube).

Exercise 8.34 Open the scenario named Newtons-Lab-3 and run it. Have a look at the 
source code. Try to understand how it works.

Here is a summary of the most interesting changes we have made from the previous 
version to create this:

■ We have added a new class Obstacle. You can easily see objects of this class on 
screen. Obstacles have two images: the orange rectangle you see most of the time, 
and a lighter version of the rectangle to show when they are touched. This is used to 
create the “lighting up” effect. Obstacles are also associated with a sound file, just 
as the piano keys were in our piano scenario. In fact, we are reusing the sound files 
from the piano scenario here, so they do sound the same.

■ We have modified the Body class so that bodies bounce off the edges off the screen. This 
gives a better effect for this kind of scenario. We have also increased gravity a bit to get 
faster movement and modified the code so that bodies automatically slow down once 
they get too fast. Otherwise they might speed each other up more and more, indefinitely.

■ Finally, we have added code in the Space class to create a fixed row of obstacles 
and to create five random planets (random size, mass, and color).

The implementation of these three changes includes a few interesting snippets of code 
that are worth pointing out.

■ In the Obstacle class, we use the method getOneIntersectingObject again 
to check whether the obstacle is being hit by a planet. The code pattern is the  
following:

Object body = getOneIntersectingObject(Body.class);
if (body != null)
{
    ...
}

M08_KOLL4292_02_SE_C08.indd   151 2/3/15   8:07 AM



152      |       Chapter 8 ■ Interacting objects: Newton’s Lab 

Concept summary
■ Overloading is the use of the same method name for two different methods or constructors.

■ The keyword this is used to call one constructor from another, or to refer to the current object.

■ A constant is a named value that can be used in ways similar to a variable, but can never change.

 We have seen the first use of this method in the previous chapter.

■ In the Space class, we have added a method called createObstacles. It creates 
the obstacles with their associated sound file names, quite similar to the initializa-
tion code in the piano example.

■ We have added another method in the Space class, called randomBodies. It uses 
a while loop to create a number of Body objects. The bodies are initialized with 
random values. The while loop counts down from a given number to zero, to create 
the right number of objects. It is worth studying as another example of a loop.

Hopefully this scenario gives you a few ideas of additional things you can try with this 
project. Once you start combining creativity and programming, there is no limit to 
what you can come up with.

 Summary of programming techniques

In this chapter, we have touched on a number of new concepts. We have seen a new 
scenario—Newton’s Lab—that simulates stars and planets in space. Simulations in 
general are a very interesting topic, and we will come back to them in Chapter 11.

We have seen two useful helper classes, SmoothMover and Vector, both of which help 
us to create more sophisticated movement.

Overloading of  methods is another concept we have encountered, where the same 
method name may be used for more than one method. We also discovered various 
uses of  the keyword this, which can be used to refer to the current object, access 
fields with names that are overloaded, and to call one constructor from another.

But most importantly—although not new—we have seen another use of  a list of 
objects together with a for-each loop. This is the most important—and probably the 
most difficult—concept covered here, so we have to study it carefully.

M08_KOLL4292_02_SE_C08.indd   152 2/3/15   8:07 AM



 8.9 Gravity and music      |       153   

Drill and practice

The last version of the Newton’s Lab scenario gives us a lot of opportunity to practice 
all sorts of different constructs. Here are some ideas.

Exercise 8.35 Change the number of bodies that are created by default in this scenario.

Exercise 8.36 Play with the movement parameters to see whether you can create 
nicer movement for the planets. The parameters are: the value for GRAVITY; the accel-
eration value used when bouncing off an edge (currently 0.9); the speed threshold 
(currently 7) and acceleration (0.9) used in the applyForces method to slow down 
fast objects; and the initial mass used for the planets (in the Space class).

Exercise 8.37 Create a different arrangement of obstacles in your scenario.

Exercise 8.38 Use different sounds (different sound files) for your obstacles.

Exercise 8.39 Use different images for your obstacles.

Exercise 8.40 Make planets change color every time they bounce off the edge of 
the universe.

Exercise 8.41 Make planets change color every time they hit an obstacle.

Exercise 8.42 Make a different kind of obstacle that gets switched on and off by 
being hit. When on, it continuously blinks and produces a sound at fixed intervals.

Exercise 8.43 Add some keyboard control. For example, pressing the right arrow key 
could add a small force to the right to all Body objects.

Exercise 8.44 Allow adding more planets. A mouse click into the universe while it is 
running should create a new planet at that location.

There are countless other possible ways to make this scenario more interesting and 
nicer to look at. Invent some of your own and implement them.

M08_KOLL4292_02_SE_C08.indd   153 2/3/15   8:07 AM



Chapter

In this chapter, we shall have another look at loops (introducing a new kind of loop) 
and have a deeper look at collision detection. We are working with collections again 
(you have been warned that they would become important!) and bring together several 
topics we have touched on in earlier chapters. We shall revisit a scenario that we have 
encountered before, very early in this book: Asteroids (Figure 9.1).

The version of Asteroids that we use here is slightly different from the one we looked 
at earlier. It has some added features (such as a proton wave and a score counter), but 

Collision detection:  
Asteroids

topics: more about movement, keyboard control, and collision detection

concepts: collections (again), for loop, for-each loop (again), array (again)

9

Figure 9.1
The new Asteroids 
scenario (with proton 
wave)

M09_KOLL4292_02_SE_C09.indd   154 2/3/15   8:49 AM



 9.1 Investigation: What is there?      |       155   

it is not fully implemented. Important parts of the functionality are still missing, and 
it will be our job in this chapter to implement them.

We will use this example to revisit movement and collision detection. In terms of Java 
programming concepts, we will use this to gain more practice with loops and collections.

 9.1 Investigation: What is there?
We should start this project by examining the existing code base. We have a partially 
implemented solution, named asteroids-1, in the chapter09 folder of  the book sce-
narios. (Make sure to use the chapter09 version, not the copy from chapter01.)

Exercise 9.1 Open the asteroids-1 scenario form the chapter09 folder of the book 
projects. Experiment with it to find out what it does, and what it does not do.

Exercise 9.2 Write down a list of things that should be added to this project.

Exercise 9.3 Which keyboard key is used to fire a bullet?

Exercise 9.4 Place an explosion into a running scenario (by interactively creating an 
object of class Explosion). Does it work? What does it do?

Exercise 9.5 Place a proton wave into a scenario. Does this work? What does it do?

When experimenting with the current scenario, you will have noticed that some funda-
mental functionality is missing:

■ The rocket does not move. It cannot be turned nor can it be moved forward.

■ Nothing happens when an asteroid collides with the rocket. It flies straight through 
it instead of damaging the rocket.

■ As a result of this, you cannot lose. The game never ends and a final score is never 
displayed.

■ The ScoreBoard, Explosion, and ProtonWave classes, which we can see in the 
class diagram, do not seem to feature in the scenario.

One thing that we can do, however, is fire bullets at asteroids. (If  you have not yet 
found out how, try it out.) Asteroids break up when hit by a bullet or, if  they are 
already fairly small, disappear.

The goal of this game would obviously be to clear the screen of asteroids without our 
rocket ship being hit itself. To make it a little more interesting, we also want to add 
another weapon—the proton wave. And we want to keep a score while we’re playing. 
To achieve all this, we have a good amount of work to do.

■ We have to implement movement for the rocket. Currently it can fire bullets, but 
nothing else. We need to be able to move forward and turn.

■ We must ensure that the rocket explodes when we hit an asteroid.

M09_KOLL4292_02_SE_C09.indd   155 2/3/15   11:41 AM



156      |       Chapter 9 ■ Collision detection: Asteroids 

The first line retrieves the current background image from the world. This is the auto-
matically generated (white) image. We then have a reference to the world background 
stored in the background variable.

The background object that we have stored here is of  class GreenfootImage—we 
have seen this class before.

Exercise 9.7 Remove these three lines from your class. You can do this by just com-
menting them out. What do you observe? (Once done, put them back in.)

Exercise 9.8 Look up the documentation for the class GreenfootImage. What is the 
name of the method used to draw a rectangle? What is the difference between drawOval 
and fillOval?

■ When the rocket explodes we want to put up a scoreboard that displays our final score.

■ We want to be able to release a proton wave. The proton wave should start small 
around the rocket ship and then gradually spread out, destroying asteroids when it 
hits them.

But before we get into these functions, we start with one more minor cosmetic thing: 
painting stars into our universe.

 9.2 Painting stars
In all our previous scenarios, we used a fixed image as the background for the world. 
The image was stored in an image file in our file system.

In this scenario, we’d like to introduce a different technique to make background 
images: painting them on the fly.

The Asteroid scenario does not use an image file for the background. A world that 
does not have a background image assigned will, by default, get an automatically cre-
ated background image that is filled with plain white.

Exercise 9.6 Investigate the constructor of the Space class in your scenario. Find the 
lines of code that create the black background.

Looking at the asteroids-1 scenario, we can see that the background is plain black. When 
we investigate the constructor of the Space class, we can find these three lines of code:

GreenfootImage background = getBackground();
background.setColor(Color.BLACK);
background.fill();

Tip
If you want to 
remove some 
code temporar-
ily, it is easier 
to “comment it 
out” rather than 
delete it. The 
Greenfoot editor 
has a function 
to do this. Just 
select the lines 
in question, 
and invoke 
“Comment” (F8) 
or “Uncomment” 
(F7) from the 
Edit menu.

M09_KOLL4292_02_SE_C09.indd   156 2/3/15   8:49 AM



 9.2 Painting stars      |       157   

The second line in the code fragment above sets the paint color to black. Doing this 
has no immediate effect (it does not change the color of the image). Instead, it deter-
mines the color that is used by all following drawing operations. The parameter is a 
constant from the Color class, which we encountered in the previous chapter.

Exercise 9.9 Look up the documentation of class Color again. (Do you remember 
which package it is in?) For how many colors does this class define constant fields?

The third line of the code fragment now fills our image with the chosen color. Note 
that we do not need to set this image again as the background of the world. When we 
got the image (using getBackground()), we got a reference to the background image, 
and the same image still remains the world background. It is not removed from the 
world just because we now have a reference to it.

When we paint onto this image, we are painting directly onto the background of  
the world.

Our task now is to draw some stars onto the background image.

Exercise 9.10 In class Space, create a new method named createStars. This method 
should have one parameter of type int, named number, to specify the number of stars 
it should create. It has no return value. The method body should—for now—be empty.

Exercise 9.11 Write a comment for the new method. (The comment should describe 
what the method does and explain what the parameter is used for.)

Exercise 9.12 Insert a call to this new method into your Space constructor. Three 
hundred stars may be a good amount to start with (although you can later experiment 
with different numbers and choose something that you think looks good).

Exercise 9.13 Compile the class Space. At this stage you should not see any effect 
(since our new method is empty), but the class should compile without problems.

In the createStars method, we will now write code to paint some stars onto the 
background image. The exact amount of stars is specified in the method’s parameter.

We will use yet another loop to achieve this: the for loop.

Previously, we have seen the while loop and the for-each loop. The for loop uses the 
same keyword as the for-each loop (for) but has a different structure. It is:

for (initialization; loop-condition; increment)
{
     loop-body;
}

An example of this loop can be seen in the addAsteroids method in the Space class.

Concept
The for loop 
is one of Java’s 
loop constructs. 
It is especially 
useful for iterat-
ing a fixed num-
ber of times.

M09_KOLL4292_02_SE_C09.indd   157 2/3/15   8:49 AM



158      |       Chapter 9 ■ Collision detection: Asteroids 

Exercise 9.14 Examine the addAsteroids method in class Space. What does it do?

Exercise 9.15 Look at the for loop in that method. From the loop header, write down 
the initialization part, the loop-condition, and the increment. (See the definition of the 
for loop above.)

The initialization part of  a for loop is executed exactly once before the loop starts. 
Then the loop condition is checked: If  it is true, the loop body is executed. Finally, 
after the loop body has been completely executed, the increment section from the loop 
header is executed. After this, the loop starts over: the condition is evaluated again 
and, if  true, the loop runs again. This continues until the loop condition returns false. 
The initialization is never executed again.

A for loop could quite easily be replaced by a while loop. A while loop equivalent of 
the for loop structure shown above is this:

initialization;
while (loop-condition)
{
     loop-body;
     increment;
}

The while loop structure shown here and the for loop structure shown above do 
exactly the same thing. The main difference is that, in the for loop, the initialization 
and the increment have been moved into the loop header. This places all elements that 
define the loop behavior in one place, and can make loops easier to read.

The for loop is especially practical if  we know at the beginning of the loop already 
how often we want to execute the loop.

The for loop example found in the addAsteroids method reads

for (int i = 0; i < count; i++)
{
     int x = Greenfoot.getRandomNumber(getWidth()/2);
     int y = Greenfoot.getRandomNumber(getHeight()/2);
     addObject(new Asteroid(), x, y);
}

This shows a typical example of a for loop:

■ The initialization part declares and initializes a loop variable. This variable is often 
called i, and often initialized to 0.

■ The loop condition checks whether our loop variable is still less than a given limit 
(here: count). If  it is, the loop will continue.

■ The increment section simply increments the loop variable.

Different variations of the for loop are possible, but this example shows a very typical format.

M09_KOLL4292_02_SE_C09.indd   158 2/3/15   8:49 AM



 9.3 Turning      |       159   

Exercise 9.16 In your Space class, rewrite the for loop in addAsteroids as a while 
loop. Make sure that it does the same as before.

Exercise 9.17 Rewrite this method again with a for loop, as it was before.

Exercise 9.18 Implement the body of the createStars method that you created 
earlier. This method should include the following:

■ Retrieve the world’s background image.
■ Use a for loop similar to the one in addAsteroids. The limit for the loop is given in 

the method parameter.
■ In the body of the loop, generate random x- and y- coordinates. Set the color to 

white and then paint a filled oval onto the background image with a width and 
height of two pixels.

Test! Do you see stars in your world? If all went well, you should.

Exercise 9.19 Create stars of random brightness. You can do this by creating a ran-
dom number between 0 and 255 (the legal range for RGB values for colors) and creat-
ing a new Color object using the same random value for all three color components 
(red, green, and blue). Using the same value for all color components ensures that the 
resulting color is a shade of neutral gray. Use this new random color for painting the 
star. Make sure to generate a new color for every new star.

These exercises are quite challenging, but you should know everything you need to solve 
them. If you have trouble, you can look at our version of the implementation which is 
provided in the asteroids-2 version of this scenario. Alternatively, you can ignore this 
section for now, continue with the following tasks first, and come back to this later.

 9.3 Turning
In the previous section we spent a lot of effort just on looks. We used a for loop to cre-
ate the stars in the background. That was hard work for little effect. However, know-
ing the for loop will come in very handy later.

Now we want to achieve some real functionality: we want to make the rocket 
move. The first step is to make it turn when the right or left arrow key is pressed on  
the keyboard.

Exercise 9.20 Examine the Rocket class. Find the code that handles keyboard input. 
What is the name of the method that holds this code?

Exercise 9.21 Add a statement that makes the rocket rotate left while the “left” key is 
pressed. In every act cycle, the rocket should rotate 5 degrees to the left.

M09_KOLL4292_02_SE_C09.indd   159 2/3/15   8:49 AM



160      |       Chapter 9 ■ Collision detection: Asteroids 

Exercise 9.23 In the Rocket’s act method, add a call to the move() method (inher-
ited from SmoothMover). Test. What do you observe?

Adding the call to move() to our act method is an important first step, but does not 
achieve much by itself. It causes the rocket to move according to its movement vector, 
but since we have not initiated any movement, this vector currently has length 0, so no 
movement takes place.

To change this, let us first introduce a small amount of automatic drift, so that the 
rocket starts off  with some initial movement. This makes it more interesting to play, 
because it stops players from being able to just remain stationary for a long time.

Exercise 9.24 Add a small amount of initial movement to the rocket. To do this, cre-
ate a new vector with some arbitrary direction and a small length (I used 0.7 for my 
own version) and then use the SmoothMover’s addToVelocity method with this 
vector as a parameter to add this force to the rocket. You can do this in the Rocket’s 
constructor. (Make sure to use an int as your first parameter in the Vector’s construc-
tor, in order to use the correct constructor.)

Test. If all went well, the rocket should drift all by itself when the scenario starts. Don’t 
make this initial drift too fast. Experiment until you have a nice, slow initial movement.

Next, we want to add movement controls for the player. The plan is that pressing the 
“up” arrow key ignites the rocket’s booster and moves us forward.

If  you managed to successfully complete the exercises, your rocket should be able to 
turn now when you press the arrow keys. Since it fires in the direction it is facing, it 
can also fire in all directions.

The next challenge is to make it move forward.

 9.4 Flying forward
Our Rocket class is a subclass of the SmoothMover class, which we have already seen in 
the previous chapter. This means that it holds a velocity vector that determines its move-
ment, and that it has a move() method that makes it move according to this vector.

Our first step is to make use of this move() method.

Exercise 9.22 Add a statement that makes the rocket rotate right while the “right” 
key is pressed. Test it!

M09_KOLL4292_02_SE_C09.indd   160 2/3/15   8:49 AM



 9.4 Flying forward      |       161   

For the existing keyboard input, we have used code of the following pattern:

if (Greenfoot.isKeyDown(“left”))
{
    turn(-5);
}

For the movement forward, we need a slightly different pattern. The reason is that, for 
the rotation shown here, we need to act only if  the key is being pressed.

The movement forward is different: when we press the “up” key to move, we want to 
change the rocket’s image to show the rocket engine firing. When we release the key, 
the image should return to the normal image. We want to act when the key is pressed, 
and also when it is released. Thus, we need a code pattern along these lines:

when “up” key is pressed:
    change image to show engine fire;
    add movement;

when “up” key is released:
    change back to normal image;

Showing the images is quite easy. The scenario already contains two different rocket 
images for this: rocket.png and rocketWithThrust.png. Both images are loaded into 
fields toward the top of the Rocket class.

Since we need to react in both cases, when the “up” key is pressed and when it is not 
pressed, we will define and call a separate method to handle this functionality.

In checkKeys, we can insert the following method call:

ignite(Greenfoot.isKeyDown(“up”));

This line of  code will first call the isKeyDown method from the Greenfoot class, 
which returns a boolean. This boolean value is then passed as a parameter to the 
ignite method (which we now have to write).

To write the ignite method, we have to arrange the following:

■ The method receives a boolean parameter (say, boosterOn) that indicates  whether the 
booster should be on or off. This parameter is set by the result of the isKeyDown(“up”) 
call (if the key is down, boosterOn will be true, otherwise false).

■ If the booster is on, it sets the image to rocketWithThrust.png and uses addToVe-
locity to add a new vector. This vector should get its direction from the current 
rotation of the rocket (getRotation()) and have a small, constant length (say, 0.3).

■ If  the booster is not on, set the image to rocket.png.

Exercise 9.25 Add the call to the ignite method to your checkKeys method, exactly 
as shown above.

M09_KOLL4292_02_SE_C09.indd   161 2/3/15   8:49 AM



162      |       Chapter 9 ■ Collision detection: Asteroids 

For the implementation of our ignite method, it is okay if  the image gets set every 
time the method is called, even when it is not necessary (e.g., if  the booster is off, and 
it was also off  last time, we would not need to set the image again since it has not 
changed). Setting the image even when it is not strictly necessary has very little over-
head and so avoiding it is not crucial.

Once you have completed these exercises, you have reached a stage where you can fly 
your rocket through space and fire at asteroids. You see the effect of using a move-
ment vector, rather than just calling the actor’s move method when the key is down: 
movement continues when you do nothing, and you have to press your keys to change 
the movement. We have implemented momentum.

A version of the project that implements the exercises presented so far in this chapter 
is provided as asteroids-2 in the book scenarios.

 9.5 Colliding with asteroids
The most obvious fault with our asteroids game at this stage is that we can fly right 
through the asteroids. That leaves not much of a challenge to play this game, since we 
cannot lose. We shall fix that now.

The idea is that our rocket ship should explode when we crash into an asteroid. If  you 
did the exercises earlier in this chapter, then you have already seen that we have a fully 
functional Explosion class available in our project. Simply placing an explosion into 
the world will show an adequate explosion effect.

Thus, a rough description of the task to solve is this:

if (we have collided with an asteroid)
{
    place an explosion into the world;
    remove the rocket from the world;
    show final score (game over);
}

Before we look into solving these subtasks, we prepare our source code to implement 
this task, as we did with other functionality. We follow the same strategy as before: 
since this is a separate subtask, we shall put it into a separate method, in order to keep 
our code well structured and easily readable. You should usually start the implementa-
tion of new functionality like this. The next exercise achieves this.

Exercise 9.26 Define a method stub (a method with an empty body) for the ignite 
method. This method should have one boolean parameter, and a void return type. 
Make sure to write a comment. Test! The code should compile (but not do anything yet).

Exercise 9.27 Implement the body of the ignite method, as outlined in the bullet 
points above.

M09_KOLL4292_02_SE_C09.indd   162 2/3/15   8:03 PM



 9.5 Colliding with asteroids      |       163   

The first subtask is to check whether we have collided with an asteroid. Greenfoot’s 
Actor class contains a number of different methods to check for collisions, each with 
different functionality. We have seen one of them—getOneIntersectingObject—
in the previous chapters. Let us now look at the rest of them as well.

Exercise 9.28 Create a new method stub (a method with an empty body) in class 
Rocket for checking for collisions with asteroids. Call it checkCollision. This 
method can be private and needs no return value and no parameters.

Exercise 9.29 In the rocket’s act method, add a call to the checkCollision 
method. Ensure that your class compiles and runs again.

Concept
Greenfoot 
provides sev-
eral methods 
for collision 
detection. They 
are in the Actor 
class.

Exercise 9.30 Look at the documentation of the Actor class and write down all 
methods related to collision detection.

Exercise 9.31 You will notice that there are also methods to tell you about other 
objects nearby (even if you are not colliding). Write those methods down as well.

Appendix C presents a summary of the different collision detection methods and their 
functionality. This might be a good time to have a quick look through it.  At some 
stage, you should become familiar with all the collision detection methods.

For our purpose, getOneIntersectingObject or getIntersectingObjects seem 
like a good fit. Two objects intersect if  any of the pixels in their images intersect. This 
is pretty much what we need.

In Chapter 5 we have seen one surprising effect: If  you look really carefully, you can 
see that sometimes a collision is detected when the objects do not actually seem to 
touch each other. This is caused by transparent pixels in the actor images.

Images in Greenfoot are always rectangles. When we see non-rectangular images, such 
as the rocket, it is because some pixels in the image are transparent (invisible; they con-
tain no color). For the purpose of our program, however, they are still part of the image.

Figure 9.2 shows the rocket and asteroid images with their bounding boxes. The 
bounding box is the edge of the actual image. (The image of the rocket is a little bigger 
than what seems necessary to make it the same size as the second rocket image, rocket-
WithThrust, which shows the flame in the currently empty area.)

Concept
The bounding 
box of an image 
is the enclosing 
rectangle of that 
image.

Figure 9.2
Two actor images and 
their bounding boxes

M09_KOLL4292_02_SE_C09.indd   163 2/3/15   8:03 PM



164      |       Chapter 9 ■ Collision detection: Asteroids 

In Figure 9.2, the images intersect, even though their visible parts do not touch. 
The collision detection methods will report this as an intersection. They work with 
the bounding boxes and pay no attention to the non-transparent parts of  the image.

As a result, our rocket will make “contact” with an asteroid even though, on screen, 
there seems to be still a little distance between them.

For our asteroids game, we choose to ignore this. First, the distance is small, so often play-
ers will not notice. Second, it is easy enough to come up with a story line to explain this 
effect (“flying too close to an asteroid destroys your ship because of the gravitational pull”).

Sometimes it would be nice to check whether the actual visible (non-transparent) 
parts of  an image intersect. This is possible, but much more difficult. We will not 
discuss this here.

Now that we have decided to go with intersection, we can look at the Actor methods 
again. There are two methods for checking object intersection. Their signatures are:

List getIntersectingObjects(Class cls)
Actor getOneIntersectingObject(Class cls)

Both methods accept a parameter of type Class (which means that we can check for 
intersections with a specific class of object if  we want to). The difference is that one 
method will return a list of all objects that we currently intersect with, while the other 
returns only a single object. In case we intersect more than one other object, the sec-
ond method randomly chooses one of them and returns it.

For our purpose, the second method is good enough. As in the WBC scenario in 
Chapter 5, it actually makes no difference to the game whether we crash into one 
asteroid or into two of them simultaneously. The rocket will explode just the same. 
The only question for us is: Did we intersect with any asteroid at all?

Thus, we shall use the second method. Since it returns an Actor, rather than a List, 
it is slightly simpler to work with. The code pattern for our first task—checking 
whether we have collided with an asteroid—then is the same we have seen before:

Asteroid a = (Asteroid) getOneIntersectingObject(Asteroid.class);
if (a != null)
{
    ...
}

Exercise 9.32 Add a check for intersecting with an asteroid, similar to the one shown 
here, to your own checkCollision() method.

Exercise 9.33 Add code to the body of the if-statement that adds an explosion to 
the world at the current position of the rocket, and removes the rocket from the world. 
(To do this, you need to use the getWorld() method to access the world’s methods 
for adding and removing objects.)

M09_KOLL4292_02_SE_C09.indd   164 2/3/15   8:03 PM



 9.6 Game Over      |       165   

For the last exercise above, we can use our own getX() and getY() methods 
to retrieve our current position. We can use this as the coordinates for placing the  
explosion.

An attempt at solving this might look like this:

World world = getWorld();
world.removeObject(this); // remove rocket from world
world.addObject(new Explosion(), getX(), getY());

This code looks reasonable at first glance, but will not work.

Exercise 9.34 Try out the code as shown above. Does it compile? Does it run? At 
what point does something go wrong, and what is the error message?

The reason this does not work is that we are calling the getX() and getY() methods 
after removing the rocket from the world. When an actor is removed from the world, 
it does not have any coordinates anymore—it has coordinates only while being in the 
world. Thus, the getX() and getY() method calls fail in this example.

This can easily be fixed by switching the last two lines of code: Insert the explosion 
first, and then remove the rocket from the world.

 9.6 Game Over
Our game is now fairly playable. You may have noticed that the score counting does 
not work (we will look into that later) and that nothing happens when you lose. Next 
we shall add a big “Game Over” sign at the end, when the rocket crashes.

This is quite easy to do: There is already a ScoreBoard class in the project that we 
can use.

Exercise 9.35 This is a very advanced exercise, and you may want to skip it initially, 
and come back to it later.

The explosion used here is a fairly simple looking explosion. It is good enough for the 
moment, but if you want to create really good looking games, it can be improved. A 
more sophisticated way to show explosions is introduced in a series of Greenfoot tuto-
rial videos named “Creating Explosions,” available on the Greenfoot YouTube channel:

https://www.youtube.com/user/18km

Create a similar explosion for your rocket.

Exercise 9.36 Create an object of class ScoreBoard and place it into the world.

M09_KOLL4292_02_SE_C09.indd   165 2/3/15   8:03 PM



166      |       Chapter 9 ■ Collision detection: Asteroids 

Exercise 9.37 Examine the source code of the ScoreBoard class. How many con-
structors does it have? What is the difference between them?

Exercise 9.38 Modify the ScoreBoard class: change the text shown on it, change 
the color of the text, change the background and frame colors, change the font size so 
that your new text fits well, and change the width of the scoreboard to suit your text.

As you have seen, the scoreboard includes a “Game Over” text and the final score 
(although the score is currently not correctly counted, but we shall worry about that 
later).

The Space class already has a method, named gameOver, that is intended to create 
and show a scoreboard.

Exercise 9.39 Find and examine the gameOver method in the Space class. What 
does its current implementation do?

Exercise 9.40 Implement the gameOver  method. It should create a new 
ScoreBoard object, using the constructor that expects an int parameter for the 
score. For now, use 999 as the score—we will fix this later to use a real score. Write code 
to place the scoreboard into the world, exactly centered in the middle.

Exercise 9.41 Once implemented, test your gameOver method. Remember: You can 
call methods of the world class by right-clicking on the world background (see Figure 8.3).

Exercise 9.42 How can you ensure that the scoreboard gets placed in the middle of 
the world without hard-coding the location (That is, without using the numbers 300 
and 250 directly as coordinates)? Hint: Make use of the width and height of the world. 
Implement this in your scenario.

So, it seems most of the work has been well prepared for us. Now we only need to call 
the gameOver method when we want the game to finish.

The place in our code where we want the game to be over is in our rocket’s check-
Collision method: If  we detect a collision, the rocket should explode (we have done 
that), and the game is over.

Exercise 9.43 Add a call to the gameOver method in your checkCollision 
method. Compile it. What do you observe? If you see an error, what is the error message?

If you added the gameOver call without a cast, you will have noticed the problem. We 
have seen in earlier chapters that we have to use a cast if  we want to call our own meth-
ods from the world subclass (such as the gameOver method here). The explanation we 

M09_KOLL4292_02_SE_C09.indd   166 2/3/15   8:03 PM



 9.6 Game Over      |       167   

have given when we first encountered this, in Chapter 5, was a bit superficial, and we 
have glossed over some of the details. It is time to revisit this, and discuss it more fully.

Let us start by looking at the code so far, assuming we just added a call to the  
gameOver method to our checkCollision method, without a cast (Code 9.1). This 
code will not compile.

Code 9.1
A first (incorrect) 
attempt at calling the 
gameOver method

When trying to compile this code, we get an error message that reads

cannot find symbol – method gameOver()

This message is trying to tell us that the compiler cannot find a method with this 
name. We know, however, that such a method exists in our Space class. We also know 
that the getWorld() call used here gives us a reference to our Space object. So what 
is the problem?

The problem lies in the fact that the compiler is not quite as clever as we would like. 
The getWorld() method is defined in class Actor, and its signature is this:

World getWorld()

We can see that it states that it will return an object of type World. The actual world 
object that it returns in our case is of type Space.

This is not a contradiction: our world object can be of type World and of type Space 
at the same time because Space is a subclass of World (Space is a World; we also say 
that the type Space is a subtype of  type World).

The error comes from the difference between the two: gameOver is defined in class 
Space, while getWorld gives us a result of type World. The compiler looks only at 
the declared return type of the method we are calling (getWorld). Because of this, the 
compiler searches for the gameOver method only there and it does not find it. That’s 
why we get the error message.

To solve this problem, we need to tell the compiler explicitly that the world we are receiving 
is actually of type Space. We can do this by using the cast construct we have seen earlier.

Space space = (Space) getWorld();

Concept
Objects can be 
of more than 
one type: the 
type of their 
own class and 
the type of its 
superclass.

M09_KOLL4292_02_SE_C09.indd   167 2/3/15   8:49 AM



168      |       Chapter 9 ■ Collision detection: Asteroids 

Casting is the technique of  telling the compiler a more precise type for our object 
than it can work out for itself. In our case, the compiler can work out that the object 
returned from getWorld is of  type World, and we are now telling that it is actually 
of  class Space. We do this by writing the class name (Space) in parentheses before 
the method call. Once we have done this, we can then assign the result to a variable 
of  type Space (instead of  a World variable) and then call methods defined in Space:

space.gameOver();

It is worth noting that casting does not change the type of the object. Our world actu-
ally is of type Space all along. The problem is just that the compiler does not know 
this. With the cast, we are just giving additional information to the compiler.

Let’s get back to our checkCollision method. Once we have cast our world to 
Space and stored it in a variable of type Space, we can call all methods on it: those 
defined in Space and the inherited ones defined in World. Thus, our existing calls to 
addObject and removeObject should still work, and the gameOver call should work 
as well. Code 9.2 shows the fixed method.

Concept
Casting is the 
technique of 
specifying a 
more precise 
type for our 
object than 
the one the 
compiler knows 
about.

Code 9.2
A correct solution to 
calling the gameOver 
method

Exercise 9.44 Implement the call to the gameOver method, using the cast of the 
World object to Space, as discussed here. Test. This should now work, and the score-
board should come up when the rocket explodes.

Exercise 9.45 What happens when you use a cast incorrectly? Try casting the world 
object to, say, Asteroid instead of Space. Does this work? What do you observe?

This work so far has achieved the display of  our “Game Over” sign (still with an 
incorrect score). We shall leave the scoring as an exercise at the end of this chapter. 
If  you really want to fix this now, you may like to jump ahead to the end-of-chapter 
exercises and look into this first. Here, we will look at proton waves next.

 9.7 Adding fire power: the proton wave
Our game is getting pretty good. The final thing we shall discuss in detail in this chap-
ter is the addition of a second weapon: the proton wave. This should give the game a 
little more variety. The idea is this: Our proton wave, once released, radiates outward 

M09_KOLL4292_02_SE_C09.indd   168 2/3/15   8:49 AM



 9.8 Growing the wave      |       169   

from our rocket ship, damaging or destroying every asteroid in its path. Since it works 
in all directions simultaneously, it is a much more powerful weapon than our bullets. 
For the game, we should probably restrict how often or how frequently you can use it, 
so that the game does not become too easy to play.

Exercise 9.46 Run your scenario. Place a proton wave into the scenario—what do 
you observe?

The exercise shows us that we have a proton wave actor, which shows the wave at full 
size. However, this wave does not move, does not disappear, and does not cause any 
damage to asteroids.

Our first task will be to make the wave grow. We will start it very small, and then grow 
it until it reaches the full size that we have just seen.

 9.8 Growing the wave
We have seen that the ProtonWave class has a method—initializeImages—that 
creates 30 images of different sizes and stores them in an array (Code 9.3). This array, 
named “images,” holds the smallest image at index 0, and the largest one at index 29 
(see Figure 9.3). The images are created by loading a base image (“wave.png”) and 
then, in a loop, creating copies of this image and scaling them to different sizes.

Exercise 9.47 Examine the source code of class ProtonWave. What are the methods 
that already exist?

Exercise 9.48 What is the purpose of each method? Review the comments of each 
method and expand them to add a more detailed explanation.

Exercise 9.49 Try to explain what the initializeImages method does and how 
it works. Explain in writing, using diagrams if you like.

Code 9.3
Initializing the images 
for the proton wave

M09_KOLL4292_02_SE_C09.indd   169 2/3/15   8:49 AM



170      |       Chapter 9 ■ Collision detection: Asteroids 

Figure 9.3
An array of images 
(some left out for space 
reasons)

In practice, it is not very important which loop to use in this case. (We changed it here 
mainly to gain additional practice in writing for loops.) This is, however, a case where 
a for loop is a good choice, because we have a known number of iterations (the num-
ber of images) and we can make good use of the loop counter in calculating the image 
sizes. The advantage over the while loop is that the for loop brings all elements of the 
loop (initialization, condition, and increment) together in the header, so that we run 
less danger of forgetting one of its parts.

The images field and the initializeImages method are static (they use the static 
keyword in their definition). As we have briefly mentioned in Chapter 3, this means 
that the images field is stored in the ProtonWave class, not in the individual instances. 
As a result, all objects that we will create of this class can share this set of images, and 
we do not need to create a separate set of images for each object. This is much more 
efficient than using a separate image set each time.

Copying and scaling these images takes a fairly long time (up to two-tenths of a sec-
ond on a current average computer). This may not seem very much, but it is long  

Exercise 9.50 Rewrite the initializeImages method to use a for loop instead of 
a while loop.

This method uses the scale method from the GreenfootImage class to do the scaling. 
It also uses a while loop for the iteration. However, this is an example where a for loop, 
which we encountered at the beginning of this chapter, would be more appropriate.

M09_KOLL4292_02_SE_C09.indd   170 2/3/15   8:49 AM



 9.8 Growing the wave      |       171   

enough to introduce a visible, annoying delay when we do it in the middle of playing a 
game. To solve this, the code of this method is enclosed in an if-statement:

if (images == null)
{
    ...
}

This if-statement ensures that the main part of  this method (the body of  the if- 
statement) is executed only once. The first time, images will be null, and the method 
executes fully. This will initialize the images field to something other than null. 
From then on, the test of the if-statement is all that will be executed, and the body will 
be skipped. The initializeImages method is actually called every time a proton 
wave is created (from the constructor), but substantial work is only being done the 
first time.1

Now that we have a fair idea of  the code and the fields that already exist, we can 
finally get to work and make something happen.

What we want to do is the following:

■ We want to start the wave off  with the smallest image.

■ At every act step, we want to grow the wave (show the next larger image).

■ After we have shown the largest image, the wave should disappear (be removed 
from the world).

The following exercises will achieve this.

Exercise 9.51 In the constructor of class ProtonWave, set the image to the smallest 
image. (You can use images[0] as the parameter to the setImage method.)

Exercise 9.52 Create an instance field named currentImage of type int, and ini-
tialize it to 0. We will use this field to count through the images. The current value is the 
index of the currently displayed image.

Exercise 9.53 Create a method stub for a new private method called grow. This 
method has no parameter and does not return a value.

Exercise 9.54 Call the grow method from your act method (even though it does 
not do anything at this stage).

1 The method is actually called for the first time from the Space constructor, so it executes even 
before the first proton wave is created. This avoids a delay for the first proton wave as well. The 
call is included in the proton wave constructor only as a safety feature: if  this class is ever used 
in another project, and this method is not called in advance, all will still work.

M09_KOLL4292_02_SE_C09.indd   171 2/3/15   8:49 AM



172      |       Chapter 9 ■ Collision detection: Asteroids 

We’re almost there. The only thing left is to implement the grow method. The idea, 
roughly, is this:

show the image at index currentImage;
increment currentImage;

We will also have to add an if-statement that first checks whether currentImage has 
reached the last image. In that case, we can remove the proton wave from the world 
and we are finished.

Exercise 9.55 Implement the grow method along the lines discussed above.

Exercise 9.56 Test your proton wave. If you interactively create a proton wave, and 
place it into the world while the scenario is running, you should see the wave expansion 
effect.

Exercise 9.57 Add some sound. A sound file named “proton.wav” is included with the  
scenario—you can just play it. You can place the statement to play the sound into the 
constructor of the proton wave.

Now that we have a functioning proton wave, we should equip our rocket to release it.

Exercise 9.58 In class Rocket, create a method stub named startProtonWave 
without parameters. Does it need to return anything?

Exercise 9.59 Implement this method: It should place a new proton wave object 
into the world, at the current coordinates of the rocket.

Exercise 9.60 Call this new method from the checkKeys method when the “z” key 
is pressed. Test.

Exercise 9.61 You will quickly notice that the proton wave can be released much too 
often now. For firing the bullets, a delay has been built into the Rocket class (using the  
gunReloadTime constant and the reloadDelayCount field). Study this code and 
implement something similar for the proton wave. Try out different delay values until 
you find one that seems sensible. Proton waves should not be available very often.

 9.9 Interacting with objects in range
We now have a proton wave that we can release at the push of a button. The remaining 
problem is that this proton wave does not actually do anything to the asteroids.

We now want to add code that causes damage to the asteroids when they get hit by the 
proton wave.

M09_KOLL4292_02_SE_C09.indd   172 2/3/15   8:49 AM



 9.9 Interacting with objects in range      |       173   

This time we do not want to use the getIntersectingObjects method, since the 
invisible image areas at the corners of the proton wave image (included in the bound-
ing box, but not part of  the blueish circle) are fairly large, and asteroids would be 
destroyed long before the wave seems to reach them.

Instead, we will use another collision detection method, called getObjectsInRange.

The getObjectsInRange method returns a list of all objects within a given radius of 
the calling object (see Figure 9.4). Its signature is

List getObjectsInRange(int radius, Class cls)

When called, we can specify the class of objects we are interested in (as before), and 
we also specify a radius (in cells). The method will then return a list of all objects of 
the requested class that are found within this radius around the calling object.

To determine which objects are within the range, the center points of objects are used. 
For example, an asteroid would be within range 20 of a rocket if  the distance of its 
center point to the center point of the rocket is less than 20 cell widths. The size of the 
image is not relevant for this method.

Using this method, we can implement our checkCollision method.

Exercise 9.62 Prepare for this new functionality: In class ProtonWave, add a 
method stub for a method called checkCollision. The method has no parameters 
and does not return a value. Call this method from your act method.

Exercise 9.63 The purpose of this new method is to check whether the wave 
touches an asteroid, and cause damage to it if it does. Write the method comment.

Figure 9.4
The range around an 
actor with a given 
radius

M09_KOLL4292_02_SE_C09.indd   173 2/3/15   8:03 PM



174      |       Chapter 9 ■ Collision detection: Asteroids 

Our proton wave will have images of increasing size. At each act cycle, we can use the 
size of the current image to determine the range of our collision check. We can find 
out our current image size using the following method calls:

getImage().getWidth()

We can then use half  of this size as our range (since the range is specified as a radius, 
not a diameter).

Exercise 9.64 In checkCollision, declare a local variable named range and 
assign half the current image width to it.

Exercise 9.65 Add a call to getObjectsInRange that returns all asteroids within the 
calculated range. Assign the result to a variable of type List<Asteroid>. Remember 
that you also have to add an import statement for the List type.

These exercises give us a list of all asteroids in the range of the proton wave. We now 
want to do some damage to each asteroid in range.

The Asteroid class has a method called hit that we can use to do this. This method 
is already being used to do damage to the asteroid when it is hit by a bullet, and we 
can use it again here.

We can use a for-each loop to iterate through all asteroids in the list we received from 
the getObjectsInRange call. (If  you are unsure about writing for-each loops, look 
back to Section 7.10.)

Exercise 9.66 Find the hit method in the Asteroid class. What are its parameters? 
What does it return?

Exercise 9.67 The ProtonWave class has a constant defined toward the top called 
DAMAGE; it specifies how much damage it should cause. Find the declaration of this 
constant. What is its value?

Exercise 9.68 In method checkCollision, write a for-each loop that iterates over 
the asteroid list retrieved from the getObjectsInRange call. In the loop body, call 
hit on each asteroid using the DAMAGE constant for the amount of damage caused.

Once you have completed these exercises, test. If  all went well, you should now have a 
playable version of this game that lets you shoot at asteroids and also release proton 
waves to destroy many asteroids instantly. You will notice that you should make the 
reload time for the proton wave quite long, since the game gets too easy if  you can use 
the wave too often.

M09_KOLL4292_02_SE_C09.indd   174 2/3/15   8:49 AM



 9.10 Further development      |       175   

This version of the game, including all the changes made in the last few sections, is 
available in the book projects as asteroids-3. You can use this version to compare it 
to your own scenario, or to look up solutions if  you get stuck in one of the exercises.

 9.10 Further development
We are at the end of the detailed discussion of development of this scenario in this 
chapter. There are, however, a large number of further improvements possible to this 
game. Some are quite obvious, others you may like to invent yourself.

Below are some suggestions for further work, in the form of exercises. Many of them 
are independent of each other—they do not need to be done in this particular order. 
Pick those first that interest you most, and come up with some extensions of your own.

Exercise 9.69 Fix the score counting. You have seen that there already is a score 
counter, but it is not being used yet. The counter is defined in class Counter, and a 
counter object is being created in the Space class.

To make the scoring work, you will have to do roughly the following: Add a method to 
the Space class named something like countScore. This method should add a score 
to the score counter. Call this new method from the Asteroid class whenever an 
asteroid gets hit (you may want to have different scores for splitting the asteroid and 
removing the last little piece).

Exercise 9.70 Add new asteroids when all have been cleared. Maybe the game 
should start with just two asteroids, and every time they are cleared away, new ones 
appear, one more every time. So in the second round, there are three asteroids, in the 
third round four, and so on.

Exercise 9.71 Add a level counter. Every time the asteroids are cleared, you go up a 
level. Maybe you get higher scores in later levels.

The Counter class and other helper classes

The Counter class included in this scenario is one of a small collection of useful helper classes pro-
vided with Greenfoot. You can import any of these classes by using the Import Class… function from 
the Edit menu in Greenfoot’s main window. Try it to see what other classes are there.

We could have chosen to display the score by just writing it onto the world background, as we did 
in Chapter 5. In this case, we chose to use the Counter class for cosmetic reasons: we wanted to 
make it look a bit more interesting. Once you implement score counting in this scenario, you will see 
that this counter not only has a more interesting look, but also includes an animation effect (count-
ing up the numbers) when you add to the count.

M09_KOLL4292_02_SE_C09.indd   175 2/3/15   8:49 AM



176      |       Chapter 9 ■ Collision detection: Asteroids 

There are, of  course, countless more possible extensions. Invent some of your own, 
implement them, and submit your results to the Greenfoot website.

Summary of programming techniques

In this chapter we have worked on completing an asteroids game that was initially 
half-written. In doing this, we have encountered several important constructs again, 
including loops, lists, and collision detection.

We have seen one new style of loop—the for loop—and we have used it to paint the 
stars and to generate the proton wave images. We have also revisited the for-each loop 
when we implemented the proton wave functionality.

Two different collision detection methods were used: getOneIntersectingObject 
and getObjectsInRange. Both have their advantages in certain situations. The sec-
ond one of those returned a list of actors to us, so we had to deal with lists again.

The more practice you get with lists and loops, the easier it becomes to use them. After 
using them for a while, you will be surprised that you found them so difficult at first.

Exercise 9.72 Add an end-of-level sound. This should be played every time a level is 
 completed.

Exercise 9.73 Add an indicator showing the load state for the proton wave, so that 
the player can see when it is ready to be used again. This could be a counter, or some 
sort of graphical representation.

Exercise 9.74 Add a shield. When the shield is deployed, it stays there for a short fixed 
time. While the shield is up, it can be seen on screen, and colliding asteroids do no damage.

Concept summary
■ The for loop is one of Java’s loop constructs. It is especially useful for iterating a fixed number of 

times.

■ Greenfoot provides several methods for collision detection. They are in the Actor class.

■ The bounding box of an image is the enclosing rectangle of that image.

■ Objects can be of more than one type: the type of their own class and the type of its superclass.

■ Casting is the technique of specifying a more precise type for our object than the one the  
compiler knows about.

M09_KOLL4292_02_SE_C09.indd   176 2/3/15   8:49 AM



 9.10 Further development      |       177   

Drill and practice

This time we will do some practice with for loops, and a little bit more with strings. 
For this we will use a separate scenario called loop-practice (you will find it in your 
Chapter 9 folder).

Open this scenario and open the editor for the ChalkBoard class. You will find a 
method called practice. For the following exercises, you will write all your code in 
this method.

The method initially has a single method call in it to write out the number 7. This is 
to show you how to write something on the board. It is easy—you just call the write 
method with either an int, a char, or a String parameter.

All the following exercises expect you to call the write method to write out some  
numbers or text.

Exercise 9.75 In the practice method, delete the method call that is present. Write 
a for loop that writes out the letter “a” 10 times.

Exercise 9.76 Write a for loop that writes out the numbers 0 to 19.

Exercise 9.77 Write a for loop that writes out the text snippets “a0,” “a1,” “a2,” and so on, 
up until “a16” (without the quotes).

Exercise 9.78 Write a for loop that writes out all even numbers from 0 to 24.

Exercise 9.79 Write a for loop that writes out all multiples of five from 15 to 75.

Exercise 9.80 Write a loop that writes the square of all numbers from 1 to 12.

Exercise 9.81 Declare a local String variable and assign your name to it. Write out 
this variable.

Exercise 9.82 Instead of writing out the variable as a whole, write a loop that writes 
out each character from this string, one by one. Consult the documentation of class 
String to find out the length of a string, and how to access each character individually.

Exercise 9.83 Write a loop that writes out each character of your name twice. So if 
you name is “Jane,” it should write J J a a n n e e.

Exercise 9.84 Write a loop that writes every second character of your name.

Exercise 9.85 Write a loop that writes every character of your name backward.

M09_KOLL4292_02_SE_C09.indd   177 2/3/15   8:49 AM



Exercise 9.86 Assign the word “Greenfoot” to your string variable instead of your 
name. Write a loop that writes every character of this string, except the characters “r” 
and “o.” When it encounters these characters, it simply ignores them.

Exercise 9.87 Write a loop that writes every character of this string, but swaps every 
“o” for an “e,” and every “e” for an “o.”

The next three exercises are for the curious. You will have to do some research your-
self. You will have to find out about the modulo operator (do a Web search if  you can-
not ask someone directly). It is written in Java as a percent symbol (%). You will need 
to use this modulo operator to check whether one number is a multiple of another.

Exercise 9.88 Write a for loop that writes out the numbers from 0 to 30 except, for 
every multiple of five, it writes the letter “X” instead of the number.

Exercise 9.89 Modify the loop from the previous exercise so that it also replaces 
 multiples of three with the letter “O.”

Exercise 9.90 Add another detail to the loop from the previous exercise: If the 
 number is a multiple of three and five, write the letter “Z.”

178      |       Chapter 9 ■ Collision detection: Asteroids 

M09_KOLL4292_02_SE_C09.indd   178 2/3/15   8:49 AM



We will take a little time out for a second interlude—a break in the chapter sequence 
to do something a little different. This time, we will look at “Greeps”—a program-
ming competition.

The Greeps are alien creatures. And they’ve come to Earth! One of  the important 
things to know about Greeps is that they like tomatoes. They have landed with their 
spaceship and are swarming out to find and collect tomatoes (Figure I2.1).

The challenge in this programming competition will be to program your Greeps 
so that they find and collect tomatoes as quickly as possible. You will have limited 
time, and every tomato you manage to bring back to the spaceship scores a point.

You can do this project as a competition against a friend who programs their own 
Greeps, or you can do it as a contest for a whole group of programmers, such as a school 
class. If  you are on your own, you could post your entry to the Greenfoot website and  

Figure I2.1
Two Greeps hunt-
ing for tomatoes

The Greeps 
competition Interlude 2

M09_KOLL4292_02_SE_INT2.indd   179 2/3/15   8:51 AM



180      |        Interlude 2 ■ The Greeps competition

see how you compare to other people there.1 Or you could do it on your own just for 
the fun of it—either way, it should be an interesting challenge.

 I2.1 How to get started
To start with, open the greeps scenario from your scenarios folder. Run it.

You will see that a spaceship lands in an area with sand and water. The Greeps will 
leave the spaceship and start searching for tomato piles (which happen to be found in 
various places in this area). Greeps are land animals—they cannot and will not walk 
into the water. (In fact, they are so sensitive to water that they dissolve very quickly in 
it, so don’t try.)

When you try out the scenario, you will quickly see that the Greeps do not behave very 
intelligently. They head out in a random direction from the ship, but when they reach 
the edge of the water, they will just stay there, because they cannot go forward.

Your task will be to program the Greeps to use a more intelligent strategy, so that they 
find the tomatoes and bring them back to the ship.

There are some facts about the Greeps that you need to know:

■ There are 20 Greeps in the spaceship. They will come out after landing to start their 
work. You cannot get any more of them.

■ Greeps can carry a tomato on their back, but they cannot load tomatoes onto 
their own back. They can only load a tomato onto another Greep’s back! This 
means that two of  them have to be at the tomato pile at the same time to pick up a 
tomato.

■ Greeps cannot talk or communicate verbally in any way. They can, however, spit 
paint onto the ground. And they can spit in three different colors (Figure I2.2)! 
There are rumors that there once was a tribe of Greeps who used this to convey 
information to each other.

■ Greeps are very short sighted. They can only see the ground at their immediate 
location and cannot look any further.

■ Greeps have a good memory—they never forget what they know. However,  
unfortunately, their memory is very limited. They can only remember a few things 
at a time.

Armed with this extensive background knowledge, we can now get ready to program 
our Greeps. 

1 If you submit the Greeps scenario to the Greenfoot website, please do not include source code. 
We want to keep this project as a challenge to future programmers and don’t want to make it 
too easy to find solutions of others.

M09_KOLL4292_02_SE_INT2.indd   180 2/3/15   8:51 AM



 I2.2 Programming your Greeps      |       181   

 I2.2 Programming your Greeps
To program your Greeps to collect as many tomatoes as possible, you should improve 
their behavior. The Greep class, which is included in the scenario, already includes 
some behavior that you can look at to get started.

We can see that Greep is a subclass of Creature. Class Creature provides a number 
of very useful methods that we can use.

There are, however, a number of rules that you must follow:

Rule 1:  Only change the class “Greep.” No other classes may be modified or created.

Rule 2:  You cannot extend the Greeps’ memory. That is, you are not allowed to add 
fields (other than final fields) to the class. Some general purpose memory (one 
int and two booleans) is provided.

Rule 3: You cannot move more than once per “act” round.

Rule 4:  Greeps do not communicate directly. They do not call each other’s methods or 
access each other’s fields.

Rule 5:  No long vision. You are allowed to look at the world only at the immediate loca-
tion of the Greep. Greeps are almost blind and cannot look any further.

Figure I2.2
A tribe of Greeps 
using paint drops

M09_KOLL4292_02_SE_INT2.indd   181 2/3/15   12:15 PM



182      |        Interlude 2 ■ The Greeps competition

Rule 6:  No creation of objects. You are not allowed to create any scenario objects (in-
stances of user-defined classes, such as Greep or Paint). Greeps have no magic 
powers—they cannot create things out of nothing.

Rule 7:  No teleporting. Methods from Actor that cheat normal movement (such as 
setLocation) may not be used.

It is important to follow these rules. It is technically easy to break them, but that is 
considered cheating.

To program your Greeps, you work mainly in the Greeps’ act method (and any other 
private methods you choose to create).

Some tips to get started:

■ Read the documentation of class Creature. (The best way to do this is to open the 
class in the editor and switch to Documentation view.) These are some of the most 
useful methods for your work. Know what is there.

■ Work in small steps. Start making small improvements and see how it goes.

■ Some first improvements could be as follows: turn around when you are at water, 
wait if  you find a tomato pile (and try to load tomatoes), turn if  you are at the edge 
of the world, and so on.

You will soon figure out many more improvements you could implement. It gets espe-
cially interesting once you start using the paint drops on the ground to make marks 
for other Greeps to find.

 I2.3 Running the competition
It helps to have a judge who runs the competition. In a school, this might be your 
teacher. If  you run this with friends, it could be a selected person (who then cannot 
take part as a normal contestant in the competition).

To make the competition interesting, there should be two versions of the Greeps sce-
nario. One gets handed out to all contestants. (This is the one included in the book 
scenarios.) This scenario includes three different maps. The Greeps land and forage 
on each of  the three maps in turn. (So the challenge for contestants is to develop  
movement algorithms that are flexible enough to work on different maps, not just a 
known one.)

The judge should have a different scenario that includes more maps. We recommend 
running the competition with 10 different maps. Contestants do not get access to the 
last seven maps—they can only test on the first three. Then they hand in their Greeps 
for scoring, and the judge then runs the contestants’ Greeps on all 10 maps (maybe on 
a large display screen) to reach the official score.

M09_KOLL4292_02_SE_INT2.indd   182 2/3/15   8:51 AM



 I2.4 Technicalities      |       183   

The competition is best run over several days (or maybe a week or two), with repeated 
chances for contestants to submit their work for scoring, so that they can slowly 
improve.

 I2.4 Technicalities
For submission of  an entry to the judge, the easiest mechanism is that contestants 
submit only the Greeps.java file. The judge then copies that file into his full (10-map) 
scenario, recompiles, and runs it. This ensures that no other classes are modified in 
the process.

Some artwork (to make flyers or posters for the competition) is available at

http://www.greenfoot.org/competition/greeps/

Instructors can also find instructions there for obtaining a version of the Greeps sce-
nario with 10 maps. Alternatively, instructors can make more maps themselves fairly 
easily. An image of  an empty map is provided in the images folder of  the Greeps 
scenario. Water can just be painted onto the map, and map data (location of tomato 
piles, etc.) can be specified in the Earth class.

M09_KOLL4292_02_SE_INT2.indd   183 2/3/15   8:51 AM



Chapter

Many of  the scenarios we have encountered previously were interesting not only 
because of the program code that defined their behavior, but also because they made 
effective use of  sound and images. So far, we have not discussed the production of 
these media files much and have often relied on existing pictures and sounds.

In this chapter, we will learn about some aspects of  creating and managing these 
media files. We will start with some background about sound in computer programs, 
followed by various techniques to create and handle images.

As a side effect, we will also encounter dealing with mouse input.

 10.1 Preparation
In contrast to previous chapters, we will not build a complete scenario here but work 
through various smaller exercises that illustrate separate techniques that can then be 
incorporated into a wide variety of different scenarios. The first sequence of exercises 
guides us through creating a scenario that plays a sound—which we create ourselves—
when the user clicks on an actor.

For these exercises, we shall not use a prepared, partly implemented starting scenario 
but create a new one from scratch.

Creating images  
and sound

topics:  creating sounds, creating images, dynamic image changes, handling  
mouse input

concepts:  sound formats, sound quality parameters, image file formats, RGBA color  
model, transparency

10

Exercise 10.1  As a preparation for the exercises in this chapter, create a new sce-
nario. You can call it anything you like.

M10_KOLL4292_02_SE_C10.indd   184 2/3/15   8:59 AM



 10.1 Preparation      |       185   

You will see that the new scenario automatically includes the World and Actor super-
classes, but no other classes.

Exercise 10.2 Create a subclass of World. Call it MyWorld. You can give it any back-
ground image you like. Compile.

Exercise 10.3 Change the size and resolution of the world so that it has a cell size of 
one pixel, and a size of 400 cells width and 300 cells height.

Exercise 10.4 Create an Actor subclass in your scenario. At this stage, it does not 
matter much what it is. You may like to look through the available library images 
shown in the New class dialog, and choose one that looks interesting. Name your class 
appropriately. (Remember: Class names should start with a capital letter.)

Exercise 10.5 Add code to your MyWorld class that automatically places an instance 
of your actor into the world.

Exercise 10.6 Write code into your actor’s act method that moves the actor 10 pix-
els to the right every time it acts.

You should now have a scenario with an actor that moves to the right when you run it. 
Movement, however, is not our main goal here. We added movement only to have an 
initial visual effect to experiment with.

The next step in our preparation will be to make the actor react to mouse clicks.

Exercise 10.7 In class Greenfoot, there are several methods that can handle mouse 
input. What are they? Look them up in the Greenfoot Class Documentation and write 
them down.

Exercise 10.8 What is the difference between mouseClicked and mousePressed?

Concept
We can use the 
mouseClicked 
method to check 
whether the 
user clicked on a 
given object.

When we want to react to mouse clicks, we can use the mouseClicked method from 
the Greenfoot class. This method returns a boolean and can be used as a condition 
in an if-statement.

The parameter to the mouseClicked method can specify an object that we wish to 
check, and the method will return true if  it was clicked on. We can pass null as the 
parameter if  we do not care where the mouse was when it was clicked—the method 
will then return true if  the mouse was clicked anywhere.

M10_KOLL4292_02_SE_C10.indd   185 2/3/15   8:59 AM



186      |       Chapter 10 ■ Creating images and sound 

You should now have a scenario with an actor that can react to mouse clicks. This is a 
good starting point for our following experiments with sound and images. (If  you had 
trouble creating this, there is a scenario called soundtest in the book scenarios for this 
chapter that implements this starting point.)

 10.2 Working with sound
As we have seen earlier, the Greenfoot class has a playSound method that we can use 
to play a sound file. To be playable, the sound file must be located in the sounds folder 
inside the scenario folder.

As a start, let us play an existing sound file.

Exercise 10.9 Modify the code in your Actor class so that it only moves to the right 
in reaction to a mouse click. The mouse click can be anywhere in the world.

Exercise 10.10  Now modify your code so that the actor only moves when the user 
clicks on the actor. To do this, you have to pass the actor itself (instead of null) as a 
parameter to the mouseClicked method. Remember, you can use the keyword this 
to refer to the current object.

Exercise 10.11 Test your code: place multiple instances of your actor into the world 
and make sure that only the one you click on moves.

Exercise 10.12 Select a sound file from one of your other Greenfoot scenarios and 
copy it into the sounds folder of your current scenario. Then modify your actor so that it 
plays the sound (instead of moving) when you click on it.

Pitfall

Some operating systems (most notably Microsoft Windows) are configured so that file name suffixes 
(extensions) are not displayed. A file that is fully named mysound.wav would then be displayed only 
as mysound. This is a problem because we need to use the full name, including the suffix, from our 
Java code.

Writing Greenfoot.playSound(“mysound”); would fail, because the file would not be found. However, 
without seeing the suffix, we have no idea what it is.

The solution is to change the operating system’s settings so that suffixes are always displayed. 
Windows, for example, has a checkbox titled Hide extensions for known file types, and you should make 
sure that this is not checked. In Windows 8, you can find this checkbox by looking at your folder’s 
contents and going through the menus View / Options / Change Folder and Search Options / View. In 
other Windows systems, the menu names may vary, but the checkbox will be there as well.

M10_KOLL4292_02_SE_C10.indd   186 2/3/15   8:06 PM



 10.4 External sound recording and editing      |       187   

We can easily play an existing sound file. The more interesting task now is to make 
sound files ourselves.

 10.3 Sound recording in Greenfoot
There are various options for obtaining sound files. We can copy sounds from other 
Greenfoot projects, or download them from free sound libraries on the Internet. If  
you copy sounds from the Internet, pay attention to copyright notices: Not everything 
that is on the Internet is free—respect other people’s copyright! The easiest option to 
obtain sound files is to record them ourselves.

To do this, we need a microphone (many laptops have microphones built in, and often 
computer headsets have microphones attached). If  you do not have a microphone 
available right now, you may want to skip this section.

In Chapter 3, we have already briefly seen Greenfoot’s in-built sound recorder. It  
allows us to record a sound, trim it to remove unwanted parts at the beginning and 
end, and save it.

Exercise 10.13 Use Greenfoot’s sound recorder (available from the Controls menu) 
to record a new sound for your sample scenario. Make your actor play that new sound 
when clicked.

Exercise 10.14 Introduce a second kind of actor. Place at least one instance of this 
class into the world. Make this actor produce a different sound when clicked.

Exercise 10.15 Use a digital camera or webcam to take a picture of one or more 
friends of yours. Create actors representing these friends. Record your friends saying 
something, and make the actors speak these recordings when you click on them.

 10.4 External sound recording and editing
Using Greenfoot’s sound recorder is quick and easy, and in many cases it will be suf-
ficient. However, if  we want to get more professional, we may want to record specific 
sound effects that are hard to produce with this simple recorder. If  we care about the 
exact details of the sound, separate sound recording software may be useful.

Many sound recording programs are available; several of them are free. We will use 
Audacity1 here for the sample screenshots. Audacity is a good choice because it is pow-
erful, runs on different operating systems, and is free and fairly easy to use. There are 
many other sound recording programs, however, so feel free to use one of your own 
choice.

1 Audacity is available from http://audacity.sourceforge.net

M10_KOLL4292_02_SE_C10.indd   187 2/3/15   8:59 AM



188      |       Chapter 10 ■ Creating images and sound 

Figure 10.1 shows a typical interface of a sound recording program. You have con-
trols for recording, playback, and so on, and a wave form display of  the recorded 
sound (the blue graph).

Recording the sound is pretty straightforward—you can usually figure this out by 
playing with the program for a little while.

Figure 10.1
A sound recording 
and editing program 
(Audacity)

Exercise 10.16 Open a sound recording program and record a sound. Play it back. 
Does it come out as you expected? If not, delete it and try again.

As with Greenfoot’s sound recorder, we will often have a delay or noise at the begin-
ning and the end of our recording that we do not want. In Figure 10.1, for example, 
we can see a time of silence at the beginning and the end of the sound file (the straight 
horizontal lines on the left and right end of the graph). If  we save the sound file as it 
is, the effect would be that the sound seems delayed when we play it (since the first part 
of the sound that gets played is half  a second of silence).

As in the Greenfoot sound recorder, you should trim the sound file: cut off  the 
unwanted bits at the beginning and end. However, in good sound editing programs 
you can do much more: you can cut segments from the middle, copy and paste to 
repeat a sound effect multiple times, reorder parts of the sound, and so on.

M10_KOLL4292_02_SE_C10.indd   188 2/3/15   8:59 AM



 10.5 Sound file formats and file sizes      |       189   

One of the most interesting capabilities of sound editing programs, however, is the use 
of filters or effects. Filters allow us to modify the sound or to generate entirely new 
sound elements. This way, many different sound effects can be generated.

By applying filters, such as amplification, echoes, reverting, speed changes, and others, 
to simple recorded sounds (such as speaking, clapping, whistling, shouting), we can 
create a wide variety of effects.

Exercise 10.17 Edit your sound file so that it includes only the exact sound you want. 
Remove any noise or silence at the beginning or end, or any parts in the middle that 
are not needed.

Exercise 10.18 If your sound program supports filters (sometimes called effects), apply 
some of them to your recorded sound. Select three of your favorite filters and describe, 
in writing, what they do. Give an example where you might use this effect.

Exercise 10.19 Produce the following sounds: a rabbit chewing a carrot; an explo-
sion; a sound of two hard objects colliding; a “Game Over” sound where the player has 
lost the game; an “end of game” sound used when the player has won; a robot voice; 
and a ‘”jumping” sound (used when a game character jumps).

When the editing of the sound is complete, we are ready to save it to a file.

 10.5 Sound file formats and file sizes
Sound files can be saved in many different formats and in different encodings, and this 
can get quite confusing very quickly.

Greenfoot can play sounds saved in WAV, AIFF, AU, and MP3 formats. Some of these 
formats, however, are what is known as “envelope formats”—they can contain differ-
ent encodings, and Greenfoot can read only some of  them. As a result, Greenfoot 
cannot, for example, play all WAV files.

When you save your own recorded sounds, you should save them as a “signed 16 bit 
PCM WAV” file. This is the safest format to ensure playback. In many sound record-
ing programs, this is achieved by using an “Export” function, rather than the standard 
“Save” function. Make sure to save in this format.

When you come across sound files that Greenfoot cannot play (maybe downloaded 
from the Internet), you can usually open them in your sound editing program and 
convert them to this format.

WAV is a good format to use for short sound effects. MP3, another popular format, 
is used mainly for music and other long recordings. It is a proprietary format (writing 

Concept
Sounds can be 
saved in a vari-
ety of different 
formats and 
encodings. Not 
all programs can 
play all sound 
formats. For 
Greenfoot, we 
usually use the 
WaV format.

M10_KOLL4292_02_SE_C10.indd   189 2/3/15   8:59 AM



190      |       Chapter 10 ■ Creating images and sound 

a program that produces it requires paying license fees), so many free sound editors 
do not support it. In Greenfoot, you can play MP3s (you could build your own MP3 
player!), but it is not a useful format for saving our self-made sound effects.

When saving your sound file, you also have to make sure that your Greenfoot scenario 
can find it. To be accessible from your code, the sound file must be in the sounds folder 
inside your scenario folder. The Greenfoot sound recorder knows this, and saves files 
automatically to this location. When using an external sound editor, you have to 
ensure yourself  that the file is stored in the right location.

Exercise 10.20 Save your recorded sound in an appropriate format for Greenfoot. 
Move the sound file into the sounds folder of your scenario. Modify the code of your 
Actor class so that it plays your sound when it is clicked.

Exercise 10.21 Modify your code so that it plays one sound effect when clicked 
with the left mouse button, and another sound effect when clicked with the right 
mouse button. To do this, you need to get information about the mouse click that tells 
you which button was pressed. Greenfoot has methods to achieve this—study the 
Greenfoot class documentation to find out how this can be done.

Exercise 10.22 Modify your code so that the actor, when it is clicked, plays a sound 
effect and moves to a new random location.

Sound files can quickly become very large. This is not a major problem as long as 
the scenario is only used locally, but if  the scenario is exported, for instance, to the 
Greenfoot website, then the size can make a big difference. Sound and image files are 
usually the largest parts of a Greenfoot scenario, and the sound file sizes will affect 
the download time of a scenario.

To avoid overly large sound files we should pay attention to encoding details. When 
we record and save sounds we can make trade-offs between sound quality and file size. 
We can record and save the sound either in very high quality, leading to large files, or 
in lower quality, leading to smaller files. The settings we can vary are mainly:

■ The sample format (usually 16-bit, 24-bit, or 32-bit).

■ The sample rate, measured in Hertz (Hz), varying usually from around 8,000 Hz to 
96,000 Hz.

■ Stereo versus mono recording. (Stereo records two separate tracks and thus pro-
duces twice the amount of data.)

If  you look carefully at Figure 10.1, you can see that the sound in that screenshot was 
recorded in 16 bit, 22,050 Hz, stereo.

Concept
The sample 
format, sample 
rate, and stereo/ 
mono setting of 
a sound record-
ing determine 
file size and 
sound quality.

M10_KOLL4292_02_SE_C10.indd   190 2/3/15   8:59 AM



 10.6 More control: the GreenfootSound class      |       191   

Sometimes the default setting for sound recording programs are even higher (for 
example 32 bit, and a higher sample rate), and this is much higher quality than what is 
needed for simple sound effects. (We might want this quality for listening to music that 
we like, but we don’t need it for a short Bang! sound effect.) In general, you should 
consider saving your sounds in lower quality, unless you feel you really need more 
quality.

Exercise 10.23 Search your sound recording program for settings for sample format, 
sample rate, and stereo/mono recording. In some programs you can convert exist-
ing sounds. In other programs you can specify these settings only for new recordings. 
Make a sound recording with different sample formats, with different sample rates, 
and in stereo and mono. Save these as different files and compare the file sizes. Make a 
table with file sizes for different settings. Which change has the largest benefit for the 
file size?

Exercise 10.24 Listen to the sounds produced in the previous exercise. Can you hear 
a difference? How much can you reduce the quality (and the file size) while still achiev-
ing acceptable quality?

 10.6 More control: the GreenfootSound class
So far our interaction with sound was very simple: we played a sound file. This is suf-
ficient for short sound effects, and the Greenfoot playSound method is an easy way 
to do this.

Sometimes, however, we need more control over sound. When we have background 
music, or if  we want to create an MP3 player, we need the ability to start and stop 
sounds, to change the volume, and so forth. Greenfoot has a separate class to support 
this: the GreenfootSound class.

Exercise 10.25 Find the documentation for the GreenfootSound class in the 
Greenfoot class documentation. Study it. What is the range of accepted values for set-
ting the volume?

Exercise 10.26 Modify your code so that it uses a GreenfootSound object for the 
sound. This sound object should be created in your actor’s constructor, and stored in 
an instance variable. Then, when you click on the actor, it should play this sound.

Exercise 10.27 Modify your code again, so that it starts playing your sound effect in 
a loop when you click on your actor, and pauses the sound when you click again. You 
can then play and pause the sound repeatedly by clicking on the actor several times.

M10_KOLL4292_02_SE_C10.indd   191 2/3/15   8:59 AM



192      |       Chapter 10 ■ Creating images and sound 

Some more exercises using the sound class are at the end of this chapter in the Drill 
and practice section.

 10.7 Working with images
As discussed briefly in previous chapters (for example, when we produced the aster-
oids background in Chapter 9), managing images for actors and world backgrounds 
can be achieved in two different ways: We can use prepared images from files, or we 
can draw an image on the fly in our program.

We shall discuss both methods in a little more detail here.

 10.8 Image files and file formats
There are various ways to acquire images for our scenarios. The easiest is, of course, to 
use images from the Greenfoot image library. These are presented automatically when 
we create new classes. There are also several good libraries of free icons and images 
available on the Internet. (Make sure, however, that the images you want to use are 
really meant for free public use—not everything is free or in the public domain just 
because it is on the Internet. Respect other people’s copyright and license terms.)

The most interesting alternative, however, if  we want to make our scenarios unique 
and give them their own atmosphere, is to make images ourselves.

There are several graphics programs available that we can use to produce images. 
Photoshop is maybe the best known commercial program, and is certainly a very good 
one to use if  you happen to have it. However, there are also free and open source pro-
grams that provide similar functionality. Gimp2 is an excellent free program with many 
sophisticated features, and it is worth installing. There are also many simpler paint 
programs that could be used.

Producing good looking graphics takes some time to learn, and cannot be discussed 
in detail in this book. Play and practice, and you will figure out many techniques and 
tricks. Here we shall concentrate on the technicalities of using the images.

One of  the important questions is what file formats to use when saving images. As 
with sounds, there is a trade-off  to be made between quality and file size. Image files 
have the potential to be very large (much larger than the code files in our scenarios), 
so they can easily dominate the overall download size of our project. Again, this is 
particularly important if  we want to export our scenario to a web server, such as the 
Greenfoot website. Different image formats can lead to different file sizes by a factor 
of 10 or more, meaning that the scenario will download 10 times as fast (because it is 
only a tenth of the size) if  we choose formats well.

2 http://www.gimp.org

M10_KOLL4292_02_SE_C10.indd   192 2/3/15   8:59 AM



 10.8 Image files and file formats      |       193   

Greenfoot can read images in JPEG, PNG, GIF, BMP, and TIFF formats. Of these, 
JPEG and PNG are the two best formats for most uses.

JPEG images have the advantage that they compress very well. This means that they can 
be saved with very small file sizes. This is particularly true for full color images, such as 
photos and backgrounds (which is why many digital cameras use this format). When 
saving JPEG images, many graphics programs allow us to choose how much we want 
to compress the file. The more we compress, the smaller the file gets, but quality is also 
reduced. Gimp, for example, presents a “Quality” slider when we save an image in JPEG 
format. Reducing the quality creates smaller files. The loss in quality is most apparent if  
we have sharp edges with high contrast, such a written text or line drawings.

Concept
The JpeG image 
format com-
presses large 
images very well. 
This is often the 
best choice for 
backgrounds.

Exercise 10.28 Create an image in your graphics program and save it as a JPEG file. 
Save it with at least four different quality settings. Then open the different files and 
view them side by side. Also compare the file sizes. Which quality setting is a good 
compromise between picture quality and file size for your image?

Exercise 10.29 In your graphics program, make a new background for your scenario 
that you created for the earlier sections of this chapter. Save it as a JPEG file. Use it in 
your scenario. Which size (height and width) should the image be? What happens if it 
is too big? What happens if it is too small?

Exercise 10.30 How do you think the JPEG algorithm manages to make files smaller? 
How could this work? Try to come up with a few theories and guesses as to how this 
could be done.

Exercise 10.31 How does JPEG actually compress files? Do some research on the 
Internet to find out and answer in writing.

The second image format that is very useful to us is PNG.

PNG images have the advantage that they can handle transparency very well. Any 
individual pixel can be partly or completely transparent. This allows us to create non-
rectangular images. (As discussed in Chapter 9, all images are rectangular, but having 
transparent parts creates the appearance of arbitrary shapes.)

This ability to handle transparency, combined with good compression, makes PNG an 
ideal format for actor images. (JPEG images cannot have transparent pixels, so they 
cannot be used here, unless the actor happens to be rectangular. For backgrounds, 
this is generally not a problem, because we do not usually have transparency in back-
grounds.)

There is rarely a need to use BMP, TIFF, or GIF images. BMP does not compress as 
well as other formats and does not support transparent pixels. TIFF images can pre-
serve quality very well, but create larger file sizes. GIF is a proprietary format that has 
effectively been replaced by the better—and free—PNG format.

Concept
Pixels in images 
have a trans-
parency value 
that determines 
whether we can 
see through 
them. Pixels may 
be partly trans-
parent. If they are 
fully transparent, 
they are invisible.

Concept
The pNG image 
format is often 
the best choice 
for actor images 
since it can han-
dle transparency 
and compresses 
fairly well.

M10_KOLL4292_02_SE_C10.indd   193 2/3/15   8:59 AM



194      |       Chapter 10 ■ Creating images and sound 

Exercise 10.32 Make two new images for your actor (the actor will switch between 
these two images). Save them in PNG format. Make one of these images the default 
image for your actor class.

Exercise 10.33 Modify your actor code so that it toggles between your two images 
every time the actor is clicked with the mouse.

Exercise 10.34 Modify your actor code again so that it displays the second actor 
image only while the mouse is pressed. In other words, the actor starts off with a 
default image; when the mouse is pressed on the actor, it displays a different image, 
and as soon as the mouse is released, it reverts to its original image.

 10.9 Drawing images
The second method to obtain images for our actors and backgrounds is to draw them 
programmatically. We have seen examples of this in some of the scenarios in earlier 
chapters, for example when we painted the stars in the asteroids program.

Every pixel in an image is defined by two values: its color value and its transparency 
value (also called the alpha value).

The color value is again split into three components: the red, green, and blue compo-
nent.3 Colors represented this way are usually referred to as RGB colors.

This means that we can represent a pixel (with color and transparency) in four num-
bers. The order usually is as follows:

( R, G, B, A )

That is, the first three values define the red, green, and blue components (in this order), 
and the last is the alpha value.

In Java, all of these values are in the range [0…255] (zero to 255 inclusive). A color 
component value of 0 indicates no color in this component, while 255 is full strength. 
An alpha value of 0 is fully transparent (invisible), while 255 is opaque (solid).

Figure 10.2 shows a table of  some of  the possible colors, all with no transparency 
(alpha = 255). The table in Figure 10.2 was produced with the Greenfoot scenario 
color-chart, which is in the chapter10 folder in the book scenarios.

3 This is just one possible model to represent color. There are others in use in computer graphics 
and in print. However, this is the one most commonly used in Java programming, so we will 
concentrate on this model here.

Exercise 10.35 What do pixels look like which have a color/alpha value of (255, 0, 0, 
255)? What about (0, 0, 255, 128)? And what is (255, 0, 255, 230)?

M10_KOLL4292_02_SE_C10.indd   194 2/3/15   8:59 AM



 10.9 Drawing images      |       195   

Figure 10.2
RGB color table

M10_KOLL4292_02_SE_C10.indd   195 2/3/15   8:59 AM



196      |       Chapter 10 ■ Creating images and sound 

In Greenfoot, colors are represented by objects of the Color class from the java.awt 
package. After importing that class, we can create color objects either with just RGB 
values:

Color mycol = new Color (255, 12, 34);

or with RGB values and an alpha value:

Color mycol = new Color (255, 12, 34, 128);

If  we do not specify an alpha value, the color will be fully opaque.

Exercise 10.36 Create a new Greenfoot scenario called color-test. In it, create  
a world with a background that displays a pattern. Create an Actor subclass 
called ColorPatch. Program the ColorPatch class so that it generates a new 
GreenfootImage of a fixed size, filled with a fixed color. Use this image as the actor’s 
image. Experiment with different color and alpha values.

Exercise 10.37 Modify your code so that the color patch, when created, gets an 
image of a random size filled with a random color, and random transparency.

Exercise 10.38 Modify your code again so that the image is not filled, but instead has 
100 small colored dots painted into it, at random locations within the actor’s image.

 10.10 Combining image files and dynamic drawing
Some of  the most interesting visual effects are achieved when we combine static 
images from files with dynamic changes made by our program. We can, for example, 
start with a static image file, and then paint onto it with different colors, or scale it up 
or down, or let it fade by changing its transparency.

To try this out, we shall create a smoke effect. In our next scenario, we make a ball 
move across the screen, leaving a trail of smoke behind (see Figure 10.3).

Exercise 10.39 Create a new scenario called smoke. Make a nice looking, fairly neu-
tral background image for it.

Exercise 10.40 Create a ball that moves across the screen at constant speed. When 
it hits the edge of the screen, it bounces off. (The screen is, in effect, a box, and the ball 
bounces within it.)

M10_KOLL4292_02_SE_C10.indd   196 2/3/15   8:06 PM



 10.10 Combining image files and dynamic drawing      |       197   

Now we will work on the smoke effect. First, create an image showing a puff of smoke 
(Figure 10.4).

Note that the checkered background is not part of the image—it is shown here only to 
demonstrate that the smoke puff image is semitransparent (we can see the background 
behind it).

Your smoke does not have to be green—you can make it any color you like—but it 
should be transparent. You can achieve this in a good graphics program by simply 
drawing a dot with a large, soft, semitransparent paint brush. If  you have trouble pro-
ducing this image, you can use the prepared image file smoke.png from the chapter10 
folder in the book scenarios.

Figure 10.3
The smoke trail effect

Figure 10.4
An image of a puff  
of smoke

M10_KOLL4292_02_SE_C10.indd   197 2/3/15   12:17 PM



198      |       Chapter 10 ■ Creating images and sound 

If  you completed all the exercises above, then you should now have a good looking 
smoke trail behind your ball. If  you had trouble with these exercises, or if  you want to 
compare your solution to ours, you can have a look at the smoke scenario in the book 
projects. This implements the task described here.

Exercise 10.41 Create the smoke image as described above.

Exercise 10.42 Create a Smoke actor class in your scenario. When inserted into the 
world, a Smoke actor should fairly quickly fade away. That is, in every act cycle, the image 
of the actor should become smaller and more transparent. (The GreenfootImage 
class has methods to adjust the size and transparency.) When they are fully transparent 
or very small, they should remove themselves from the world.

Exercise 10.43 Modify your ball so that it leaves puffs of smoke behind. Producing a 
puff of smoke every time the ball moves may be a little too much: try creating a new 
smoke puff only in every second step of the ball. Test.

Exercise 10.44 Modify your smoke so that it does not always fade at exactly the 
same rate. Make the rate of fading somewhat random, so that some puffs of smoke 
fade away more quickly than others.

Summary 

Being able to produce sounds and images is a very valuable skill for producing good 
looking games, simulations, and other graphical applications. Knowing about sound 
and image file formats is important to make good choices about trade-offs between 
file size and quality.

Sounds can be recorded directly in Greenfoot, or recorded and edited with a variety 
of sound recording programs. Various parameters determine the sound quality and 
file size. For Greenfoot scenarios, we usually use WAV format with fairly low quality.

Images can also be saved in a variety of different formats. Different formats vary in 
how well they compress files, how well they preserve image quality, and how they 
handle transparency. JPEG and PNG are the formats most often used for Greenfoot 
scenarios.

By combining images from a file with dynamic image operations, such as scaling and 
transparency changes, we can achieve attractive visual effects in our scenarios.

M10_KOLL4292_02_SE_C10.indd   198 2/3/15   8:59 AM



 10.10 Combining image files and dynamic drawing      |       199   

Drill and practice

Below are some exercises to practice your skills with sound and image manipulation.

playing music

Exercise 10.45 Make a new scenario for a (very simple) MP3 player. Create an actor 
for a start button. Place an MP3 file into the scenario’s sound folder. Program it so that 
clicking the button starts playing the MP3 file. Clicking it while it is playing stops play-
ing the file.

Exercise 10.46 Make sure the button image changes: It should be the typical “play” 
triangle while the sound is not playing, and change to the usual “pause” symbol (dou-
ble vertical bars) when it is playing.

Exercise 10.47 Add a stop button. This button should stop the sound. When you 
then press play again, the sound starts from the beginning (not from the point where 
it was stopped). Make sure the play button’s image changes appropriately when the 
sound is stopped.

Exercise 10.48 Add two buttons to change the volume up and down.

Exercise 10.49 Add a display that shows the current volume.

Exercise 10.50 Add three buttons to select three different songs (which you must 
place in your sounds folder).

Concept summary
■ We can use the mouseClicked method to check whether the user clicked on a given object.

■ Sounds can be saved in a variety of different formats and encodings. Not all programs can play 
all sound formats. For Greenfoot, we usually use WaV format.

■ The sample format, sample rate, and stereo/mono setting of a sound recording determine 
file size and sound quality.

■ The JpeG image format compresses large images very well. This is often the best choice for 
backgrounds.

■ Pixels in images have a transparency value that determines whether we can see through them. 
Pixels may be partly transparent. If they are fully transparent, they are invisible.

■ The pNG image format is often the best choice for actor images since it can handle transparency 
and compresses fairly well.

M10_KOLL4292_02_SE_C10.indd   199 2/3/15   8:59 AM



200      |       Chapter 10 ■ Creating images and sound 

Manipulating images

Exercise 10.51 Make a copy of your fatcat scenario from Chapter 2 and open it. 
Change the constructor of MyCat so that the cat has a random size (with the current 
full size the maximum). Do this by scaling down the cat’s image by a random amount 
in its constructor. Test by placing a few cats into the world.

Exercise 10.52 Rewrite the act method so that the cat slowly fades away when you 
run the scenario (like the Cheshire Cat in Alice In Wonderland).

Exercise 10.53 Change your cat so that it only starts fading away after you click on it.

For the following exercises, open the scenario path-follower from the chapter10 folder. 
This scenario shows a creature (a Greep) that should follow a path. It does this by look-
ing at the color of the ground: If the ground is brownish, it is a path, otherwise it is not.

At the moment, this scenario is incomplete. (Try it out!) Most of the code has been 
implemented, but the last few bits dealing with color are missing. You will now write 
them.

We will create the path-following behavior by getting the color from the world back-
ground at the position of each of the Greep’s eyes. If we see green with the left eye, we 
turn a little to the right, and if we see green with the right eye, we turn left. This way, we 
will stay on the path.

There are three methods that have code missing; all are in the Greep class. They are 
leftEyeColor, rightEyeColor and isPath. Everything else is complete.

Let us start with the leftEyeColor method. This method should return the color of 
the world background at the position of the left eye (as an object of type Color).

Find the method. You will see that it already finds the coordinates of the left eye. They 
are stored in an object of class Point, and we can get the x- and y-coordinates of the 
eye by calling methods of that Point object.

You need to do the following:

■ Get the world.

■ From the world, get the world’s background image.

■ From the point object, get the eye’s x- and y-coordinates.

■ Get the color from the background image at the location of the eye.

■ Return this color.

M10_KOLL4292_02_SE_C10.indd   200 2/3/15   8:59 AM



You may need to refer to the documentation of World and GreenfootImage to find 
out the names of the methods to do these tasks.

reading color

Exercise 10.54 Complete the code of the leftEyeColor method so that it returns 
the color under the left eye.

Exercise 10.55 Complete the code of the rightEyeColor method so that it 
returns the color under the right eye.

Exercise 10.56 Complete the code of the isPath method so that it returns true 
only if the given color is that of the path, not grass. You can do this by checking the red 
component of the color: If the component value for red is greater than 160, you can 
assume that we are looking at path, not at grass. Refer to the documentation of class 
Color to find out how to retrieve the color’s red component.

 10.10 Combining image files and dynamic drawing      |       201   

M10_KOLL4292_02_SE_C10.indd   201 2/3/15   8:59 AM



Chapter

In this chapter, we will discuss one type of software application in a little more detail: 
simulations.

Simulations are fascinating examples of  computing because they are highly experi-
mental and potentially allow us to predict the future. Many types of  simulations can 
be (and have been) developed for computers: traffic simulations, weather forecast-
ing systems, economics simulations (simulations of  stock markets), simulations of 
chemical reactions, nuclear explosions, environmental simulations, and many more.

We have seen one simple simulation in Chapter 8, in which we simulated part of  a 
solar system. That simulation was a little too simplistic to accurately forecast trajec-
tories of  real planets, but there are some aspects of  astrophysics which that simula-
tion may help us understand. 

In general, simulations may serve two different purposes: they can be used to study 
and understand the system they are simulating, or they can be used for forecasting.

In the first case, the modeling of  a system (such as the modeling of  the stars and  
planets) may help us understand some aspects of how it behaves. In the second case, 
if  we have an accurate simulation, we can play through “what if” scenarios. For exam-
ple, we might have a traffic simulation for a city, and we observe that every morning a 
traffic jam develops at a certain intersection in the real city. How can we improve the 
situation? Should we build a new roundabout? Or change the traffic light signal pat-
terns? Or perhaps we should build a bypass?

The effects of any of these interventions are often hard to predict. We cannot try out 
all these options in real life to see which is best, since that would be too disruptive and 
expensive. But we can simulate them. In our traffic simulation, we can try out each 
option and see how it improves traffic.

Simulations

topics: simulations

concepts: emergent behavior, experimentation

11

Concept
A simulation is 
a computer pro-
gram that simu-
lates some phe-
nomena from 
the real world. 
If simulations 
are accurate 
enough, we can 
learn interesting 
things about the 
real world from 
observing them.

M11_KOLL4292_02_SE_C11.indd   202 2/3/15   9:06 AM



 Simulations      |       203   

If  the simulation is accurate, then the result we observe in the simulation will also be 
true in real life. But this is a big “if”: Developing a simulation that is accurate enough is 
not easy, and it is a lot of work. But for many systems, it is possible to a useful degree.

Weather forecasting simulations are now accurate enough that a one-day forecast is 
fairly reliable. A seven-day forecast, however, is about as good as rolling dice: the sim-
ulations are just not good enough.

When we use simulations, it is important to be aware of the limitations: Firstly, simu-
lations always have a degree of inaccuracy because we are not modeling the behaviors 
of the actors completely realistically, and because we may not know the exact state of 
the starting system.

In addition, simulations necessarily model only part of reality, and we must be aware 
that parts outside of our simulation might actually be relevant.

In the example of our traffic jam, for instance, maybe the best solution is neither of 
the options mentioned above, but to provide better public transport or bicycle lanes to 
get some cars off  the road. If  our simulation does not include that aspect, we would 
never find out just by using the simulation, no matter how accurate it is.

Despite these limitations, however, even very simple simulations are fascinating to 
play with, and good simulations are incredibly useful. They are so useful, in fact, that 
almost all of the world’s fastest computers run simulations most, or at least a substan-
tial part, of their time.

Side note: Supercomputers

A list of the fastest supercomputers in the world is regularly published on the Internet at http://www 
.top500.org. Most of these are described there in some detail, and for many of them, the list includes 
links to websites that describe their purpose and the kind of work they are used for.

Reading through this material, you can see that many are run by large research institutions or the 
military and that almost all are used to run simulations, often physics simulations. The military use 
these, for example, to test nuclear explosions in simulations, and research institutions conduct many 
different science experiments this way.

Simulations also have a special place in the history of object-oriented programming: 
Object orientation was invented explicitly to run simulations.

The very first object-oriented programming language, named Simula, was designed 
in the 1960s by Kristen Nygaard and Ole-Johan Dahl at the Norwegian Computer 
Center in Oslo. As the name suggests, its purpose was to build simulations. All object-
oriented programming languages today can be traced back to that language. Dahl 
and Nygaard received the 2001 Turing Award—computer science’s equivalent of the 
Nobel Prize—for this work.

M11_KOLL4292_02_SE_C11.indd   203 2/3/15   9:06 AM



204      |       Chapter 11 ■ Simulations

Figure 11.1
The foxes-and-
rabbits simulation

Enough introduction—let’s get our hands on the keyboard again and try out some 
things.

In this chapter, we will look at one simulation fairly briefly and then work on writing 
another one in more detail. We have now reached a stage where more work will be up 
to you to complete: We will discuss the outline of the tasks to implement, but you will 
have to work out the details yourself.

 11.1 Foxes and rabbits
The first simulation we investigate is called foxes-and-rabbits (Figure 11.1). It is a 
typical example of a class of simulations called predator-prey-simulations—a type of 
simulation in which one creature chases (and eats) another. In our case, the predator 
is a fox and the prey is a rabbit.

The idea here is as follows: The scenario shows a field that contains populations of 
foxes and rabbits. Foxes are represented by blue squares, and rabbits are shown as  
yellow squares.

Both species have fairly simple behavior: Rabbits move around and—if they are old 
enough—may produce offspring. There is a set probability at each act step for rabbits 
to reproduce. There are two ways in which rabbits may die: They may die of old age or 
they may be eaten by a fox.

Foxes move and breed in a manner similar to rabbits (although they breed less fre-
quently and have fewer young ones). One additional thing, however, that they do  

M11_KOLL4292_02_SE_C11.indd   204 2/3/15   9:06 AM



 11.1 Foxes and rabbits      |       205   

is hunt. If  they are hungry and they see a rabbit sitting next to them, they will move 
to eat the rabbit.

Foxes can also die in two different ways: They can die of old age and they can starve. 
If  they do not find a rabbit to eat for some time, they will die. (Rabbits are assumed to 
always find sufficient amounts of food.)

Exercise 11.1 Open the foxes-and-rabbits scenario. Run it. Explain the patterns of 
populations and movement you see emerging in the field.

Exercise 11.2 You will notice that this scenario shows a second small window with 
a population graph. One curve shows the number of foxes, the other the number of 
rabbits. Explain the shape of these graphs.

As we can see, the simulation is highly simplistic in many ways: Animals do not have 
to meet mates to reproduce (they can do that all on their own), food sources for rab-
bits are not included in the simulation, other factors of death (such as diseases) are 
ignored, and so on. However, the parameters that we do simulate are already fairly 
interesting, and we can do some experiments with them.

Exercise 11.3 Are the current populations stable? That is, do they always continue 
to run without one of the species dying out? If species become extinct, what is the 
 average time they survive?

Does the size of the field matter? For example, imagine we have a national park with 
an endangered species. And someone wants to build a freeway through the middle of 
it that the animals cannot cross, essentially dividing the park into two parks of half  
the size each. The proponents of the freeway might argue that this does not matter 
because the total size of  parkland is about the same as before. The park authority 
might argue that this is bad because it halves the size of each park. Who is right? Does 
the size of a park matter? Do some experiments.

Exercise 11.4 The Field class has definitions of constants toward the top of its 
source code for its width and height. Modify these constants to change the size of the 
field. Does the size of the field affect the stability of the populations? Do species die out 
more easily if the field is smaller or larger? Or does it make no difference? Try with very 
small and larger fields.

Other parameters with which we can experiment are defined in constants at the top 
of the Rabbit and Fox classes. Rabbits have definitions for their maximum age, the 
age from which they can breed, the frequency of breeding (defined as a probability 
for each step), and the maximum size of their litter when they do breed. Foxes have 

M11_KOLL4292_02_SE_C11.indd   205 2/3/15   9:06 AM



206      |       Chapter 11 ■ Simulations

the same parameters and an additional one: the nutritional value of  a rabbit when 
it is eaten (expressed as the number of steps that the fox can survive after eating the  
rabbit). The food level of a fox decreases by one in every step and increases when eat-
ing a rabbit. If  it reaches zero, the fox dies.

Exercise 11.5 Choose a field size in which the populations are almost stable but 
occasionally die out. Then make changes to the Rabbit parameters to try to increase 
the chances of the populations’ survival. Can you find settings that make the popula-
tions more stable? Do some settings make them less stable? Are the observed effects 
as you expected, or did some differ from your expectations?

Exercise 11.6 When the fox population is in danger of becoming extinct occa-
sionally, we could speculate that we could improve the chances of foxes’ survival by 
increasing the food value of rabbits. If foxes can live longer on eating a single rabbit, 
they should starve less often. Investigate this hypothesis. Double the amount of the 
RABBIT_FOOD_VALUE constant and test the scenario. Does the fox population sur-
vive longer? Explain the result.

Exercise 11.7 Make other changes to the Fox parameters. Can you make the popu-
lations more stable?

The exercises show that we can experiment with this simulation by changing some 
parameters and observing their effects. In this chapter, however, we shall not be con-
tent with experimenting with an existing simulation; we also want to develop our own. 
We will do that in the next section with a different scenario: ants.

 11.2 Ants
The ants scenario (Figure 11.2) simulates the food collecting behavior of ant colonies. 
Or, to be more precise, we would like it to simulate this behavior, but it does not do it 
yet. We will develop it to do so. In its current state, the scenario has been prepared to 
some extent: The graphics exist and some of the implementation has been completed. 
The main functionality, however, is missing, and we will work on completing it.

Exercise 11.8 Open the scenario called ants from the chapter11 folder of the book 
scenarios. Create an ant hill in the world and run the scenario. What do you observe?

Exercise 11.9 Examine the source code of the Ant class. What does it currently do?

Exercise 11.10 Ant is a subclass of class Creature. What functionality does a crea-
ture have?

Exercise 11.11 Examine the source code of class AntHill. What does this class do? 
How many ants are in an ant hill?

M11_KOLL4292_02_SE_C11.indd   206 2/3/15   9:06 AM



 11.2 Ants      |       207   

The first thing we notice is that the ants do not move. They are created in the middle 
of the ant hill, but since they do not move, after a short while they will all sit there on 
top of each other. So, the first thing for us to do is to make ants move.

Figure 11.2
The ants simulation

Exercise 11.12 In the Ant’s act method, add a line of code to make the ant move. 
Do not use the Actor’s move method, but inherited methods from class Creature. 
Consult the documentation of class Creature to find out about the methods to use.

We will now go step by step through a series of improvements to this scenario:

■ We will introduce some food to the scenario, so that the ants have something to 
 collect.

■ We will improve the ants, so that they can find the food and carry some of it home.

■ Next we will add a Pheromone class. Pheromones are chemical substances that 
some animals produce to leave messages for other animals of their species.

M11_KOLL4292_02_SE_C11.indd   207 2/3/15   9:06 AM



208      |       Chapter 11 ■ Simulations

■ We will improve the ants to make use of pheromones. They will leave drops of 
pheromones on the ground when they have found food, and other ants can then 
smell these pheromones and adjust where they are going.

These steps together roughly simulate the food collecting behavior of  ant colonies. 
When complete, we can do some experiments with the simulation.

 11.3 Collecting food
Our first task is to create some food in our scenario and to let ants collect it and carry 
it back to the ant hill.

Each object of  class Food represents a pile of  food crumbs. Our plan is to create a 
new, dynamically drawn image for the Food object and draw a small dot on it for every 
crumb in the pile. A pile may start with, say, 100 crumbs, and every time an ant finds 
the pile, it takes a few crumbs away. That means that the image must be redrawn with 
fewer crumbs every time an ant takes some food.

Exercise 11.13 Create a new class called Food. The class does not need a fixed 
image. We will draw the image from within the class.

If  you completed the exercise above, and you placed food crumbs at a random location 
within the Food image (using the Greenfoot.getRandomNumber method to obtain 
the coordinates), then you will have noticed that the pile of crumbs had a somewhat  
squarish shape (Figure 11.3a). This is because the image itself  is square, and the 
crumbs are evenly distributed over the image.

Exercise 11.14 In class Food, create a field for the number of crumbs currently in the 
pile. Initialize it to 100.

Exercise 11.15 Create a new private method called updateImage, which creates an 
image of a fixed size and draws a dot on it at a random location for each crumb currently 
in the pile. Choose a size for the image of the pile that you think looks good. Call this 
method from the constructor.

Figure 11.3
Placement of food 
crumbs with different 
randomizer algorithms

a) crumbs with even distribution b) crumbs with Gaussian distribution

M11_KOLL4292_02_SE_C11.indd   208 2/3/15   9:06 AM



 11.3 Collecting food      |       209   

If  we want to change this to look more like a pile (with most crumbs toward the mid-
dle, and other crumbs in a rough circle-shape around it, Figure 11.3b), then we can 
use another random number method to place the crumbs differently. We shall do this 
with Exercises 11.16 and 11.17. Note that these are more advanced exercises and they 
are purely cosmetic: they merely change the look of the food pile and none of its func-
tionality, so they could safely be skipped.

Exercise 11.16 Consult the API documentation for the standard Java class library. 
Find the documentation for class Random from the java.util package. Objects 
of this class are random number generators that are more flexible than Greenfoot’s 
getRandomNumber method. The method of interest to us is the one that returns ran-
dom numbers in a Gaussian distribution (also called a “normal distribution”). What is 
the method’s name, and what does it do?

Exercise 11.17 In your Food class, change your placement of food crumbs in the image 
to make use of the Gaussian distribution of random numbers. For this, you have to use 
a java.util.Random object to create the random numbers, instead of Greenfoot.
getRandomNumber.

Side note: Random distributions

If we need random behavior in our programs, it is sometimes important to think about what kind of 
random distribution we need. Many random functions, such as the Greenfoot.getRandom-
Number method, produce a uniform distribution. In this, the chance of every possible result occur-
ring is the same. The Gaussian random number function gives us a normal distribution. This is one in 
which the average results are more likely to occur, and more extreme results are rarer.

If we, for example, program a dice game, we need a uniform distribution. Each side of the die is 
evenly likely to come up. On the other hand, if we model the speed of cars in a traffic simulation, a 
normal distribution would be better. Most cars are driving somewhere close to the average speed, 
and only few cars are very slow or very fast.

Next we need to add functionality to remove some crumbs from the food pile, so that 
ants can take some food.

Exercise 11.18 Add a public method to class Food that removes a few crumbs from 
the pile. Make sure that the image is redrawn with the correct number of remaining 
crumbs. When the crumbs are all gone, the Food object should remove itself from the 
world. Test this method interactively.

Now that we have a pile of  food available in our scenario, we can make our ants  
collect it. Ants will now switch between two different behaviors:

■ If  they are not carrying food, they search for food.

■ If  they are currently carrying food, they walk toward home.

M11_KOLL4292_02_SE_C11.indd   209 2/3/15   9:06 AM



210      |       Chapter 11 ■ Simulations

Ants switch between these two behaviors when they reach either a food pile or the 
home ant hill. If  they are searching for food, and they run into a food pile, they pick 
up some food and switch from the first to the second behavior. If  they then reach the 
ant hill, they drop the food there and switch back to the first behavior pattern.

We shall now implement this in our Ant class. Written in pseudo code, the act method 
might look somewhat like this:

if (carrying food) {
    walk towards home;
    check whether we are home;
}
else {
    search for food;
}

We implement this now one step at a time.

Exercise 11.19 In the Ant class, implement a searchForFood method. This 
method should initially just do a random walk and check whether we have run into 
a food pile. If we find a food pile, stop execution. (This is just to test whether we have 
correctly detected the food.)

Exercise 11.20 Add functionality to pick up some food when we find a food pile (instead  
of stopping execution). We need to remove some crumbs from the food pile (we 
should already have a method for this), note that we are now carrying food (we prob-
ably need a field for this), and change the ant’s image. There is already an image pre-
pared in the scenario, named ant-with-food.png, that you can use.

Exercise 11.21 Ensure that the ant walks toward home when carrying food.

Exercise 11.22 Implement a method that checks whether an ant has reached the 
home hill. If it has, it should drop its food. Dropping the food consists of noting that 
it is not carrying food anymore (including changing the image back) and calling the 
AntHill’s countFood method to record that it has collected this food crumb.

Pay attention to the quality of your code: Use short methods with distinct purposes 
and make sure to comment your methods well. Do not write too much code into a 
single method.

You can find an implementation of the functionality discussed so far in the scenario 
ants-2. After completing your implementation (or when you get stuck), you might like 
to compare your solution with ours.

Concept
Using short 
methods with a 
specific purpose 
leads to better 
code quality.

M11_KOLL4292_02_SE_C11.indd   210 2/3/15   9:06 AM



 11.5 Adding pheromones      |       211   

 11.4 Setting up the world
Before we go on to add pheromones to our scenario, let us first add some initialization 
code that creates some ant hills and food for us automatically, so that we do not have 
to repeat this manually every time we wish to test.

Exercise 11.23 Add code to class AntWorld, so that it automatically creates two ant 
hills and a few piles of food in the world. You can do that by writing the code manually, 
or by using the Save The World function in Greenfoot’s interface.

 11.5 Adding pheromones
Now that we have a good start setup, we are ready to add pheromones. Each phero-
mone object is a small drop of a chemical substance that the ants leave on the ground. 
This drop will evaporate fairly quickly and then disappear.

Ants drop pheromones while they are walking back home from a food source. When 
other ants smell the drop of pheromone, they can then turn away from their home hill 
and walk in the direction toward the food.

Exercise 11.24 Create a class Pheromone. This class does not need an image—we 
shall draw the image programmatically.

Exercise 11.25 Implement an updateImage method in the Pheromone class. 
Initially, this method should create an image with a white circle drawn onto it and set 
this as the actor’s image. The white circle should be partly transparent. Call this method 
from the constructor.

Exercise 11.26 Give the pheromones an intensity attribute. (That is, add an inten-
sity field.) The intensity of a pheromone object should start out at a defined maxi-
mum intensity and decrease in every act cycle. When the intensity reaches zero, 
remove the pheromone object from the world. A drop of pheromone should evapo-
rate in about 180 act cycles.

Exercise 11.27 Modify your updateImage method, so that it makes use of the pher-
omone’s intensity. As the intensity decreases, the white circle representing it on screen 
should become smaller and more transparent. Make sure updateImage is called from 
the act method so that we see the image change on screen.

Exercise 11.28 Test your pheromones by placing them into the world manually and 
running your simulation.

We now have a Pheromone class available that our ants can use. Now we only have to get 
the ants to use it. The first half of using the pheromone is placing it into the world. The 
second half is noticing it and changing direction as a result. Let us do the first half first.

M11_KOLL4292_02_SE_C11.indd   211 2/3/15   9:06 AM



212      |       Chapter 11 ■ Simulations

If, in the previous exercise, you placed a drop at every act cycle, you will notice that this 
places too much pheromone into the world. Ants cannot produce unlimited amounts; 
after placing a drop, they need some time to regenerate more pheromone.

Exercise 11.29 Add a method to your ant that places a drop of pheromone into the 
world. Call this method repeatedly while the ant is walking home.

Figure 11.4 shows a trail of pheromones left by our ant at this point.1 The drops are 
spaced out (the ant needs some time to regenerate pheromones), and the older phero-
mone drops are partly evaporated—they are smaller and more transparent.

Exercise 11.30 Modify the ant so that it can leave a drop of pheromone at most 
every 18 steps. To achieve this, you will need a field that stores the current pheromone 
level of an ant. When the ant places a pheromone drop, the pheromone level (remain-
ing pheromones in the ant’s body) goes down to zero, and then it slowly rises again 
until the ant is ready to leave another drop.

1 If  you look closely, you will notice that I have modified my pheromone image to have a small 
dark dot in the middle. This is so that pheromones can be seen better even when they are quite 
transparent.

Figure 11.4
An ant leaving a 
trail of pheromones

M11_KOLL4292_02_SE_C11.indd   212 2/3/15   12:17 PM



 11.6 Path forming      |       213   

The final thing to add is for ants to smell the pheromones, and change their direction 
of movement when they do.

If  an ant smells a drop of pheromone, it should walk away from its home hill for some 
limited time. If  it does not find food or smell a new drop of pheromone after some 
time, then it should revert to random walking. Our algorithm for searching for food 
might look something like this:

if (we recently found a drop of pheromone) {
    walk away from home;
}
else if (we smell pheromone now) {
     walk towards the center of the pheromone drop;
     if (we are at the pheromone drop center) {
         note that we found pheromone;
     }
}
else {
     walk randomly;
}
check for food;

When implementing this in your own scenario, remember to create a separate method 
for each distinct subtask. That way, your code will remain well structured, easy to 
understand, and easy to modify.

Exercise 11.31 Implement the functionality discussed above in your own scenario: 
When ants smell pheromones, they walk away from their home hill for the next 30 
steps, before reverting to their default behavior.

If  you completed this exercise, then your ant simulation is more or less complete (as 
much as any software application is ever complete). If  you run your scenario now, you 
should see ants forming paths to the food sources.

 11.6 Path forming
One interesting aspect of this scenario is that there is no code anywhere in the project 
that talks about forming paths. The behavior of the individual ants is quite simple:  
“If  you have food, go home; if  you smell pheromones, go away; otherwise go any-
where.” However, together, the ants display some fairly sophisticated behavior: They 
form stable paths, refreshing the pheromones as they evaporate, and efficiently trans-
port food back to their ant hill.

This is known as emergent behavior. It is behavior that is not programmed into any 
individual actor, but system behavior that emerges from the interactions of  many 
(fairly simple) actors.

M11_KOLL4292_02_SE_C11.indd   213 2/3/15   9:06 AM



214      |       Chapter 11 ■ Simulations

Most complex systems display some sort of emergent system behavior, whether they 
are traffic systems in cities, networks of computers, or crowds of people. Predicting 
these effects is very difficult, and computer simulations can help in understanding 
such systems.

Concept
Simulations of 
systems often 
display emer-
gent behavior. 
This is behavior 
not programmed 
into single actors 
but emerging 
as a result of 
the sum of all 
behaviors.

Exercise 11.32 How realistic is our simulation of the use of pheromones by ants? 
Do some research into the actual use of pheromones by ant colonies and write down 
which aspects of our simulation are realistic, and where we have made simplifications.

Exercise 11.33 Assume pollution has introduced a toxic substance into the ants’ 
environment. The effect is that their production of pheromones is reduced to a quarter 
of the previous amount. (The time between leaving drops of pheromones is four times 
as long.) Will they still be able to form paths? Test.

Exercise 11.34 Assume another pollutant has decreased the ants’ ability to remem-
ber that they recently smelled a pheromone to a third. Instead of 30 steps, they can 
only remember the pheromone for 10 steps. What is the effect of this on their  behavior?

There are many more experiments you can do. The most obvious is to try out different 
placements of ant hills and food sources and different values for the attributes that 
determine the ants’ behavior.

The scenario ants-3 in the chapter11 folder shows an implementation of the tasks dis-
cussed above. It includes three different setup methods in the world class that can be 
called interactively from the world’s pop-up menu.

Summary

In this chapter, we have seen two examples of simulations. This served two purposes. 
Firstly, this was a chance to practice many of the programming techniques we have 
discussed in earlier chapters and we had to use most of the Java constructs previously 
introduced. Secondly, simulations are an interesting kind of application to experiment 
with. Many simulations are used in real life for many purposes, such as weather forecast-
ing, traffic planning, environmental impact studies, physics research, and many more.

If  you managed to solve all the exercises in this chapter, then you have understood 
a great deal of  what this book tried to teach you, and you are competent at basic 
 programming.

M11_KOLL4292_02_SE_C11.indd   214 2/3/15   9:06 AM



 11.6 Path forming      |       215   

Concept summary
■ A simulation is a computer program that simulates some phenomena from the real world.  

If simulations are accurate enough, we can learn interesting things about the real world from 
observing them.

■ Using short methods with a specific purpose leads to better code quality.

■ Simulations of systems often display emergent behavior. This is behavior not programmed into 
single actors, but emerging as a result of the sum of all behaviors.

M11_KOLL4292_02_SE_C11.indd   215 2/3/15   9:06 AM



Chapter

We have learned to use many different and useful programming constructs by now, 
and now we are ready to apply them to another context. In this chapter, we will not 
introduce new programming concepts or Java constructs, but instead use our pro-
gramming skills to play with an exciting and interesting toy: the Microsoft Kinect.

The Microsoft Kinect is a sensor board that includes a color camera, an infrared 
projector, and an infrared camera (Figure 12.1). The infrared projection and camera 
enable it to sense depth of the image in front of it, so it can “see” in three dimensions.

To do the exercises in this chapter, you need to have a Microsoft Kinect available. If  
you do not own one, you can safely skip this chapter. If  you consider buying a Kinect 
for use with Greenfoot, make sure to read the notes on Purchasing a Kinect on the 
Greenfoot website.1 Not all models of the Kinect work with Greenfoot.

Greenfoot and the Kinect

topics: programming with the Microsoft Kinect

concepts: body tracking

12

1 See http://www.greenfoot.org/doc/kinect#purchase for notes on which model of the Microsoft 
Kinect to purchase for use with Greenfoot.

2 Image source: Official Windows Magazine/Getty Images

Figure 12.1
The Microsoft 
Kinect2

M12_KOLL4292_02_SE_C12.indd   216 2/3/15   8:08 PM



 12.1 What the Kinect can do      |       217   

In this chapter, we shall look at a sequence of scenarios that make use of the Kinect. 
We will first study some ready-made scenarios to see how things work, and then write 
some code of our own.

 12.1 What the Kinect can do
The Kinect can detect people and their movement in front of  its camera. Through 
Greenfoot and the Kinect, we can get information about the number of  people in 
front of it, their position, and their body movements. This allows us to write programs 
that are controlled by moving our body in front of our computers.

Camera image
The first and most simple thing the Kinect does is give us an image from its camera. This 
is just like any other normal webcam image, and we can use this image in Greenfoot.

Depth image
In addition to the normal color image, we can get depth information. “Depth” is the 
distance from the camera of any point in front of it. Figure 12.2 shows the depth as a 
gray-scale image: the lightness of each pixel shows its distance from the camera.

Figure 12.2
The depth image

M12_KOLL4292_02_SE_C12.indd   217 2/3/15   12:19 PM



218      |       Chapter 12 ■ Greenfoot and the Kinect

Body outlines
The Kinect can recognize people in its view, and reasonably reliably determine their 
outline in the camera image (Figure 12.3). It can distinguish between different people 
and give us the information about the location of a human body separately for every 
person it can see. 

Skeleton tracking
The most useful thing the Kinect can do is skeleton tracking: It can identify the loca-
tion, in all three dimensions, of  various points of  our body (Figure 12.4). It can give 
us the location of  our hands, shoulders, feet, hips, head, and so on. This makes it very 
easy to write programs that are controlled by body movements. We can, for example, 
write a scenario where something happens when we touch a Greenfoot actor with our 
right hand or when our left foot is raised above our right knee. It does not need much 
imagination to come up with ideas how we can use this input to write interesting sce-
narios that are fun to play with.

Figure 12.3
Recognizing 
body outlines

Concept
Skeleton track-
ing is the iden-
tification and 
tracking of some 
known points on 
a body, such as 
hands, elbows, 
head, feet, and 
so on.

M12_KOLL4292_02_SE_C12.indd   218 2/3/15   12:19 PM



 12.2 Installing the software      |       219   

 12.2 Installing the software
Before you can use the Microsoft Kinect with Greenfoot, you have to install some 
driver software. The driver software manages the communication with the hardware 
and provides a software interface to control the device.

When Greenfoot Kinect scenarios are running, we need the Greenfoot Kinect Server 
to run in the background to facilitate the communication between our Greenfoot sce-
nario and the Kinect hardware. The Greenfoot Kinect Server, in turn, uses a library 
called OpenNI. Figure 12.5 shows the levels of communication between your Kinect 
scenario and the Kinect hardware.

Detailed installation instructions for these software components are on the Greenfoot 
website at http://www.greenfoot.org/doc/kinect.

Instructions are available for Windows, Linux (Ubuntu), and Mac OS X. Follow these 
instructions carefully before you start working with the following examples.

Running the Greenfoot Kinect server
When we want to run our Greenfoot Kinect scenarios, we first have to start the 
Greenfoot Kinect Server. It will run continuously in the background, and we have to 
keep it running as long as we are working with Greenfoot and the Kinect.

Figure 12.4
Skeleton tracking

Concept
Communication 
with hardware 
components is 
typically arranged 
through some 
driver software.

M12_KOLL4292_02_SE_C12.indd   219 2/3/15   12:18 PM



220      |       Chapter 12 ■ Greenfoot and the Kinect

The installation instructions mentioned above provide details about how to start this 
server. (If  you are running it from a terminal, you will see a lot of warning messages 
printed. Do not worry about this—it is normal.)

 12.3 Getting started
To get started, we will first look at a very simple example: displaying the camera image 
on screen. We will use a scenario called simple-camera, which you can find in the book 
scenarios.

Figure 12.5
Layers of commu-
nication between 
Greenfoot and the 
Kinect

Kinect hardware

OpenNI

Greenfoot Kinect server

Greenfoot scenario

If  your installation has worked, you should now see the image from the Kinect’s cam-
era in your world.

In the class diagram in the scenario, you see a number of classes. The KinectWorld, 
Joint, KinectClient, Point3D, and UserData classes are part of  the Greenfoot 
Kinect infrastructure—they will always be present in scenarios using the Kinect. The 
only class specific to this scenario, holding our user code, is MyWorld.

Before trying our own code, let us have a quick look at the standard Greenfoot Kinect classes.

KinectWorld
This class should be used as the superclass for all your own world classes in Kinect 
scenarios. It provides the fundamental communication with the Kinect, giving you 
access to the data (camera image and user data) that we can receive from the Kinect. 
You should, at some stage, have a look at its methods. You may want to switch the edi-
tor to Documentation view to look at its methods—the implementation is not impor-
tant at the moment.

Exercise 12.1 Connect your Kinect to your computer. Start your Greenfoot Kinect 
Server. Then start Greenfoot and open the simple-camera example. Run it.

M12_KOLL4292_02_SE_C12.indd   220 2/3/15   9:10 AM



 12.4 The simple camera      |       221   

KinectClient
This class is used internally by the KinectWorld—you should not need to use this 
directly.

UserData
This is a class that defines objects which are holding information about a user being 
tracked by the Kinect. You can get one object per user that the Kinect can see. You 
can receive UserData objects by using methods from your KinectWorld.

Joint
The UserData object, in turn, can give you access to information about each joint of 
the user (such as the right hand, the elbow, the knee). You receive this information in 
the form of objects of class Joint.

Point3D
Lastly, part of the joint information is the joint’s location (in three dimensions). This 
is provided as a Point3D object.

The book scenarios folder contains a scenario called kinect-start that contains just 
these classes, and can be used as a starting scenario for your own projects.

 12.4 The simple camera
The only scenario-specific code in the simple-camera scenario is contained in the 
MyWorld class (Code 12.1). Let us have a look at what it does.

The constructor of MyWorld simply calls the default constructor of KinectWorld.

The Kinect hardware gives us, by default, an image of  640 by 480 pixels, and the 
KinectWorld’s default constructor will create a world of the same size to match this. 
(Using different constructors, we can also create worlds of other sizes and scale the 
Kinect input, but this is not necessary now.)

The interesting code in this class is in the act method. First, it includes a call to the 
superclass’s act method. This is important: The KinectWorld’s act method man-
ages the communication with the server and you must always call it regularly. It’s not  
difficult—just do not delete this line.

The last two lines are where things actually happen: we call the getThumbnail­
Unscaled method, which gives us the camera image of the Kinect in its default size, 
as a GreenfootImage. The last line then sets this image as our world background.

M12_KOLL4292_02_SE_C12.indd   221 2/3/15   9:10 AM



222      |       Chapter 12 ■ Greenfoot and the Kinect

 12.5 The next step: greenscreen
Getting the camera image is a nice first step, but we could have done this with any 
webcam. Let us now look at the first of the abilities of the Kinect: identifying users.

A “greenscreen” is a technique long used in film and TV production to place actors in 
front of backgrounds that are not actually there. (Do a Web search to find out more!) 
It is usually done by placing actors in front of a green background, and then filtering 
out and replacing all green color in the resulting recording. Using the Kinect, we can 
easily do something similar, because the Kinect can distinguish between human and 
non-human objects and background in its view.

Code 12.1
The World 
class of the 
simple-camera 
scenario

Exercise 12.2 Have a look at the methods of the KinectWorld class. All these meth-
ods are available for you to call in your own world classes. Which of these methods give 
you a camera image? What is the difference between them? Answer in writing.

Exercise 12.3 What are the methods to get user data? What is the difference 
between them?

Exercise 12.4 Open the greenscreen scenario. Run it. What does it do?

M12_KOLL4292_02_SE_C12.indd   222 2/3/15   9:10 AM



 12.6 Stick-figure: tracking users      |       223   

Compared to the simple-camera example before, we have made two changes:

● We have moved the code to display the image to an actor, instead of displaying it 
as the world background. Now we place a single actor in the middle of the world, 
and the actor uses the Kinect image as its actor image. The effect is similar to 
 before: The image is the same size as the world and will be displayed covering the 
whole world area.

● We have replaced the call to the getThumbnailUnscaled method with a call to 
getCombinedUserImage. This method also gives us the camera image, but filters 
out the background and provides us with an image of just the visible users.

As we can see, showing the users without the background is very easy, since the Kinect 
does all the difficult work for us. Since the user image is displayed as an actor, we can 
now put our own background in.

Exercise 12.5 Set a background image for the world. You can do this by using the Set 
Image … function from MyWorld’s pop-up menu. The scenario provides an image called 
weather-map.png that you can use.

Exercise 12.6 Try the scenario with various other background images of your own.

Both these examples—simple-camera and greenscreen—used just the image of the user 
as either the world background or an actor image. This is an interesting first step, but 
if  we want to interact with other objects on the screen, we need to go one step further: 
We need to analyze the user image to find out where on screen the user is. Luckily, the 
Kinect helps us with that as well.

 12.6 Stick-figure: tracking users
The stick-figure scenario in the book folder shows a first example of tracking users. 
This time, we will not show the camera image of the user, but use the coordinates of 
the joints of the user in the image to draw.

Exercise 12.7 Open the stick-figure scenario. Run it. Stand in front of your Kinect and 
see what happens.

When testing this scenario, you can see that it tracks the user in front of the camera 
and draws a stick figure (Figure 12.6). You may also notice that it is sometimes diffi-
cult to know whether you are in view of the Kinect camera, and where exactly to stand 
so that you can be tracked. To solve this problem, we will first insert a thumbnail image 
into this scenario, before we investigate how the stick figure is drawn.

M12_KOLL4292_02_SE_C12.indd   223 2/3/15   9:10 AM



224      |       Chapter 12 ■ Greenfoot and the Kinect

A thumbnail image is a small image which helps us gain a quick overview. It is called 
“thumbnail” because of its small size; we do not use it to see detail, but just to get the 
essential information. We will see that the use of a thumbnail to help us place our-
selves in front of the camera is useful in many Kinect scenarios.

In the stick-figure scenario, you can see a class called Thumbnail.

Figure 12.6
The stick-figure 
example scenario

Exercise 12.8 Run your stick-figure scenario. Interactively create an object of class 
Thumbnail and place it into the world. What do you see?

Exercise 12.9 Add code to your StickWorld class that creates and adds a 
Thumbnail object automatically. Place it at any location of your choice.

Exercise 12.10 Change the location of your thumbnail picture so that it is shown in 
the  bottom right corner of the screen.

The implementation of the Thumbnail class is quite simple. It contains only these two 
lines of code in its act method:

KinectWorld world = (KinectWorld)getWorld();
setImage(world.getThumbnailUnscaled());

We can see that the thumbnail actor just gets the thumbnail image from the 
KinectWorld and sets it as its own image.

There is a second part to this, and it is in the constructor of the StickWorld class:

public StickWorld()
{
    super(THUMBNAIL_WIDTH, THUMBNAIL_HEIGHT, 1.0, false);
}

M12_KOLL4292_02_SE_C12.indd   224 2/3/15   9:10 AM



 12.6 Stick-figure: tracking users      |       225   

We can see that the StickWorld calls a different KinectWorld constructor, one that 
has four parameters. The first two parameters (using constants in this case) specify the 
size of the thumbnail image we wish to receive from the KinectWorld when we ask 
for it. This is how we define the exact size we want our thumbnail to be.

Exercise 12.11 What is the exact size of the thumbnail used in this example?

Exercise 12.12 Double the size of the thumbnail image.

Exercise 12.13 What is the meaning of the other two parameters of the 
KinectWorld’s constructor that is called in the super call?

Now that we have a thumbnail displayed, it is easier to place ourselves in front of the 
camera and know where to stand. We can now examine how this scenario manages to 
draw the stick figure.

The relevant code is in the StickWorld class (see Code 12.2).

Code 12.2
Drawing stick figures 
of tracked users

M12_KOLL4292_02_SE_C12.indd   225 2/9/15   11:41 AM



226      |       Chapter 12 ■ Greenfoot and the Kinect

Studying the code, we can see that drawing the stick figures is easy, because the 
UserData class provides a method called drawStickFigure. So all we need to do is 
the following:

● In every act cycle, we get an array of all tracked users, using the getTrackedUsers 
method. We pass this array to our own paintStickFigures method.

● We then erase the world background (to erase previously drawn stick figures) and 
draw new stick figures by calling the drawStickFigure method for every user in 
our array.

We can see that drawing the stick figure for a user is well supported. This will be use-
ful in various different Kinect scenarios. We also see that our code should be able to 
process stick figures for multiple users at the same time.

Exercise 12.14 Look up the drawStickFigure method in the UserData class. 
What are its two parameters?

Exercise 12.15 Run the scenario again and place more than one person in front of 
the camera. Does the scenario correctly track each one?

Exercise 12.16 How many people can be tracked at the same time? Can you find a 
limit? Try by placing as many people as you can in front of the camera. 

Figure 12.7
Painting with your 
hands

M12_KOLL4292_02_SE_C12.indd   226 2/3/15   9:10 AM



 12.7 Painting with your hands      |       227   

 12.7 Painting with your hands
The examples we have seen so far were mostly ready when we opened them, and we 
have used them to study some basic techniques. There was not much for us to do.

Now that we have a basic understanding of  the Kinect’s interface, we can start by 
writing some code of our own. Our next goal is to write a scenario that lets us paint on 
the screen using our hands and feet (Figure 12.7).

Exercise 12.17 Open the body-paint-start scenario. Run it. Try out what it does.

Again, as usual, we begin by using a starting scenario, body-paint-start, that contains 
some rudimentary code. Trying it out, we can see that it currently behaves very similar 
to the stick-figure example.

The first visible difference is that there is a new class: Canvas.

The scenario is set up so that a separate canvas object is created for every user that is 
currently being tracked. Each canvas object has a transparent image the size of the 
full screen. Since the image is initially empty (fully transparent) it is invisible, but this 
essentially gives every user a separate transparent layer to draw on (see Figure 12.8).

Code 12.3 shows how this is achieved. A new (empty) GreenfootImage is created 
and set as the actor’s image. We can see that the image’s paint color is initialized to 
a random color, so that future drawing operations start off  with (probably) different 
colors for different users.

Concept
Tracked users 
are those cur-
rently recognized 
and analyzed by 
the Kinect hard-
ware.

Figure 12.8
Multiple canvases 
layered in front of the 
world background

M12_KOLL4292_02_SE_C12.indd   227 2/3/15   12:18 PM



228      |       Chapter 12 ■ Greenfoot and the Kinect

The only other thing that the constructor does is to store an object of type UserData 
in a field called user. This object holds information about the user that is associated 
with this canvas, and we can use it to access details of the user’s pose.

Code 12.3
The Canvas 
constructor

Exercise 12.18 The constructor shown in Code 12.3 makes use of a method called 
randomColor. This method is implemented in the same class. Investigate this method 
and explain, in writing, how it selects a random color. How many different possible 
colors can it return? Can you add another possible color?

We can now start painting by writing code in our act method.

Paint with your hand
The first thing we want to do is to put some paint onto our canvas at the position of 
the user’s right hand. We can put paint on the canvas by drawing a medium-sized cir-
cle onto our actor’s image:

getImage().fillOval(x, y, 20, 20);

In this example, the two parameters of 20 are the width and height of the oval drawn, 
creating a circle of diameter 20. The parameters x and y have to be replaced by the 
position of  the user’s hand. So the only thing to work out now is how to find out 
about the screen location of the user’s hand.

Figure 12.9
Retrieving informa-
tion about users

M12_KOLL4292_02_SE_C12.indd   228 2/3/15   8:32 PM



 12.7 Painting with your hands      |       229   

In general, we get information about users by starting with the getTrackedUsers 
method from the KinectWorld class (Figure 12.9). This will give us an array of 
UserData objects with an entry for every user that is being tracked. We can then use 
various methods of the UserData object (only some are shown in Figure 12.9) to get 
detailed information about each user. For us, the getJoint method is the most inter-
esting at the moment.

getJoint will give us an object of type Joint, which we can then use to retrieve the 
joint’s x- and y-coordinates.

Exercise 12.19 The getJoint method expects a parameter specifying which joint 
we are interested in. We usually use constants here that are defined in the Joint class 
(see Figure 12.9). Check the documentation of class Joint to see what constants are 
available to specify joints. How many different joints can we find out about?

In the act method in our Canvas class, the UserData object has already been retrieved 
and stored in the field called user. We can therefore proceed directly to retrieve the 
joint for the right hand from it:

Joint rightHand = user.getJoint(Joint.RIGHT_HAND);

Once we have the right hand joint, we can now extract its x- and y-coordinates and use 
these to paint our circle on screen:

getImage().fillOval(rightHand.getX(), rightHand.getY(), 20, 20);

This is all that needs to be done in order to paint with your hand. Try it out!

Exercise 12.20 Insert the code discussed above into your own Canvas act 
method. You need only those two lines as shown here. Test!

You should see that we are now painting (continuously) at the location of the right 
hand.

Stop painting
To make our painting a bit more controllable, it would be nice if  we could also move 
our right hand without painting. To do this, we want to change our code so that it 
only paints when the right hand is the nearest joint to the camera. That way, we can 
paint by holding our hand forward, and stop by pulling it back.

The UserData class has a method called getNearestJoint that we can use to achieve 
this. Try this yourself  at first without reading on (we will discuss it after the exercise).

M12_KOLL4292_02_SE_C12.indd   229 2/3/15   9:10 AM



230      |       Chapter 12 ■ Greenfoot and the Kinect

If  you worked out this exercise on your own, you will have seen that we can simply add 
an if-statement to compare the nearest joint with the constant for the right hand. If  
the right hand is not nearest, we do nothing; otherwise we paint.

Joint rightHand = user.getJoint(Joint.RIGHT_HAND);
if (user.getNearestJoint() == Joint.RIGHT_HAND) 
{
    getImage().fillOval(rightHand.getX(), rightHand.getY(), 20, 20);
}

Let us do two more improvements—but this time you have to write the code  
yourself.

Erase your painting
When we have painted something, but we are not quite happy with it or we want to 
start over, it would be nice to be able to erase the screen. Erasing the screen (effectively 
erasing the actor’s image) can easily be achieved by using the GreenfootImage’s 
clear method:

getImage().clear();

We now want to add functionality that lets users erase the screen by raising their left 
hand over their head. The principle is quite easy: We can get the y-coordinates of both 
the left hand and the head and check which one is larger.

Exercise 12.21 Change your code so that it only paints when the right hand is the 
nearest joint to the camera. Do this by getting the nearest joint and checking whether 
it is the right hand.

Exercise 12.22 Add code to your act method that erases the screen when the user 
raises the left hand over the head.

Changing color
The next improvement is quite similar in its structure: change the color of the paint 
when the user raises the right foot. (You can detect this by checking whether the right 
foot is above the left knee.) The existing randomColor method helps you to select a 
new (random) color.

Exercise 12.23 Add some code to change the paint color to a different random 
color when the user raises the right foot.

M12_KOLL4292_02_SE_C12.indd   230 2/3/15   9:10 AM



 12.8 A simple Kinect game: Pong      |       231   

You can probably think of  several other things to do with this scenario. There are 
many ideas to try. The code for the exercises discussed here is available in the book 
scenarios as body-paint, in case you want to compare your own code to ours.

The only code in this scenario that we have not discussed is code in the PaintWorld 
class that manages the creation and removal of  canvases from the world. The most 
complicated aspect of this is to keep track of new users appearing, and existing users 
leaving, while the program is running, and to create and delete canvases accordingly. 
We will not analyze this here but instead discuss this issue in the next example.

 12.8 A simple Kinect game: Pong
The last project that we will discuss in this chapter is a very simple game: Pong. Pong 
is a well-known, simple game where we play a kind of tennis with paddles on screen. 
In our case, we will have two paddles, one controlled by each of our hands, and we will 
play against the computer which has one paddle (Figure 12.10).

As so often, we have two versions of the scenario in our book-scenarios folder; one as 
the starting point for our exercises, and one with the finished solution.

Figure 12.10
A simple Kinect 
game

Exercise 12.24 Open the kinect-pong-start scenario. Run it. Find out how to play.

M12_KOLL4292_02_SE_C12.indd   231 2/3/15   9:10 AM



232      |       Chapter 12 ■ Greenfoot and the Kinect

When you try the starting scenario, you will see that it implements a very simple pong-style 
game that can be played with the keyboard. You play one player, the computer plays the 
other. (You can find out which keys to use by reading the source code or just trying it out.)

There is nothing new in this scenario that we should not be able to easily understand 
at this point. Let us do some quick code reading exercises to familiarize ourselves with 
the existing project. Answer the following questions in writing.

Exercise 12.25 Which keys control the player’s paddle?

Exercise 12.26 What are the methods that are inherited from Paddle by both the 
player’s paddle and the computer’s paddle?

Exercise 12.27 When the paddle moves right or left, by how many steps does it 
move in each act cycle?

Exercise 12.28 What does the computer paddle do when there is no ball on screen? 
(You can check your answer by removing the ball interactively and then running the 
scenario.)

Exercise 12.29 What strategy does the computer paddle use to decide where to 
move?

Exercise 12.30 How many objects are inserted into the world when the scenario is 
initialized? What are they?

Exercise 12.31 Which class keeps the score?

Exercise 12.32 There is a delay between the scenario being started and the ball 
starting to move. How long is that delay?

Exercise 12.33 Explain how this delay is implemented.

We can see that this scenario is a very straightforward simple implementation. We will 
now change it to make use of the Kinect to control our paddles.

This time, we will start with the part that we left out of our discussion in the previous 
section: detecting when a user enters the view of the camera.

The goal is this: The game should be in an idle state (waiting) as long as no user is vis-
ible. When a user enters the view, the game starts. When there is no user in view (i.e., 
when the user has left), the game stops again.

Detecting users
We have seen previously that we can get an array of all users currently being tracked 
by using the getTrackedUsers method:

M12_KOLL4292_02_SE_C12.indd   232 2/3/15   9:10 AM



 12.8 A simple Kinect game: Pong      |       233   

UserData[] users = getTrackedUsers();

We can then check whether any users are present by checking whether the length of 
this array is zero:

if (users.length > 0) 
{
    ...
}

(Remember that length for an array is really a public field, not a method. There are no 
parentheses after the word length. This looks unusual, but this is how Java defines it.)

Exercise 12.34 In PongWorld, create a new private method called startGame. This 
method needs no parameters. Move the creation of the player paddle and the ball into this 
method, so that the player’s paddle and the ball are created only when the game starts.

Exercise 12.35 Test the game. If you run your scenario now, the visible effect should 
just be that you do not see a player paddle or a ball (because we do not call the start­
Game method yet).

Exercise 12.36 In your act method, check for tracked users. If there are any users, 
start the game. Check by running your scenario and standing in front of the camera. The 
game should start.

Exercise 12.37 In a naïve implementation (if you just call startGame when the 
length of the tracked user array is greater than zero), you will get many paddles and 
balls. This is because startGame would be called in every act cycle, creating more and 
more balls and paddles. Make sure only one player paddle and one ball is created. For 
this purpose, a boolean called idle is already provided. When the game is idle and you 
see a tracked user, you should start the game and record that the game is now not idle.

If  you managed to do the exercises so far, the game should now be in an idle state at 
the beginning (the computer paddle moves slowly while it waits), and the player pad-
dle and ball are created when you enter the screen.

Before finishing the game play, let us deal with players leaving the game as well.

Exercise 12.38 Add another private method called stopGame. In it, remove the 
player paddle and the ball from the world.

Exercise 12.39 Extend your act method so that it calls stopGame when the game is 
not idle, but no players are detected. The game should then enter the idle state again.

Your game should now be in a state that it starts as players enter, and stops when they 
leave. You will notice that it will only stop several seconds after the player has left, not 
immediately. When the Kinect loses track of players, it keeps trying to detect them 
again for a while before giving up and deciding they really have left.

M12_KOLL4292_02_SE_C12.indd   233 2/3/15   9:10 AM



234      |       Chapter 12 ■ Greenfoot and the Kinect

Controlling the paddle
The next thing to do is to implement the actual game play. For the player paddle to 
be controlled by the human, the user data must be passed to the paddle. Since this is a 
single player game, we can just work with the first user data object of our tracked user 
array. If  multiple users are visible, we just ignore the others.

So, if  we want to pass the user data of the first visible user to our startGame method, 
we can write:

startGame(users[0]);

Exercise 12.40 Add a parameter of type UserData to your startGame method 
and pass the user data of the first visible user into this method when the game starts.

Exercise 12.41 Add a similar parameter to the constructor of class PlayerPaddle, 
and pass the parameter that startGame receives on to the PlayerPaddle constructor.

Exercise 12.42 In class PlayerPaddle, store the UserData received by the con-
structor in a field called user.

Your scenario should now be in a state where it compiles again, but our work so far 
has no visible effect.

All that remains for us to do now is to set the position of the paddle according to the 
user data. You can call the getJoint method from the user object to obtain the joint 
for the right hand. Then you can use setLocation for the paddle with the hand’s 
x-coordinate and the paddle’s own y-coordinate as the parameters.

Exercise 12.43 Remove the code from the PlayerPaddle’s act method. Instead 
insert new code that gets the user’s right hand joint, and then sets the paddle’s loca-
tion using the hand’s x-coordinate (leaving its y-coordinate unchanged).

Now we can play!

Making use of the player’s hand’s location is in the end quite easy. Your act method 
should only be two or three lines long.

Before we finish, let us make one further extension: playing with both hands.

Exercise 12.44 In class PlayerPaddle, make the hand to be used variable. Create 
a field of type int called HAND. Initialize this field in the constructor, using a new addi-
tional constructor parameter. In your act method, use this variable instead of Joint.
RIGHT_HAND to specify the joint to watch.

Exercise 12.45 In class PongWorld, where the player paddle is created, add Joint.
RIGHT_HAND as the second constructor parameter.

M12_KOLL4292_02_SE_C12.indd   234 2/3/15   9:10 AM



 12.8 A simple Kinect game: Pong      |       235   

Now we are back where we started: We have one paddle controlled by our right 
hand. But now we can easily specify which hand we want to use, allowing us to create 
another paddle for the left hand.

Exercise 12.46 Where the player paddle is created, add the creation of a second 
paddle for the left hand.

That’s it! We can now play with both hands. As always, if  you are not sure about some 
of your code, check the kinect-pong scenario in the book scenarios folder.

 Summary
In this chapter, we have connected Greenfoot to the Microsoft Kinect. Apart from 
giving us a chance to create a number of  really interesting examples, we have seen 
that programming with hardware devices does not look so different from what we 
encountered before. We use the same programming techniques—method calls, vari-
ables, parameters, types—as in earlier chapters.

When we program with external devices, we are usually given an API—a program-
ming interface—consisting of a number of classes and methods to access the device. 
Learning to use the device then is a matter of studying that API and understanding 
what it lets us do. After that, all we need are our general Java and programming skills 
to write some programs.

Concept summary
■ Skeleton tracking is the identification and tracking of some known points on a body, such as 

hands, elbows, head, feet, and so on.

■ Communication with hardware components is typically arranged through some driver software.

■ tracked users are those currently recognized and analyzed by the Kinect hardware.

Drill and practice

Here are some more exercises you can do with our last example, kinect-pong. Of 
course, you can extend any of the other examples as well, but we will leave it up to you 
to come up with ideas for those.

M12_KOLL4292_02_SE_C12.indd   235 2/3/15   9:10 AM



236      |       Chapter 12 ■ Greenfoot and the Kinect

Exercise 12.47 In your Kinect pong game, add some sound effects. Add at least the 
following: a sound when the ball hits the paddle, a sound when the ball goes out, and 
a sound when the game starts.

Exercise 12.48 Change the background.

Exercise 12.49 Declare a winner (with message and sound) when one player reaches 
eight points.

Exercise 12.50 Make the top paddle controllable by a second player.

Exercise 12.51 Give the second player two paddles as well.

Exercise 12.52 Introduce a barrier: each player can block off their whole side for a 
few seconds by raising their left foot. They can do that only three times in a game.

Exercise 12.53 If any player raises both hands above their head, the speed of the ball 
increases.

The book examples folder contains one more scenario, intended mainly as a demo to 
show you how to draw a cartoon character instead of the stick figure. Our character is 
called Fred and the scenario is called fred-with-radio.

We will not discuss this scenario here, but leave you to play with it yourself. One thing 
you might want to do is to replace the two sound files with songs of your choice—then 
you can play your favorite two songs by touching the radio with your right or left 
hand.

M12_KOLL4292_02_SE_C12.indd   236 2/3/15   9:10 AM



Chapter

This is the last chapter of this book. It is different from the other chapters in that it 
does not try to teach you any new concepts or techniques of programming. Instead 
it briefly presents a number of additional scenarios to give you some ideas for other 
things you might like to investigate and work on.

All scenarios described here are also available as Greenfoot projects with source code 
in the book scenarios. However, most of them are not complete implementations of 
the idea they represent.

Some scenarios are almost complete, and you may like to study them to learn further 
techniques and see how certain effects were achieved. Others are beginnings, partial 
implementations of an idea, which you could take as a starting point for your own 
project. Still others are illustrations of  a single concept or idea that might provide 
inspiration for something you could incorporate into one of your own scenarios.

In short, view these as a collection of ideas for future projects, and study them for a 
small glimpse into what else is possible for a competent programmer to achieve.

 13.1 Marbles
The marbles scenario (Figure 13.1) implements a game in which you roll a golden 
ball over a board with the aim of clearing the board of all silver balls within a limited 
number of moves. The game is reasonably complete.

Several things are worth observing about this scenario. The first thing that stands 
out is that it looks rather attractive. This has very little to do with Java or Greenfoot 
programming and is mostly due to the use of  good looking graphics. Using nicely 
designed graphics and sounds can make a big difference in the attractiveness of  a 
game.

Additional scenario ideas

topics: ideas for more scenarios

concepts: (no new concepts introduced)

13

M13_KOLL4292_02_SE_C13.indd   237 2/3/15   9:12 AM



238      |       Chapter 13 ■ Additional scenario ideas

Marbles uses a nice-looking background image (the game board and scroll for the 
text display) and actors with semitransparent drop shadows (the marbles and the  
obstacles).

The other interesting aspect to examine is the collision detection. The marbles do not 
use any of the built-in Greenfoot collision detection methods since these all work on 
the rectangular actor images. The marbles, on the other hand, are round, and we need 
precise collision for this.

Luckily, when the actors are round, this is not very difficult. Two marbles collide 
if  their distance (measured from their center points) is less than their diameter. We 
know the diameter, and the distance is fairly easy to compute (using the Pythagoras  
theorem).

The next interesting thing is the way the new movement direction of a colliding mar-
ble is computed. There is a little trigonometry involved here, but if  you are familiar 
with that, then it is not too hard.

Collisions with the fixed obstacles are easier, since they are always horizontally or ver-
tically oriented rectangles. Therefore, a marble hitting one of these obstacles simply 
reverses its direction along one of the axes (x or y).

You could reuse the marble collision logic for all sorts of  other games that involve 
round objects colliding.

Figure 13.1
The Marbles game

M13_KOLL4292_02_SE_C13.indd   238 2/3/15   9:12 AM



 13.3 Boids      |       239   

 13.2 Lifts
The lifts scenario shows a simple lift (or elevator) simulation (Figure 13.2). 
It shows several floors of  a multistory building and three lifts moving up and 
down. People appear on the floors and press the call buttons and enter the lifts 
when they come.

This is actually a very rudimentary, unfinished implementation. Much of what we see 
on the screen is fake: It does not properly simulate what is going on, and is just written 
for show.

For example, the people do not properly enter the lifts (they are just erased when a lift 
reaches a floor). The number of people shown in a lift is just a random number. Lifts 
also do not react to call buttons—they just move up and down randomly. There is no 
control algorithm implemented for the lifts.

So this is just a quick demo that presents the idea and the graphics. To finish the pro-
ject, the movement of people would have to be properly modeled (in and out of the 
elevators). And then we could experiment with implementing and testing different lift 
control algorithms.

 13.3 Boids
The boids example shows a simulation of flocking behavior of birds (Figure 13.3).

Figure 13.2
A (partial) lift simulation

M13_KOLL4292_02_SE_C13.indd   239 2/3/15   9:12 AM



240      |       Chapter 13 ■ Additional scenario ideas

The term “boids” comes from a program developed in 1986 by Craig Reynolds that 
first implemented this flocking algorithm. In it, each bird flies according to three 
rules:

■ Separation: steer away from other birds if  getting too close.

■ Alignment: steer toward the average heading of other birds in the vicinity.

■ Cohesion: steer to move toward the average position of other birds in the vicinity.

With this algorithm, the birds develop movement that is pleasant to watch. Included 
in this scenario is also obstacle avoidance: trying not to fly into trees.

A version of  this algorithm was used, for example, in Tim Burton’s 1992 film 
Batman Returns to create animation for computer-generated swarms of  bats and 
penguin flocks, and in the Lord of the Rings films to create the movement of  the 
Orc armies.

The version for this book was written by Poul Henriksen.

You can find out much more about this by searching the Web for “boids.” And while 
this scenario currently does nothing other than show the movement, one feels that 
there has to be a game in it somewhere.

Figure 13.3
Boids: a simulation of 
flocking behavior

M13_KOLL4292_02_SE_C13.indd   240 2/3/15   9:12 AM



 13.5 Breakout      |       241   

 13.4 Explosion
The explosion scenario (Figure 13.4) demonstrates how we can implement a more spectac-
ular looking explosion effect. The object that explodes is, in this case, a simple rock that we 
have encountered in other scenarios before. (It played, for example, the role of the asteroid 
in the asteroids scenario.) But we could really explode anything we like.

To achieve this effect, we have a Debris class that represents a part of the rock. When 
the rock explodes, we remove it from the world and place 40 pieces of  debris in its 
place.

Each piece of debris is randomly stretched and rotated to make it look unique and 
initially has a movement vector in a random direction. At every step, we add a bit of 
downward movement to simulate gravity, and the result is the explosion you see when 
you run this scenario.

A tutorial video explaining this scenario in more detail is available on the Greenfoot 
YouTube channel at https://www.youtube.com/user/18km.

 13.5 Breakout
Breakout is a classic computer game in which the player controls a paddle at the bot-
tom of the screen to bounce a ball upwards to remove some blocks. If  you do not 
know the game, do a Web search.

Figure 13.4
An explosion effect

M13_KOLL4292_02_SE_C13.indd   241 2/3/15   9:12 AM



242      |       Chapter 13 ■ Additional scenario ideas

The breakout scenario (Figure 13.5) is a partial implementation of this game. It uses 
the ball with the smoke effect that we discussed in Chapter 10 and adds a paddle for 
the player to control the ball. It has, however, no blocks to aim for, so in its current 
form it is not very interesting.

Many variations of Breakout have been created over time. Many use different patterns 
of layout for the blocks at different levels. Most also have some “power-ups”—goodies 
hidden behind some blocks that float down when the block is removed. Catching them 
typically makes something interesting happen in the game (extra balls, increased speed, 
larger or smaller paddles, etc.)

Completing this game in an interesting way can make a good project. It could also be 
modified to have two paddles, one on either side, essentially turning it into the classic 
Pong game.

 13.6 Platform jumper
A very common style of game is a “platform” game. The player typically controls a 
game character that has to move from one area on the screen to another, while over-
coming various obstacles. One such obstacle may be a gap in the ground the character 
is walking on, with some means of getting across it.

The pengu scenario implements a small segment of such a game (Figure 13.6). There 
are two pieces of ground on either side of the screen, and the penguin can get across 
by jumping onto a moving cloud.

Figure 13.5
The beginning of a 
Breakout game

M13_KOLL4292_02_SE_C13.indd   242 2/3/15   9:12 AM



 13.7 Wave      |       243   

This scenario is included here to demonstrate how an actor can move along the top of 
another (the penguin on top of the ground), and how jumping and falling might be 
implemented.

A tutorial video discussing this in more detail is available on the Greenfoot YouTube 
channel at https://www.youtube.com/user/18km, under the name “Running, jumping 
and falling.”

 13.7 Wave
The next scenario is called wave (Figure 13.7). It is a simple simulation of the propaga-
tion of a wave on a piece of string. Play around with it for a little while, and you will 
discover what it does.

One of the fascinating aspects of this example is how a fairly simple implementation—
in each act round, each bead simply moves toward the middle of its two neighbors—
achieves a quite sophisticated simulation of various aspects of wave propagation.

This example is included here to illustrate that, with a bit of  thought and prepara-
tion, various behaviors from other disciplines could be simulated. In this case, it is 
a simple physical effect. Equally, one could simulate chemical reactions, biological 
interactions, interactions of subatomic particles, and much more. With some careful 
planning, we can learn something about other application areas, as well as learning 
about programming.

Figure 13.6
The start of a 
simple platform 
jumper game

M13_KOLL4292_02_SE_C13.indd   243 2/3/15   9:12 AM



244      |       Chapter 13 ■ Additional scenario ideas

This scenario also implements slider and switch controls, which may be useful in  
other projects.

 13.8 Map
The last scenario we present here is called maps (Figure 13.8). It displays a map on the 
world background and has buttons to zoom in and out. 

The interesting aspect of this class is that it uses live data accessed via the Internet (in 
this case, the map data). The map image is not fixed; it is not built into this scenario 
but is retrieved at runtime from the Google maps online service. (This also means, of 
course, that this scenario will only work on a computer connected to the Internet.)

In its current form, the map is centered on the University of Kent in England, but this 
is easy to change. Look into the MapViewer class and you will find, in comments, vari-
ous examples of other locations you can try. You can, in general, use any sufficiently 
distinct textual name of a location, be that the name of a country, a city, or a land-
mark, or you can use latitude and longitude coordinates.

The implementation is quite simple because it makes use of a ready-made Map helper 
class, and this is where the hard work is hidden.

The map helper class is one of the classes provided with Greenfoot: You can access it 
via the Import Class… function in the Edit menu of Greenfoot’s main window.

In general, accessing live data from the Internet can make for some really interesting 
examples. From the same menu (Import Class…) you can also import another helper 
class called Weather, which gives you live, real-time weather data retrieved from an 
online service.

Figure 13.7
Simulation of wave 
propagation on a 
string of beads

M13_KOLL4292_02_SE_C13.indd   244 2/3/15   9:12 AM



13.8 Map      |       245   

Try this to program your own live weather display. Or combine it with the map to  
create a live weather map.

Summary

In this concluding chapter of  our book, we have tried to show that there are many 
more directions you can follow, beyond the examples we have discussed in more detail 
throughout this book.

As you become more experienced, you will become more confident and more able 
to turn your ideas into reality as you develop your programs. As a programmer, an 
infinite world of  creative endeavor lies in front of  you, both within Greenfoot and 
without, using other development environments.

When you program in other environments, outside of  Greenfoot, you will have to 
learn new skills and techniques, but everything you have learned using Greenfoot will 
be useful and applicable.

If  you have followed this book all the way through to this point, you have learned a 
great deal about programming in Java, and indeed programming in an object-oriented 
language in general. In learning to program, the beginning is always the hardest part, 
and you have that behind you.

Figure 13.8
A Greenfoot scenario 
with live map access

M13_KOLL4292_02_SE_C13.indd   245 2/3/15   9:12 AM



246      |       Chapter 13 ■ Additional scenario ideas

If  you would like support and ideas for further Greenfoot programming, make use of 
the Greenfoot website.1 Use it to publish your scenarios, look at other people’s work, 
and get some ideas. Look at the video tutorials for tips and tricks. And join the discus-
sion group to chat to other Greenfoot programmers, get and give help, and discuss 
new ideas.

Once you feel you have reached the limits of Greenfoot, you may like to look at our 
next environment: BlueJ2. But that is another story, and an entirely new book, thicker 
and deeper than this one, awaits you…

We hope that you have come to enjoy programming as much as we do. If  you have, a 
whole new world lies before you. Program, enjoy, and be creative!

1 www.greenfoot.org
2 www.bluej.org

M13_KOLL4292_02_SE_C13.indd   246 2/3/15   9:12 AM



Appendix

This appendix will tell you where to find the Greenfoot software and the scenarios 
used with this book, and how to install them.

To work with the sample projects in this book, you will need to install two things: the 
Greenfoot software and the book scenarios.

A.1 Installing Greenfoot
Download Greenfoot from http://www.greenfoot.org, and follow the installation 
instructions.

On Windows and Mac OS, the Greenfoot download includes a Java system (JDK), 
so you do not need to install this separately. On Linux, the JDK will be automatically 
downloaded as part of the installation process if  not already present.

A.2 Installing the book scenarios
Download the book scenarios from http://www.greenfoot.org/book. You will 
receive a file named book-scenarios.zip. This is a compressed zip file that must be 
extracted. On Windows systems, this can usually be achieved by right-clicking and 
selecting Extract All from the menu. On Mac OS and Linux systems, you can double-
click the file to extract it.

After extracting this file, you will have a folder named book-scenarios stored in your 
file system. Remember where you saved it—you will need to open the projects from 
this folder while you work through the book.

Installing Greenfoot
A

Z01_KOLL4292_02_SE_APPA.indd   247 2/3/15   9:14 AM



The Greenfoot API consists of five classes:

Actor
Actor methods are available to 
all actor subclasses.

MouseInfo
Provide information about 
the last mouse event.

World
World methods are available to 
the world.

GreenfootImage
For image presentation 
and manipulation.

Greenfoot
Used to communicate with the 
Greenfoot environment itself.

GreenfootSound
For sound playback.

UserInfo
To save user data on a 
server (only when running 
on Greenfoot website).

The API shown here is for Greenfoot version 2.4.0. If  you use a newer version of Greenfoot, please 
check the documentation online.

Class World

World(int worldWidth, int worldHeight, 
int cellSize)

Construct a new world.

World(int worldWidth, int worldHeight, 
int cellSize, boolean bounded)

Construct a new world (possible  
unbounded).

void act() Act method for the world. Called once per act 
cycle.

void addObject(Actor object, int x, int y) Add an Actor to the world.

GreenfootImage getBackground() Return the world’s background image.

int getCellSize() Return the size of a cell (in pixels).

Color getColorAt(int x, int y) Return the color at the center of the cell.

int getHeight() Return the height of the world (in number of 
cells).

B

(continued)

Appendix

Greenfoot API

Z02_KOLL4292_02_SE_APPB.indd   248 2/3/15   12:07 PM



Class World (continued)

List getObjects(Class cls) Get all the objects in the world.

List getObjectsAt(int x, int y, Class cls) Return all objects at a given cell.

int getWidth() Return the width of the world (in number of cells).

int numberOfObjects() Get the number of actors currently in the world.

void removeObject(Actor object) Remove an object from the world.

void removeObjects(Collection objects) Remove a list of objects from the world.

void repaint() Repaint the world.

void setActOrder(Class... classes) Set the act order of objects in the world.

void setBackground(GreenfootImage image) Set a background image for the world.

void setBackground(String filename) Set a background image for the world from an 
image file.

void setPaintOrder(Class... classes) Set the paint order of objects in the world.

void showText(String text, int x, int y) Show some text centered at the given position in 
the world.

void started() Called by the Greenfoot system when execution 
has started.

void stopped() Called by the Greenfoot system when execution 
has stopped.

Class Actor

Actor() Construct an Actor.

void act() The act method is called by the Greenfoot frame-
work to give objects a chance to perform some 
action.

protected void addedToWorld(World  
world)

This method is called by the Greenfoot system 
when the object has been inserted into the world.

GreenfootImage getImage() Return the image used to represent this Actor.

protected List getIntersectingObjects 
(Class cls)

Return all the objects that intersect this object.

protected List getNeighbours(int dis-
tance, boolean diagonal, Class cls)

Return the neighbours to this object within a 
given distance.

protected List getObjectsAtOffset 
(int dx, int dy, Class cls)

Return all objects that intersect the given loca-
tion (relative to this object’s location).

protected List getObjectsInRange 
(int r, Class cls)

Return all objects within range “r” around this 
object.

protected Actor  
getOneIntersectingObject(Class cls)

Return an object that intersects this object.

(continued)

B: Greenfoot API� �﻿        |       249   

Z02_KOLL4292_02_SE_APPB.indd   249 2/3/15   12:07 PM



250      |       Appendices

Class Actor (continued)

protected Actor getOneObjectAtOffset 
(int dx, int dy, Class cls)

Return one object that is located at the specified 
cell (relative to this objects location).

int getRotation() Return the current rotation of the object.

World getWorld() Return the world that this object lives in.

int getX() Return the x-coordinate of the object’s current 
location.

int getY() Return the y-coordinate of the object’s current 
location.

protected boolean intersects 
(Actor other)

Check whether this object intersects another 
given object.

boolean isAtEdge() Detect whether the actor has reached the edge of 
the world.

protected boolean isTouching(Class 
cls)

Check whether this actor is touching any other 
objects of the given class.

void move(int distance) Move this actor the specified distance in the 
direction it is currently facing.

protected void removeTouching 
(Class cls)

Remove one object of the given class that this 
actor is currently touching (if  any exist).

void setImage(GreenfootImage image) Set the image for this object to the specified 
 image.

void setImage(String filename) Set an image for this object from an image file.

void setLocation(int x, int y) Assign a new location for this object.

void setRotation(int rotation) Set the rotation of the object.

void turn(int amount) Turn this actor by the specified amount (in 
degrees).

void turnTowards(int x, int y) Turn this actor to face towards a certain location.

Class Greenfoot

Greenfoot() Constructor.

static void delay(int time) Delay execution by a number of time steps. The 
size of one time step is defined by the speed 
slider.

static String getKey() Get the most recently pressed key since the last 
time this method was called.

static int getMicLevel() Get the microphone input level.

static MouseInfo getMouseInfo() Return a mouse info object with information 
about the state of the mouse.

(continued)

Z02_KOLL4292_02_SE_APPB.indd   250 2/3/15   12:07 PM



Class Greenfoot (continued)

static int getRandomNumber 
(int limit)

Return a random number between 0 (inclusive) 
and limit (exclusive).

static boolean isKeyDown 
(String keyName)

Check whether a given key is currently pressed 
down.

static boolean mouseClicked(Object obj) True if  the mouse has been clicked on the given 
object.

static boolean mouseDragEnded 
(Object obj)

True if  a mouse drag has ended.

static boolean mouseDragged(Object obj) True if  the mouse has been dragged on the given 
object.

static boolean mouseMoved(Object obj) True if  the mouse has been moved on the given 
object.

static boolean mousePressed(Object obj) True the mouse has been pressed on the given 
object.

static void playSound(String soundFile) Play sound from a file.

static void setSpeed(int speed) Set the speed of the simulation execution.

static void setWorld(World world) Set the World to run to the one given.

static void start() Run (or resume) the simulation.

static void stop() Stop the simulation.

Class MouseInfo

Actor getActor() Return the actor (if  any) that the current mouse 
behaviour is related to.

int getButton() The number of the pressed or clicked button  
(if  any).

int getClickCount() The number of mouse clicks of this mouse event.

int getX() The current x position of the mouse cursor.

int getY() The current y position of the mouse cursor.

String toString() Return a string representation of this mouse 
event info.

Class GreenfootImage

GreenfootImage(GreenfootImage image) Create a GreenfootImage from another  
GreenfootImage.

GreenfootImage(int width, int height) Create an empty (transparent) image with the 
specified size.

GreenfootImage(String filename) Create an image from an image file.

(continued)

B: Greenfoot API� �﻿        |       251   

Z02_KOLL4292_02_SE_APPB.indd   251 2/3/15   12:07 PM



252      |       Appendices

Class GreenfootImage (continued)

GreenfootImage(String string, int 
size, Color foreground, Color back-
ground)

Create an image with the given string drawn as 
text using the given font size, with the given fore-
ground color on the given background color.

GreenfootImage(String string, int 
size, Color foreground, Color back-
ground, Color outline)

Create an image with the given string drawn as 
text using the given font size, the given fore-
ground color on the given background color 
with an outline.

void clear() Clear the image.

void drawImage(GreenfootImage image, 
int x, int y)

Draw the given Image onto this image.

void drawLine(int x1, int y1, int x2, 
int y2)

Draw a line, using the current drawing color, 
between the points (x1, y1) and (x2, y2).

void drawOval(int x, int y, int width, 
int height)

Draw an oval bounded by the specified rectangle 
with the current drawing color.

void drawPolygon(int[ ] xPoints,  
int[ ] yPoints, int nPoints)

Draw a closed polygon defined by arrays of  
x and y coordinates.

void drawRect(int x, int y, int width, 
int height)

Draw the outline of the specified rectangle.

void drawShape(Shape shape) Draw a shape directly on the image.

void drawString(String string, int x, 
int y)

Draw the text given by the specified string, using 
the current font and color.

void fill() Fill the entire image with the current drawing 
color.

void fillOval(int x, int y, int width, 
int height)

Fill an oval bounded by the specified rectangle 
with the current drawing color.

void fillPolygon(int[ ] xPoints,  
int[ ] yPoints, int nPoints)

Fill a closed polygon defined by arrays of x and 
y coordinates.

void fillRect(int x, int y, int width, 
int height)

Fill the specified rectangle.

void fillShape(Shape shape) Draw a filled shape directly on the image.

BufferedImage getAwtImage() Return the BufferedImage that backs this Green-
footImage.

Color getColor() Return the current drawing color.

Color getColorAt(int x, int y) Return the color at the given pixel.

Font getFont() Get the current font.

int getHeight() Return the height of the image.

int getTransparency() Return the transparency of the image  
(range 0 to 255).

(continued)

Z02_KOLL4292_02_SE_APPB.indd   252 2/3/15   12:07 PM



Class GreenfootImage (continued)

int getWidth() Return the width of the image.

void mirrorHorizontally() Mirror the image horizontally (flip around the 
x-axis).

void mirrorVertically() Mirror the image vertically (flip around the  
y-axis).

void rotate(int degrees) Rotate this image around the center.

void scale(int width, int height) Scale this image to a new size.

void setColor(Color color) Set the current drawing color.

void setColorAt(int x, int y, Color 
color)

Set the color at the given pixel to the given color.

void setFont(Font f) Set the current font.

void setTransparency(int t) Set the transparency of the image (range 0 to 255).

String toString() Return a string representation of this image.

Class GreenfootSound

GreenfootSound(String filename) Create a new sound from the given file.

int getVolume() Get the current volume of the sound, between 0 
(off) and 100 (loudest).

boolean isPlaying() True if  the sound is currently playing.

void pause() Pause the sound if  it is currently playing.

void play() Start playing this sound.

void playLoop() Play this sound repeatedly in a loop.

void setVolume(int level) Set the current volume of the sound between 0 
(off) and 100 (loudest).

void stop() Stop playing this sound if  it is currently playing.

String toString() Return a string representation of this mouse 
event info.

Class UserInfo

static int NUM_INTS The number of integers that can be stored.

static int NUM_STRINGS The number of Strings that can be stored.

static int STRING_LENGTH_LIMIT The maximum number of characters that can be 
stored in each String.

int getInt(int index) Get the value of the int at the given index (0 to 
NUM_INTS-1, inclusive).

static UserInfo getMyInfo() Get the data stored for the current user.
(continued)

B: Greenfoot API� �﻿        |       253   

Z02_KOLL4292_02_SE_APPB.indd   253 2/3/15   12:08 PM



254      |       Appendices

Class UserInfo (continued)

static List getNearby(int maxAmount) Return a string representation of this mouse 
event info.

int getRank() Get the users overall rank for this scenario.

int getScore() Get the user’s score.

String getString(int index) Get the value of the String at the given index  
(0 to NUM_STRINGS-1, inclusive).

static List getTop(int maxAmount) Get a sorted list of the UserInfo items for this 
scenario, starting at the top.

GreenfootImage getUserImage() Return an image of the user.

String getUserName() Get the username of the user that this storage 
belongs to.

static boolean isStorageAvailable() Indicate whether storage is available.

void setInt(int index, int value) Set the value of the int at the given index  
(0 to NUM_INTS-1, inclusive).

void setScore(int score) Set the user’s score.

void setString(int index,  
String value)

Set the value of the String at the given index  
(0 to NUM_STRINGS-1, inclusive).

boolean store() Store the data to the server.

Z02_KOLL4292_02_SE_APPB.indd   254 2/3/15   12:08 PM



Appendix

In this book, various collision detection methods are used in different situations. 
Below is a summary of the collision detection methods available for Greenfoot actors, 
and a short explanation of their purpose, and when to use them.

C.1 Method summary
Greenfoot’s collision detection methods can be found in the Actor class. There are 
seven relevant methods. They are as follows:

boolean isTouching(Class cls)
     Check whether this actor is touching any objects of the given class.

List getIntersectingObjects(Class cls)
     Return all the objects that intersect this object.

Actor getOneIntersectingObject(Class cls)
     Return an object that intersects this object.

List getObjectsAtOffset(int dx, int dy, Class cls)
     Return all objects that intersect the given location (relative to this object’s location).

Actor getOneObjectAtOffset(int dx, int dy, Class cls)
     Return one object that is located at the specified cell (relative to this object’s location).

List getNeighbours(int distance, boolean diagonal, Class cls)
     Return the neighbours to this object within a given distance.

List getObjectsInRange(int r, Class cls)
     Return all objects within range “r” around this object.

C.2 Convenience methods
Two of the methods, getIntersectingObjects and getObjectsAtOffset, have 
associated convenience methods, starting with getOne…

Collision detection
C

Z03_KOLL4292_02_SE_APPC.indd   255 2/3/15   12:20 PM



256      |       Appendices

These convenience methods work in very similar ways to the method they are based on, 
but they return a single actor instead of a list of actors. In cases where multiple other 
actors could be found (for example, several other actors intersect with ours at the same 
time), the variant returning a list returns all the relevant actors. The variant returning a 
single actor randomly picks one of the intersecting actors and returns that one.

The purpose of these convenience methods is just to simplify code: Often we are only 
interested in a single intersecting actor. In those cases, the convenience method allows 
us to handle the actor without having to use a list.

C.3 Low versus high resolution
As we have seen throughout this book, the resolution (cell size) of Greenfoot worlds 
can vary. This is relevant for collision detection, as we will often use different methods, 
depending on the resolution.

We distinguish two cases: low-resolution worlds, where the entire actor image is com-
pletely contained within a single cell (Figure C.1a) and high-resolution worlds, where 
the image of an actor spans multiple cells (Figure C.1b).

C.4 Intersecting objects
Methods:

List getIntersectingObjects(Class cls)
      Return all the objects that intersect this object.

Actor getOneIntersectingObject(Class cls)
      Return an object that intersects this object.

Figure C.1
Examples of low 
and high resolution 
in Greenfoot worlds

a) a low-resolution world    b) a high-resolution world

Z03_KOLL4292_02_SE_APPC.indd   256 2/3/15   12:20 PM



          |       257   

visible image

bounding box

Figure C.2
Intersection of 
actors using their 
bounding boxes

These methods return other actors whose image intersects with the calling actor’s 
image. Images intersect when any part of  one image touches any part of  another 
image. These methods are most useful in high-resolution scenarios.

Intersection is computed using bounding boxes, so overlap of fully transparent parts 
of the images is also treated as intersection (Figure C.2).

The isTouching method uses the same type of  test but returns a simple boolean 
rather than the actor:

boolean isTouching(Class cls)
      Check whether this actor is touching any objects of the given class.

These methods are often used to check whether one actor has run into another kind 
of actor. The inaccuracy resulting from using bounding boxes (rather than the visible 
part of the image) can often be neglected.

The parameter can be used as a filter. If  a class is specified as a parameter to these 
methods, only objects of that class are considered and all other objects are ignored. If  
null is used as a parameter, any intersecting object is returned.

C.5 Objects at offset
Methods:

List getObjectsAtOffset(int dx, int dy, Class cls)
      Return all objects that intersect the given location (relative to this object’s  location).

Actor getOneObjectAtOffset(int dx, int dy, Class cls)
      Return one object that is located at the specified cell (relative to this object’s  location).

These methods can be used to check for objects at a given offset from an actor’s own 
current location. They are useful for both low- and high-resolution scenarios.

The dx and dy parameters specify the offset in a number of cells. Figure C.3 illustrates 
the location at offset (2,0) from the wombat (2 cells offset along the x coordinate and 
0 cells offset along the y coordinate).

C: Collision detection

Z03_KOLL4292_02_SE_APPC.indd   257 2/3/15   12:20 PM



258      |       Appendices

Another actor is considered to be at that offset if  any part of that actor’s image inter-
sects with the center point of the specified cell. The cls parameter again provides the 
option to filter the objects to be considered (see above).

These methods are often used to check an area in front of an actor (to test whether it 
can move forward) or below an actor (to check whether it is standing on something).

C.6 Neighbors
Method:

List getNeighbours(int distance, boolean diagonal, Class cls)
      Return the neighbours to this object within a given distance.

This method is used to retrieve objects from cells surrounding the current actor. It is 
useful mainly in low-resolution scenarios.

Note the spelling of  the method name: It really is getNeighbours (with British 
spelling)—Greenfoot is not an American system.

The parameters specify the distance from the calling actor that should be considered 
and whether or not diagonally positioned cells should be included. Figure C.4 illus-
trates the neighboring cells at distance 1, with and without diagonals included.

A distance of N is defined as all cells that can be reached in N steps from the actor’s 
own position. The diagonal parameter determines whether diagonal steps are 
allowed in this algorithm.

Figure C.3
Checking a given 
offset from a loca-
tion (example here: 
offset 2,0)

Z03_KOLL4292_02_SE_APPC.indd   258 2/3/15   12:20 PM



As with the previous methods, the cls parameter provides the option to consider only 
objects of a given class.

C.7 Objects in range
Method:

List getObjectsInRange(int r, Class cls)
     Return all objects within range “r” around this object.

This method returns all objects within a given range of the calling actor. An object is 
in range if  its location is a cell whose center point is at distance r or less from the call-
ing actor (Figure C.5). The range r is measured in cells.

Figure C.4
Example of the 
getNeighbours 
method

Figure C.5
The cells in a given 
range around a 
location

This method is mostly useful for high-resolution scenarios. As with the methods 
above, a class filter can be applied.

a) neighbors with diagonal=false    b) neighbors with diagonal=true

          |       259   C: Collision detection

Z03_KOLL4292_02_SE_APPC.indd   259 2/5/15   2:56 PM



Appendix

 D.1 Java data types
Java knows two kinds of types: primitive types and object types. Primitive types are 
stored in variables directly, and they have value semantics (values are copied when 
assigned to another variable). Object types are stored by storing references to the 
object (not the object itself). When assigned to another variable, only the reference is 
copied, not the object.

D.1.1 Primitive types

The following table lists all the primitive types of the Java language:

Some Java details
d

Type name Description Example literals

Integer numbers

byte byte-sized integer (8 bit) 24 −2

short short integer (16 bit) 137 −119

int integer (32 bit) 5409 −2003

long long integer (64 bit) 423266353L 55L

Real numbers

float single-precision floating  
point

43.889F

double double-precision floating  
point

45.6324e5 0.4

Other types

char a single character (16 bit) ‘m’ ‘?’ ‘\u00F6’

boolean a boolean value (true or false) true false

Z04_KOLL4292_02_SE_APPD.indd   260 2/3/15   12:36 PM



D: Some Java details      |       261   

Notes:

■ A number without a decimal point is generally interpreted as an int, but automati-
cally converted to byte, short, or long types when assigned (if  the value fits). You 
can declare a literal as long by putting an “L” after the number. (l—lower-case L—
works as well but should be avoided because it can easily be mistaken for a one.)

■ A number with a decimal point is of type double. You can specify a float literal by 
putting an “F” or “f” after the number.

■ A character can be written as a single Unicode character in single quotes or as a 
four-digit Unicode value, preceded by “\u.”

■ The two boolean literals are true and false.

Because variables of  the primitive types do not refer to objects, there are no meth-
ods associated with them. However, when used in a context requiring an object 
type, autoboxing might be used to convert a primitive value to a corresponding 
object.

The table below details minimum and maximum values available in the numerical 
types.

Type Minimum Maximum

byte −128 127

short −32768 32767

int −2147483648 2147483647

long −9223372036854775808 9223372036854775807

Positive minimum Positive maximum

float 1.4e–45 3.4028235e38

double 4.9e–324 1.7976931348623157e308

D.1.2 Object types

All types not listed in the Primitive types section are object types. These include class and 
interface types from the standard Java library (such as String) and user-defined types.

A variable of an object type holds a reference (or “pointer”) to an object. Assignment 
and parameter passing have reference semantics (that is, the reference is copied, not 
the object). After assigning a variable to another one, both variables refer to the same 
object. The two variables are said to be aliases for the same object.

Classes are the templates for objects, defining the fields and methods that each 
instance possesses.

Arrays behave like object types—they also have reference semantics.

Z04_KOLL4292_02_SE_APPD.indd   261 2/3/15   12:36 PM



262      |       Appendices 

 D.2 Java operators

D.2.1 Arithmetic expressions

Java has a considerable number of operators available for both arithmetic and logical 
expressions. Table D.1 shows everything that is classified as an operator, including 
operations such as type casting and parameter passing. Most of  the operators are 
either binary operators (taking a left and a right operand) or unary operators (taking 
a single operand). The main binary arithmetic operations are:

+ addition
− subtraction
* multiplication
/ division
% modulo or remainder-after-division

The results of  both division and modulo operations depend on whether their oper-
ands are integers or floating point values. Between two integer values, division yields 
an integer result and discards any remainder, but between floating point values a 
floating point value is the result:

5 / 3 gives a result of 1
5.0 / 3 gives a result of 1.6666666666666667

(Note that only one of the operands needs to be of a floating point type to produce a 
floating point result.)

When more than one operator appears in an expression, then rules of precedence 
determine the order of application. In Table D.1 those operators having the highest 
precedence appear at the top, so we can see that multiplication, division, and modulo 
all take precedence over addition and subtraction, for instance. This means that both 
of the following examples give the result 100:

51 * 3 – 53
154 – 2 * 27

Binary operators with the same precedence level are evaluated from left to right and 
unary operators with the same precedence level are evaluated right to left.

When it is necessary to alter the normal order of evaluation, parentheses can be used. 
So both of the following examples give the result 100:

(205 − 5) / 2
2 * (47 + 3)

The main unary operators are −, !, ++, − − , [ ] and new. You will notice that ++ 
and − − appear in both of the top two rows in Table D.1. Those in the top row take 
a single operand on their left, while those in the second row take a single operand on 
their right.

Z04_KOLL4292_02_SE_APPD.indd   262 2/3/15   12:36 PM



D: Some Java details      |       263   

D.2.2 Boolean expressions

In boolean expressions, operators are used to combine operands to produce a value 
of either true or false. Such expressions are usually found in the test expressions of 
if-statements and loops.

The relational operators usually combine a pair of arithmetic operands, although the 
tests for equality and inequality are also used with object references. Java’s relational 
operators are:

==  equal-to !=  not-equal-to

<  less-than <=  less-than-or-equal-to

>  greater-than >=  greater-than-or-equal-to

The binary logical operators combine two boolean expressions to produce another 
boolean value. The operators are:

&&  and
|| or
^ exclusive-or

In addition,

!  not

takes a single boolean expression and changes it from true to false, and vice versa.

[ ] . ++ − − (parameters)

++ − − + − ! ~

new (cast)

* / %

+ −

<< >> >>>

< > >= <= instanceof

== ! =

&

^

|

&&

| |

?:

=  +=  −=  *=  /=  %=  >>=  <<=  >>>=  &=  |=  ^=

Table D.1
Java operators,  
highest precedence 
at the top

Z04_KOLL4292_02_SE_APPD.indd   263 2/3/15   12:36 PM



264      |       Appendices 

Both && and || are slightly unusual in the way they are applied. If  the left operand of 
&& is false then the value of the right operand is irrelevant and will not be evaluated. 
Similarly, if  the left operand of || is true then the right operand is not evaluated. Thus, 
they are known as short-circuit operators.

 D.3 Java control structures
Control structures affect the order in which statements are executed within the body of 
a method or constructor. There are two main categories: selection statements and loops.

A selection statement provides a decision point at which a choice is made to follow 
one route through the body of a method or constructor rather than another route. An 
if-else statement involves a decision between two different sets of statements, whereas 
a switch statement allows the selection of a single option from among several.

Loops offer the option to repeat statements, either a definite or an indefinite number 
of times. The former is typified by the for-each loop and for loop, while the latter is 
typified by the while loop and do loop.

In practice, it should be borne in mind that exceptions to the above characterizations 
are quite common. For instance, an if-else statement can be used to select from among 
several alternative sets of  statements if  the else part contains a nested if-else state-
ment; and a for loop can be used to loop an indefinite number of times.

D.3.1 Selection statements

D.3.1.1 if-else

The if-else statement has two main forms, both of which are controlled by the evalua-
tion of a boolean expression:

if (expression)
{
  statements
}

if (expression)
{
 statements
}
else
{
 statements
}

Z04_KOLL4292_02_SE_APPD.indd   264 2/3/15   12:36 PM



D: Some Java details      |       265   

In the first form, the value of  the boolean expression is used to decide whether 
to execute the statements or not. In the second form, the expression is used  
to choose between two alternative sets of  statements, only one of  which will be 
executed.

Examples:

if (field.size() == 0)
{
 System.out.println(“The field is empty.”);
}

if (number < 0)
{
 reportError();
}
else
{
 processNumber(number);
}

It is very common to link if-else statements together by placing a second if-else in the 
else-part of the first. This can be continued any number of times. It is a good idea to 
always include a final else-part.

if (n < 0)
{
 handleNegative();
}
else if (number == 0)
{
 handleZero();
}
else
{
 handlePositive();
}

Z04_KOLL4292_02_SE_APPD.indd   265 2/3/15   12:36 PM



266      |       Appendices 

D.3.1.2 switch

The switch statement switches on a single value to one of  an arbitrary number of 
cases. Two possible use patterns are:

switch (expression)
{
 case value: statements;
   break;
 case value: statements;
   break;
 further cases omitted
 default: statements;
   break;
}

switch (expression)
{
 case value1:
 case value2:
 case value3:
   statements;
   break;
 case value4:
 case value5:
   statements;
   break;
 further cases omitted
 default:
   statements;
   break;
}

Notes:

■ A switch statement can have any number of case labels.

■ The break instruction after every case is needed, otherwise the execution “falls 
through” into the next label’s statements. The second form above makes use of this. 
In this case, all three of  the first values will execute the first statements section, 
whereas values four and five will execute the second statements section.

■ The default case is optional. If no default is given, it may happen that no case is 
executed.

■ The break instruction after the default (or the last case, if  there is no default) is not 
needed but is considered good style.

Z04_KOLL4292_02_SE_APPD.indd   266 2/3/15   12:36 PM



D: Some Java details      |       267   

Examples:

switch(day)
{
    case 1: dayString = “Monday”;
        break;
    case 2: dayString = “Tuesday”;
        break;
    case 3: dayString = “Wednesday”;
        break;
    case 4: dayString = “Thursday”;
        break;
    case 5: dayString = “Friday”;
        break;
    case 6: dayString = “Saturday”;
        break;
    case 7: dayString = “Sunday”;
        break;
    default: dayString = “invalid day”;
        break;
}

switch(month)
{
    case 1:
    case 3:
    case 5:
    case 7:
    case 8:
    case 10:
    case 12:
        numberOfDays = 31;
        break;
    case 4:
    case 6:
    case 9:
    case 11:
         numberOfDays = 30;
         break;
    case 2:
         if(isLeapYear())
             numberOfDays = 29;
         else
             numberOfDays = 28;
         break;
}

Z04_KOLL4292_02_SE_APPD.indd   267 2/3/15   12:36 PM



268      |       Appendices 

D.3.2 Loops

Java has three loops: while, do-while, and for. The for loop has two forms. Except for 
the for-each loop, repetition is controlled in each with a boolean expression.

D.3.2.1 while

The while loop executes a block of statements as long as a given expression evaluates 
to true. The expression is tested before execution of the loop body, so the body may 
be executed zero times (that is, not at all). This capability is an important feature of 
the while loop.

while (expression)
{
    statements;
}

Examples:

System.out.print(“Please enter a filename: ”);
input = readInput();
while (input == null)
{
    System.out.print (“Please try again: ”);
    input = readInput();
}

int index = 0;
boolean found = false;
while (!found && index < list.size())
{
    if (list.get(index).equals(item))
    {
        found = true;
    }
    else
    {
        index++;
    }
}

D.3.2.2. do-while

The do-while loop executes a block of statements as long as a given expression evalu-
ates to true. The expression is tested after execution of  the loop body, so the body 
always executes at least once. This is an important difference from the while loop.

Z04_KOLL4292_02_SE_APPD.indd   268 2/3/15   12:36 PM



D: Some Java details      |       269   

do
{
    statements;
} while (expression);

Example:

do
{
    System.out.print(“Please enter a filename: ”);
    input = readInput();
} while (input == null);

D.3.2.3 for

The for loop has two different forms. The first form is also known as a for-each loop, 
and is used exclusively to iterate over elements of  a collection. The loop variable is 
assigned the value of  successive elements of  the collection on each iteration of  the 
loop.

for (variable-declaration : collection)
{
    statements;
}

Example:

for (String note : list)
{
    System.out.println(note);
}

The second form of for loop executes as long as a condition evaluates to true. Before 
the loop starts, an initialization statement is executed exactly once. The condition 
is evaluated before every execution of the loop body (so the loop may execute zero 
times). An increment statement is executed after each execution of the loop body.

for (initialization; condition; increment)
{
    statements;
}

Example:

for (int i = 0; i < text.size(); i++)
{
    System.out.println(text.get(i));
}

Both types of for loop are commonly used to execute the body of the loop a definite 
number of times—for instance, once for each element in a collection. A for-each loop 
cannot be used if  the collection is to be modified while it is being iterated over.

Z04_KOLL4292_02_SE_APPD.indd   269 2/3/15   12:36 PM



Z04_KOLL4292_02_SE_APPD.indd   270 2/3/15   12:36 PM

This page intentionally left blank



Index

A
Abstract classes, 137
Abstraction, 108–110. See also Piano 

scenario
Acceleration, 148
Access modifiers, 83
act()

piano scenario, 104, 105
Act button, 10

execution control, 10
little-crab scenario, 20

act method, 221
execution controls, 10

Actor class, 85, 185
in autumn scenario, 124–125
in little-crab scenario, 23–24

Actor constructors
in little-crab scenario improvement 

(finishing), 66–67
variables initialization and, 66

Actors, definition, 10
addAsteroids method, 157
addObject()

in little-crab scenario, 54
in piano scenario, 110–111

addScore() method, 96–97
Alpha value, 194, 196
Alternating images. See also Images

in little-crab scenario improvement 
(finishing), 68

Animating images
little-crab scenario improvement 

(finishing), 61
piano scenario, 104–106

Ants scenario simulation, 206–208
adding pheromones, 211–213
collecting food, 208–210

path forming, 213–214
Pheromone class, 207
setting up world (AntWorld class), 211

API Documentation, 43–44. See 
also Greenfoot Class 
Documentation

Applet, 77
Arrays

creation for keys and notes, 116, 117
elements, 115–117
piano scenario using, 114–118

Assignment (=), 55–56
Asteroid class, 174
Asteroids

colliding with, 162–165
gameOver, 165–168
interacting with objects in range, 

172–175
investigating, 155–156
painting stars, 156–159
proton wave, 168–172
turning, 159–160

Asteroids scenario, 241
asteroids-1, 10, 155
asteroids-2, 159
asteroids-3, 175
classes

Explosion, 155
ScoreBoard, 155

colliding with asteroids, 162–165
playing with, 12

Audacity, 187
Autumn scenario, 122

autumn-1, 123
autumn-2, 132
for-each loop, 130–132
interacting objects, 123

Z05_KOLL4292_02_SE_IDX.indd   271 2/2/15   6:10 PM



272      |       Index

Autumn scenario (continued)
interacting with actors, 124–125
interacting with groups of actors, 

126–127
interacting with the world, 124
List type, 129–130
null value, 125–126
object references, 123
using Java library classes, 127–129

B
Bacteria’s act method, 84–85

removeObject method, 85
this keyword, 85

Batman Returns, 240
Bloodstream, 85–86
Bloodstream’s prepare(), 91
BMP image format, 193
Body class (Newton’s Lab scenario), 

139–141
Body-paint-start scenario, 227–231

changing color, 230–231
erase your painting, 230
paint with your hand, 228–229
stop painting, 229–230

Boids scenario, 239–240
Boolean type, 7
Breakout scenario, 241–242
Burton, Tim, 240

C
Canvas class, 227, 229
Cartesian representation, 138
Casting, 168
changeImage() method, 126, 130
checkCollision method, 167–168
checkKeyPress method, 43, 83
checkLeaf() method, 126
Class diagram, 4

Space, 10–12
subclass, 11
superclass, 12
understanding, 10–12
World, 10–12

Classes, 4–6. See also Actor class; 
Greenfoot class; World class

abstract, 137
Java library classes, 127–129, 143
Space, 151–152

Class methods, 32. See also Static 
methods

Code completion, 49
Collection. See also List, definition of

defined, 129
Colliding with asteroids, 162–165. See 

also Asteroids scenario
Collision detection methods, 124
Collision method, 166
Color-chart, 194–196
Color class, 142–143, 196
Commands, 8
Comments, 39
Compilation, source code, 14
Concatenation. See String 

concatenation
Constants. See also Variables

declaration, 141
defined, 141

Constructors, 53
actor constructors (variables 

initialization), 66–67
default, 140

Counter class, 175
Crab. See Little-crab scenario
CrabWorld

class, 52–53
source code, 53

createObstacles method, 152
createStars method, 157
Creating new objects (new statement), 

54–55
Crumbs. See also Ants scenario 

simulation
with even distribution, 208
with Gaussian distribution, 208

currentImage, 172

D
Dahl, Ole-Johan, 203
Debris class, 241
Default constructors, 140
Dot notation, 31
Drawing images

color-chart, 194–196
combining dynamic drawing and 

images files, 196–198
drawStickFigure method, 226
Dynamic drawing, 196–198

Z05_KOLL4292_02_SE_IDX.indd   272 2/2/15   6:10 PM



Index      |       273   

E
Einstein, Albert, 134, 135
Emergent behavior (ants 

scenariosimulation), 213–214
Empty parameter list, 8
Equality (==) operator, 68
Error message, 22
executable jar file, 78
Execution controls, 4
Explosion class, 155, 162
Explosion scenario, 241
Exporting scenario, 78. See also Sharing 

scenario

F
Fields. See Instance variables (fields)
File formats. See Formats
For-each loop, 130–132
For loop, 157–158
Formats

image files, 192–194
BMP, 193
GIF, 193
JEPG, 193
PNG, 193
TIFF, 193

sound files, 189–191
Foxes-and-rabbits simulations,  

204–206. See also Predator-
prey-simulations

G
gameOver, 165–168
Generic type. See under List type
getCombinedUserImage, 223
getImage(), 174
getIntersectingObjects, 163, 173
getNearestJoint, 229
getObjectsInRange, 173, 174
getOneIntersectingObject, 163
getRandomNumber method,  

31–32, 89
getThumbnailUnscaled method, 221
getTrackedUsers method, 226
getWidth(), 174
getWorld() method, 85, 124, 167
getX(), 82–83, 165
getY(), 82–83
GIF image format, 193

Gravitational gonstant, 147
Gravity (Newton’s Lab scenario)

addition, 143
applying, 146–149
and music, 151–152

Greenfoot
classes, 4–6
execution, 9–10
main window, 4
objects, 4–6
parameters, 8–9
return types, 7–8
sound recording with, 187

Greenfoot archive, 78–79
Greenfoot class (little-crab scenario), 

185, 186
adding sound, 45–46
game ending, 43–45

Greenfoot Class Documentation, 43–45
GreenfootImage, 221, 227
GreenfootImage class, 62, 156, 169–170
Greenfoot images, 62–63
GreenfootImage’s clear method, 230
Greenfoot Kinect infrastructure

Joint class, 221
KinectClient class, 221
KinectWorld class, 220
Point3D class, 221
UserData class, 221

Greenfoot Kinect Server, 219–220
Greenfoot playSound method,  

191–192
Greenfoot programming, 129
Greenfoot website, 179

publishing to, 75–77
Greenscreen technique, 222–223
Greeps competition, 179–183

running, 182–183
technicalities, 183

Greeps scenario, 180–182

H
Henriksen, Poul, 240
Hide extensions for known file  

types, 186

I
If-statement, 25, 69
ignite method, 161–162

Z05_KOLL4292_02_SE_IDX.indd   273 2/2/15   6:10 PM



274      |       Index

Image files and formats, 192–194
BMP, 193
GIF, 193
JPEG, 193
PNG, 193
TIFF, 193

Images
alternating, 68
animating, 61
combining with dynamic drawing, 

196–198
drawing, 194–196
Greenfoot, 62–63

Import statement, 127, 128–129, 143. 
See also Java library classes

Indentation, 26–27
Index, 114, 115. See also Arrays
Infinite loop, 112
Inheritance, 23
initializeImages, 169–171
In sequence, 21
Instances. See Objects
Instance variables (fields), 63–66
int direction, 8–9
Interfaces, definition of, 129
Invoking act, 10
isAtEdge() method, 25–26
isTouching method, 37

J
jar file, 78
Java documentation, 148
Java library classes, 127–129, 143
Java Library Documentation, 38,  

127–128, 142
Java Standard Class Library, 127.  

See also Java library classes
Joint class, 221
JPEG image format, 193

K
Keyboard control, 41–43
Kinect, 216

body outlines, 218
camera image, 217
depth image, 217
functions of, 217–219
installing the software, 219
skeleton tracking, 218–219

KinectClient class, 221
Kinect-pong scenario, 235
Kinect-pong-start scenario, 232
KinectWorld class, 220, 221, 229

L
Library classes. See Java library  

classes
Lifts scenario, 239
Lining class, 81
Lining object, 87
List, definition of, 129
List type, 129–130

generic type, 130
Little-crab scenario

description, 17–18
improving

adding lobster, 40–41
adding sound, 45–46
adding worms, 35–36
code completion, 49
creating new methods, 38–40
eating worms, 36–37
game ending, 43–45
keyboard control, 41–43
making sound, 46–49
random behavior addition,  

31–35
improving (finishing)

adding objects automatically, 
52–54

alternating images, 68
animating images, 61
counting worms, 70–71

little-crab-5, 71
screen edges, dealing with, 23–27
turning, 20–22

Local
variable, 111, 112

Lock scenario, 77. See also Sharing 
scenario

Logical operators
AND (&), 106
NOT (!), 106

Loop
infinite, 112
while, 111–114

Lord of the Rings, 240
losePoints(), 97

Z05_KOLL4292_02_SE_IDX.indd   274 2/2/15   6:10 PM



Index      |       275   

M
Map helper class, 244
Maps scenario, 244–245
MapViewer class, 244
Marbles scenario, 237–238
Math class, 148–149
Method

class, 32
definition, 20, 38
invoking

Newton’s Lab scenario, 136
objects, 6
overloading, 138
private, 145
public, 136, 142
signature, 9

Method call, 20
Method call dialog, 9
Method signature, 9
Microsoft Kinect. See Kinect
Mono recording, 190
mouseClicked method, 185
move(), 160

Newton’s Lab scenario, 141–142
move() method, 83
mysound.wav, 186

N
New statement, 54–55
Newton, Isaac, 134, 135

formula for gravitation, 147
Newton’s Lab scenario, 134–153

adding gravitational force,  
143–146

applying gravity, 146–149
creating movement, 141–142
gravity and music, 151–152
helper classes

SmoothMover, 136–138
Vector, 137–138

Newtons-Lab-1, 134
Newtons-Lab-2, 149
Newtons-Lab-3, 151
World methods, 136

Non-void return type, 25. See also Void 
return type

Normal distribution, 209
null value, 125–126
Nygaard, Kristen, 203

O
Object interaction, 122–133

for-each loop, 130–132
interacting with actors, 124–125
interacting with groups of actors, 

126–127
interacting with the world, 124
list of leaves, 130
List type, 129–130
null value, 125–126
object references, 123
using Java library classes, 127–129

Objects
for-each loop, 130–132
Greenfoot, 4–6
interacting, 123
interacting with actors, 124–125
interacting with groups of actors, 

126–127
interacting with the world, 124
interaction with, 6–7
in little-crab scenario improvement, 

52–54
automatic addition of objects, 

52–54
new statement, 54–55

methods, 6
references, 123

Operators, logical, 106
Overloading method, 138

P
paintStickFigures method, 226
Parameter

definition, 8, 21
empty parameter list, 8
parameter list, 8

Parameter list, 8
Pengu scenario, 242–243
Pheromone class, 207, 211–213
Piano scenario, 103–104

animating key, 104–106
creating multiple keys (abstraction), 

108–110
piano-1, 103–104, 107
piano-2, 108
piano-3, 110
piano-4, 117
producing sound, 107–108

Z05_KOLL4292_02_SE_IDX.indd   275 2/2/15   6:10 PM



276      |       Index

Piano scenario (continued)
using arrays, 114–118
using loops (while loop), 111–114

Platform jumper scenario, 242–243
playSound(), 107, 186. See also Piano 

scenario
playSound method, 46, 93
PNG image format, 193
Point3D class, 221
Polar representation, 138
Pong, 231–235

controlling the paddle, 234–235
directing users, 232–233

Predator-prey-simulations, 204. See also 
Foxes-and-rabbits simulations

Private keyword, 64
Private method, 83, 145
Proton wave, 168–172
ProtonWave class, 155, 170
Public method, 83, 136, 142
Publishing to the Greenfoot website, 

75–77
Pythagoras theorem, 147–148

Q
Questions. See also Void return type

non-void return type, 8

R
Rabbits. See Foxes-and-rabbits 

simulations
Random behavior, 31–35
randomBodies method, 152
randomColor method, 230
Random distributions, 209

normal (Gaussian) distribution, 209
uniform distribution, 209

Recording
mono, 190
sound recording and editing, 187–189
stereo, 190

Red blood cells, 89–90
removeObject method, 85
removeTouching method, 37
Resolution. See Screen resolution
Return type

concept, 7
non-void, 25
void, 7, 25

Reynolds, Craig, 240
Rocket class, 160

S
Scenario

ants, 206–208
asteroids, 12, 241
boids, 239–240
breakout, 241–242
explosion, 241
exporting (See Sharing scenario)
greeps, 180–182
kinect-pong, 235
kinect-pong-start, 232
lifts, 239
maps, 244–245
marbles, 237–238
Newton’s Lab, 134–153
pengu, 242–243
piano, 103–104
platform jumper, 242–243
sharing (exporting), 75–79
simple-camera, 221–222
smoke, 196
soundtest, 186
stick-figure, 223–227
wave, 243–244

Scope coloring, 26–27
ScoreBoard class, 155, 165
Screen resolution, 53
setDirection method, 8–9
setImage(), 62–63
setLocation, 234
setLocation(x,y), 82–83
setPaintOrder method, 91
Sharing scenario

export to application, 78
export to web page, 77
publishing, 75–77

Short methods, 210
Side-scroll movement, 86–87
Signature. See also Method signature

method, 9
Simple-camera scenario, 221–222
Simulations

ants scenario, 206–208
defined, 202
foxes-and-rabbits, 204–206
Newton’s Lab, 134–153

Z05_KOLL4292_02_SE_IDX.indd   276 2/2/15   6:10 PM



Index      |       277   

Skeleton tracking, 218–219
Smoke scenario, 196
SmoothMover class, 136–138, 160
Sound

file formats and file sizes, 189–191
AIFF, 189
AU, 189
format encodings, 190
MP3, 189–190
sample format, 190
sample rate, 190
stereo and mono recording,  

190
WAV, 189

playing, 107–108, 186
playSound(), 186
preparation, 184–186
producing, 107–108
sound recording, 187–189
working with, 186–187

Soundtest scenario, 186
Source code, 13–15

compilation, 14
Space

class, 151–152
class diagram, 10–12

Stars. See also Asteroids scenario
painting, 156–159

startGame method, 234
Static keyword, 141
Static methods, 32. See also Class 

methods; Little-crab  
scenario

Stereo recording, 190
Stick-figure scenario, 223–227
StickWorld class, 224–225
String, 42, 93

class, 118
type definition, 118

String concatenation, 93–94, 117
Subclass, 11
Superclass, 12

T
this keyword, 85, 141
Thumbnail class, 224
TIFF image format, 193
Transparency, 193, 196. See also  

Images

Turning
little-crab scenario, 20–22

type World, 167

U
Uniform distributions, 209
User, 228
UserData class, 221, 226, 229

V
Variables. See also Constants

defined, 63
initialization in actor constructors, 66
instance, 63–66
local, 111, 112

Variable speed, 89
Vector class (Newton’s Lab scenario), 

137–138
Vector representation

cartesian, 138
polar, 138

Velocity vector, 137
Viruses, 87–88
Void return type, 7, 25. See also Non-

void return type

W
WAV, sound file format, 189
Wave scenario, 243–244
Weather class, 244
While loop, 111–114
White Blood Cell (WBC)

abstraction, 97–99
adding a score, 92–94
adding borders, 90–92
adding viruses, 87–88
Bacteria’s act method, 84–85
Bloodstream, 85–86
game time, 100
private method, 83
public method, 83
red blood cells, 89–90
removing bacteria, 88
scoring in the world, 94–97
side-scroll movement, 86–87
starting point, 81
variable speed, 89
WhiteCell class, 81–83

Z05_KOLL4292_02_SE_IDX.indd   277 2/2/15   6:10 PM



278      |       Index

WhiteCell class, 81–83, 84, 92
Wombat class, 4–5
World

area, 4
class diagram, 10–12
methods, 136
objects, interacting with, 124

World class, 52, 59, 185
Worms (Little-crab scenario)

adding, 35–36
counting, 70–71
eating, 36–37

Z05_KOLL4292_02_SE_IDX.indd   278 2/2/15   6:10 PM


	Cover
	Title Page
	Copyright Page
	Contents
	List of scenarios discussed in this book
	About the companion website
	Acknowledgments
	About the 2nd edition
	Introduction�������������������
	Chapter 1 Getting to know Greenfoot������������������������������������������
	1.1 Getting started��������������������������
	1.2 Objects and classes������������������������������
	1.3 Interacting with objects�����������������������������������
	1.4 Return types�����������������������
	1.5 Parameters���������������������
	1.6 Greenfoot execution������������������������������
	1.7 A second example���������������������������
	1.8 Understanding the class diagram������������������������������������������
	1.9 Playing with asteroids���������������������������������
	1.10 Source code�����������������������
	Summary��������������

	Chapter 2 The first program: Little Crab�����������������������������������������������
	2.1 The Little Crab scenario�����������������������������������
	2.2 Making the crab move�������������������������������
	2.3 Turning������������������
	2.4 Dealing with screen edges������������������������������������
	Summary of programming techniques����������������������������������������
	Drill and practice�������������������������

	Chapter 3 Improving the crab: more sophisticated programming
	3.1 Adding random behavior���������������������������������
	3.2 Adding worms�����������������������
	3.3 Eating worms�����������������������
	3.4 Creating new methods�������������������������������
	3.5 Adding a Lobster���������������������������
	3.6 Keyboard control���������������������������
	3.7 Ending the game��������������������������
	3.8 Adding sound�����������������������
	3.9 Making your own sounds���������������������������������
	3.10 Code completion
	Summary of programming techniques����������������������������������������
	Drill and practice�������������������������

	Chapter 4 Finishing the crab game����������������������������������������
	4.1 Adding objects automatically���������������������������������������
	4.2 Creating new objects�������������������������������
	4.3 Variables��������������������
	4.4 Assignment���������������������
	4.5 Object variables���������������������������
	4.6 Using variables��������������������������
	4.7 Adding objects to the world��������������������������������������
	4.8 Save the World�������������������������
	4.9 Animating images���������������������������
	4.10 Greenfoot images����������������������������
	4.11 Instance variables (fields)
	4.12 Using actor constructors������������������������������������
	4.13 Alternating the images����������������������������������
	4.14 The if/else statement���������������������������������
	4.15 Counting worms��������������������������
	4.16 More ideas����������������������
	Summary of programming techniques����������������������������������������
	Drill and practice�������������������������

	Interlude 1 Sharing your scenarios�����������������������������������������
	I1.1 Sharing your scenario���������������������������������
	I1.2 Publishing to the Greenfoot website�����������������������������������������������
	I1.3 Export to a Web page��������������������������������
	I1.4 Export to application���������������������������������
	I1.5 Export to Greenfoot archive���������������������������������������

	Chapter 5 Scoring
	5.1 WBC: The starting point����������������������������������
	5.2 WhiteCell: constrained movement������������������������������������������
	5.3 Bacteria: making yourself disappear����������������������������������������������
	5.4 Bloodstream: creating new objects��������������������������������������������
	5.5 Side-scroll movement�������������������������������
	5.6 Adding viruses�������������������������
	5.7 Collision: removing bacteria���������������������������������������
	5.8 Variable speed�������������������������
	5.9 Red blood cells��������������������������
	5.10 Adding borders��������������������������
	5.11 Finally: adding a score�����������������������������������
	5.12 Scoring in the World��������������������������������
	5.13 Abstraction: generalizing the scoring�������������������������������������������������
	5.14 Adding game time����������������������������
	Summary of programming techniques����������������������������������������
	Drill and practice�������������������������

	Chapter 6 Making music: an on-screen piano�������������������������������������������������
	6.1 Animating the key����������������������������
	6.2 Producing the sound������������������������������
	6.3 Abstraction: creating multiple keys����������������������������������������������
	6.4 Building the piano�����������������������������
	6.5 Using loops: the while loop��������������������������������������
	6.6 Using arrays�����������������������
	Summary of programming techniques����������������������������������������
	Drill and practice�������������������������

	Chapter 7 Object interaction: an introduction����������������������������������������������������
	7.1 Interacting objects������������������������������
	7.2 Object references����������������������������
	7.3 Interacting with the world�������������������������������������
	7.4 Interacting with actors����������������������������������
	7.5 The null value�������������������������
	7.6 Interacting with groups of actors��������������������������������������������
	7.7 Using Java library classes�������������������������������������
	7.8 The List type������������������������
	7.9 A list of leaves���������������������������
	7.10 The for-each loop
	Summary of programming techniques����������������������������������������
	Drill and practice�������������������������

	Chapter 8 Interacting objects: Newton’s Lab��������������������������������������������������
	8.1 The starting point: Newton’s Lab�������������������������������������������
	8.2 Helper classes: SmoothMover and Vector�������������������������������������������������
	8.3 The existing Body class����������������������������������
	8.4 First extension: creating movement���������������������������������������������
	8.5 The Color class��������������������������
	8.6 Adding gravitational force�������������������������������������
	8.7 Applying gravity���������������������������
	8.8 Trying it out������������������������
	8.9 Gravity and music����������������������������
	Summary of programming techniques����������������������������������������
	Drill and practice�������������������������

	Chapter 9 Collision detection: Asteroids�����������������������������������������������
	9.1 Investigation: What is there?
	9.2 Painting stars�������������������������
	9.3 Turning������������������
	9.4 Flying forward�������������������������
	9.5 Colliding with asteroids�����������������������������������
	9.6 Game Over��������������������
	9.7 Adding fire power: the proton wave���������������������������������������������
	9.8 Growing the wave���������������������������
	9.9 Interacting with objects in range��������������������������������������������
	9.10 Further development�������������������������������
	Summary of programming techniques����������������������������������������
	Drill and practice�������������������������

	Interlude 2 The Greeps competition�����������������������������������������
	I2.1 How to get started������������������������������
	I2.2 Programming your Greeps�����������������������������������
	I2.3 Running the competition�����������������������������������
	I2.4 Technicalities��������������������������

	Chapter 10 Creating images and sound
	10.1 Preparation�����������������������
	10.2 Working with sound������������������������������
	10.3 Sound recording in Greenfoot����������������������������������������
	10.4 External sound recording and editing������������������������������������������������
	10.5 Sound file formats and file sizes���������������������������������������������
	10.6 More control: the GreenfootSound class��������������������������������������������������
	10.7 Working with images�������������������������������
	10.8 Image files and file formats����������������������������������������
	10.9 Drawing images��������������������������
	10.10 Combining image files and dynamic drawing������������������������������������������������������
	Summary��������������
	Drill and practice�������������������������

	Chapter 11 Simulations�����������������������������
	11.1 Foxes and rabbits�����������������������������
	11.2 Ants����������������
	11.3 Collecting food���������������������������
	11.4 Setting up the world��������������������������������
	11.5 Adding pheromones�����������������������������
	11.6 Path forming������������������������
	Summary��������������

	Chapter 12 Greenfoot and the Kinect������������������������������������������
	12.1 What the Kinect can do����������������������������������
	12.2 Installing the software�����������������������������������
	12.3 Getting started���������������������������
	12.4 The simple camera�����������������������������
	12.5 The next step: greenscreen��������������������������������������
	12.6 Stick-figure: tracking users����������������������������������������
	12.7 Painting with your hands������������������������������������
	12.8 A simple Kinect game: Pong��������������������������������������
	Summary��������������
	Drill and practice�������������������������

	Chapter 13 Additional scenario ideas�������������������������������������������
	13.1 Marbles�������������������
	13.2 Lifts�����������������
	13.3 Boids
	13.4 Explosion���������������������
	13.5 Breakout��������������������
	13.6 Platform jumper���������������������������
	13.7 Wave����������������
	13.8 Map���������������
	Summary��������������

	Appendix A: Installing Greenfoot���������������������������������������
	A.1 Installing Greenfoot�������������������������������
	A.2 Installing the book scenarios����������������������������������������

	Appendix B: Greenfoot API��������������������������������
	Appendix C: Collision detection��������������������������������������
	C.1 Method summary�������������������������
	C.2 Convenience methods������������������������������
	C.3 Low versus high resolution�������������������������������������
	C.4 Intersecting objects�������������������������������
	C.5 Objects at offset����������������������������
	C.6 Neighbors��������������������
	C.7 Objects in range���������������������������

	Appendix D: Some Java details������������������������������������
	D.1 Java data types��������������������������
	D.2 Java control structures����������������������������������
	D.3 Java control structures����������������������������������

	Index������������
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W


		2017-02-14T09:34:00+0000
	Preflight Ticket Signature




