




Creative	Greenfoot



Table	of	Contents

Creative	Greenfoot

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Let’s	Dive	Right	in…

The	Avoider	Game	tutorial

Basic	game	elements

Creating	a	scenario

Creating	our	world

Creating	our	hero

What	have	we	just	done?

Adding	our	hero

Using	the	mouse	as	a	game	controller



Creating	the	followMouse	function

Breaking	down	the	code

Adding	enemies

Enemy	code

Creating	an	army

Unbounding	the	world

Memory	management

Your	assignment

Next…

Making	it	a	game

Detecting	collisions

Adding	a	game-over	screen

Switching	scenes

Adding	a	“play	again”	button

Adding	an	introduction	screen

Setting	the	initial	screen

Adding	a	“play”	button

Adding	background	music

Writing	the	music	code

Analyzing	the	music	code

Stop	the	music

Your	assignment

Next…

Enhancing	playability

Game	scoring

Adding	the	Counter	class

Increasing	the	score	over	time

Adding	levels

Increasing	spawn	rates	and	enemy	speed

Increasing	difficulty	based	on	the	score

Implementing	enemy	speed	increases



Your	assignment

Next…

Summary

2.	Animation

Revisiting	Avoider	Game

Image	swapping	and	movement

Using	setImage()

Making	enemies	less	happy

Finding	assets

Calling	setImage()	based	on	Actor	location

Using	setLocation()

Creating	a	star	field

A	blank	slate

The	Star	class

Creating	a	moving	field

Using	parallax

Using	GreenfootImage

Timing	and	synchronization

Delay	variables

Hurting	the	avatar

Random	actions

Blinking

Triggered	events

Adding	eyes

Giving	our	hero	sight

Easing

Power-ups	and	power-downs

Base	class

Linear	easing

Exponential	easing

Sinusoidal	easing



Changes	to	the	Avatar	class

Changes	to	the	AvoiderWorld	class

Avoider	Game

Your	assignment

Summary

3.	Collision	Detection

ZombieInvasion	interactive	simulation

Dynamically	creating	actors	in	ZombieInvasionWorld

Creating	obstacles

Creating	our	main	actor	framework

Creating	an	explosion

Test	it	out

Built-in	collision	detection	methods

Detecting	a	collision	with	a	single	object

isTouching()	and	removeTouching()

Detecting	a	collision	with	multiple	objects

Detecting	multiple	objects	in	range

Time	to	test	it	out

Border-based	collision	detection	methods

Detecting	single-object	collisions	at	an	offset

Detecting	multiple-object	collisions	at	an	offset

Hidden-sprite	collision	detection	methods

Challenge

Summary

4.	Projectiles

Cupcake	Counter

How	to	play

Implementing	Cupcake	Counter

The	CupcakeWorld	class

Enemies

Fountains



Turrets

Rewards

Jumpers

Platforms

Test	it	out

Your	assignment

Launching	actors

Gravity	and	jumping

Bouncing

Particle	effects

Bullets	and	turrets

Your	assignment

Challenge

Summary

5.	Interactive	Application	Design	and	Theory

Meaningful	play

Complexity

Goals

User	conditioning

Storytelling

Fictional	worlds

Narrative	descriptors

The	interactive	entertainment	iterative	development	process

Game	pitch	and	initial	design

Prototype

Playtest

Evaluation

Refinement

Benefits

Avoider	Game

Avoider	Game	recap



High-score	list

Achievement	badges

Player	conditioning

Storytelling

Adding	a	story	screen

Changing	the	score

Adding	sound	effects

Playtesting

Challenge

Additional	readings

Summary

6.	Scrolling	and	Mapped	Worlds

Chapter	scenario	examples

Dynamically	generated	worlds

Side-scrolling

The	Rocket	class

The	CloudsWorld	class

Side-scrolling	actors

Clouds

Walls

Try	it	out

Mapped	worlds

Side-scrolling

The	HikingWorld	class

The	Hiker	class

The	ScrollingActor	class

Try	it	out

2D	scrolling

The	HikingWorld2D	class

The	Hiker	class

The	ScrollingActor	class



Try	it	out

Tile-based	worlds

Actors	as	tiles

The	HikingWorld	class

The	Hiker	class

The	ScrollingActor	class

Tiles

The	Lake	class

Try	it	out

Other	game	sprites

Summary

7.	Artificial	Intelligence

The	MazeWorld	scenario

The	MazeWorld	class

The	Hiker	class

Scrolling	actor

The	ScrollingObstacle	class

Intelligently	behaving	actors

The	ScrollingEnemy	class

Randomness

Spider

Behavior	heuristics

The	Snake	class

A*	pathfinding

Overview

Algorithm

The	Mouse	class

Play	test

Summary

8.	User	Interfaces

UIWorld



The	Button	class

The	TextBox	class

The	Menu	class

Heads-up	display

Adding	a	UI	to	MazeWorld

Adding	menus	and	buttons

Adding	a	HUD

Implementing	game	difficulty	settings	and	HUD	controls

Summary

9.	Gamepads	in	Greenfoot

Gamepad	overview

Windows	setup

Connecting	your	controller

Greenfoot	gamepad	software

The	Greenfoot	Gamepad	API

Overview

The	GamePad	and	Direction	classes

Avoider	Game	with	Gamepad

Try	it	out

OS	X	setup/workarounds

Gamepad	mapper	software

Exporting	games	with	gamepads

Summary

10.	What	to	Dive	into	Next…

Build	something	larger

Share	your	work

Publishing	on	Greenfoot.org

Desktop	application

Exporting	as	a	web	page

Explore	other	input	devices

Learn	more	Java



Summary

Index





Creative	Greenfoot





Creative	Greenfoot
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	April	2015

Production	reference:	1230415

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78398-038-3

www.packtpub.com

http://www.packtpub.com




Credits
Author

Michael	Haungs

Reviewers

Thomas	Cooper

Keenan	Gebze

Foaad	Khosmood

Kevin	Rowan

Commissioning	Editor

Sam	Wood

Acquisition	Editor

Sam	Wood

Content	Development	Editor

Arvind	Koul

Technical	Editor

Parag	Topre

Copy	Editor

Sarang	Chari

Project	Coordinator

Nikhil	Nair

Proofreaders

Safis	Editing

Paul	Hindle

Linda	Morris

Indexer

Hemangini	Bari

Graphics

Sheetal	Aute

Production	Coordinator

Melwyn	D’sa

Cover	Work



Melwyn	D’sa





About	the	Author
Michael	Haungs	is	a	professor	at	California	Polytechnic	State	University,	San	Luis
Obispo,	where	he	teaches	and	conducts	research	in	game	design,	game	development,	web
application	development,	and	distributed	systems.	He	received	his	bachelor’s	degree	in
science	in	industrial	engineering	and	operations	research	from	UC	Berkeley,	his	master’s
degree	in	science	in	computer	science	from	Clemson	University,	and	his	PhD	from	UC
Davis.	He	is	the	author	of	PolyXpress	(http://mhaungs.github.io/PolyXpress)—a	system
that	allows	the	writing	and	sharing	of	location-based	stories.	Haungs	is	actively	involved
in	curriculum	development	and	undergraduate	education.	Through	industry	sponsorship,
he	has	led	several	K-12	outreach	programs	to	inform	and	inspire	both	students	and
teachers	about	opportunities	in	computer	science.	Haungs	is	also	a	co-director	of	the
liberal	arts	and	engineering	studies	(LAES)	program.	LAES	is	a	new,	multidisciplinary
degree	offered	jointly	by	the	College	of	Liberal	Arts	and	the	College	of	Engineering	at	Cal
Poly	and	represents	a	unique	focus	on	graduating	creative	engineers.

I	would	like	to	thank	the	staff	at	Packt	Publishing	for	their	patience	and	consultation
throughout	the	book-writing	process,	especially	the	technical	reviewers,	including	Foaad
Khosmood,	Kevin	Rowan,	Keenan	Gebze,	and	Thomas	Cooper,	for	their	sage	advice	and
candid	feedback.	They	greatly	helped	me	improve	this	book.

http://mhaungs.github.io/PolyXpress




About	the	Reviewers
Thomas	Cooper	is	the	technology	department	chair	at	The	Walker	School	in	Marietta,
Georgia.	The	Walker	School	is	a	private	pre-K-12	school	that	excels	in	science,
technology,	and	the	arts.	Thomas	has	been	teaching	for	over	20	years	and	has	taught
courses	in	science,	technology,	and	the	humanities	at	both	secondary	and	college	levels.
He	has	given	talks	on	technology	integration	and	collaborative	learning	for	Google,
National	Geographic,	and	The	College	Board	and	has	helped	develop	training	and
curricular	programs	for	many	schools	and	districts.	He	currently	teaches	a	game	and
simulation	programming	course	using	the	Greenfoot	platform.

Keenan	Gebze,	born	in	Jakarta,	Indonesia,	on	December	6	1993,	has	been	interested	in
computers	and	programming	since	the	time	he	was	in	middle	school.	He	is	not	much	of	an
expert	but	has	been	an	eager	enthusiast	of	the	Java	programming	language	after	learning
Greenfoot.	He	is	currently	pursuing	a	major	in	geography	at	the	University	of	Indonesia.

Keenan	is	the	winner	of	the	first	Greenfoot	CodePoint	2008	contest	(category	under-16),
which	is	held	on	the	Greenfoot	site,	with	his	game	SonarWay
(http://www.greenfoot.org/scenarios/347)	that	earned	him	a	Nintendo	Wii.	Sonarway	is
one	of	the	games	that	he’s	really	proud	of	in	Greenfoot.

Foaad	Khosmood	is	the	Forbes	professor	of	computer	engineering	at	California
Polytechnic	State	University	where	he	teaches	courses	on	artificial	intelligence	and
interactive	entertainment.	Professor	Khosmood	is	the	president	of	the	nonprofit
organization	Global	Game	Jam,	Inc.	He	has	given	numerous	talks	on	games	and	game
jams	at	conferences	such	as	Game	Developers	Conference	(GDC)	and	ACM	SIGGRAPH.
He	has	also	helped	organize	three	academic	workshops	on	game	jams.	He	holds	a	PhD	in
computer	science	from	the	University	of	California	Santa	Cruz	(2011).You	can	reach	him
at	http://foaad.net.

Kevin	Rowan	has	been	teaching	high	school	computer	science	for	38	years	in	Winnipeg,
Manitoba,	Canada.	During	that	time,	he	worked	with	a	variety	of	technologies	(from
keypunch	cards	to	desktop	computers	and	LEGO	robots)	and	programming	languages
(from	Fortran	and	Cobol,	through	Pascal	and	Visual	Basic,	to	Java).	For	the	past	6	years,
he	has	been	teaching	Java	programming	using	Greenfoot.

Kevin	has	been	actively	involved	in	the	promotion	of	computer	science	education	in
Manitoba,	serving	on	two	different	provincial	curriculum	design	committees.	He	is
currently	serving	on	the	executive	of	the	Manitoba	chapter	of	Computer	Science	Teachers
Association	(CSTA).

http://www.greenfoot.org/scenarios/347
http://foaad.net




www.PacktPub.com



Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib


Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser



Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

I	dedicate	this	book	to	my	family—three	beautiful	princesses	(Clara,	Ella,	and
Chandler)	and	one	lovely	and	talented	queen	(Bethany	Fisher).	The	four	of	you	are
an	endless	source	of	pride	and	joy!

http://www.PacktPub.com




Preface
This	book	is	designed	to	help	you	learn	how	to	program	games	and	other	interactive
applications	quickly	using	a	learn-by-doing	approach.	Unlike	other	texts,	which	start	with
a	detailed	description	of	all	aspects	of	a	language	or	development	platform,	we	will	only
cover	exactly	what	is	needed	for	the	task	at	hand.	As	you	progress	through	the	book,	your
programming	skill	and	ability	will	grow	as	you	learn	topics	such	as	animation,	collision
detection,	artificial	intelligence,	and	game	design.	Project-based	learning	is	a	proven
approach	and	becoming	prominent	in	primary,	secondary,	and	higher	education.	It
enhances	the	learning	process	and	improves	knowledge	retention.

The	topics	presented	in	this	book	closely	follow	the	ones	I	cover	in	my	game	design	class.
Through	years	of	teaching	this	material,	I	have	found	that	a	project-based	learning
approach	can	quickly	get	students	successfully	programming	and	creating	interesting
games	and	applications.	I	hope	that	you	too	will	be	amazed	with	how	much	you	can
accomplish	in	a	short	amount	of	time.

We	will	code	our	games	in	Java.	Java	is	one	of	the	most	popular	and	powerful
programming	languages	in	the	world	and	is	widely	used	in	the	finance	industry,	gaming
companies,	and	research	institutions.	We	will	be	doing	our	programming	in	Greenfoot
(www.greenfoot.org)—an	interactive	Java	development	environment.	This	environment
allows	both	novice	and	experienced	programmers	to	quickly	create	visually	appealing
applications.	It	provides	a	safe	environment	for	experimentation	and	allows	you	to	share
your	work	on	a	variety	of	platforms.

To	get	the	most	out	of	this	book,	you	should:

Open	Greenfoot	and	code	as	you	are	reading	the	book
Experiment	with	the	code	you	have	after	completing	a	chapter
Know	that	some	details	not	covered	in	a	chapter	will	be	addressed	in	an	upcoming
chapter
Be	proud	of	your	accomplishments	and	share	them	with	friends,	family,	and	the
Greenfoot	community

Learning	is	not	a	passive	activity.	Dig	into	each	chapter	and	experiment,	add	your	own
unique	twists,	and	then	code	something	uniquely	your	own.	I	can’t	wait	to	see	what	you
can	do.

http://www.greenfoot.org


What	this	book	covers
Chapter	1,	Let’s	Dive	Right	in…,	takes	you	through	a	complete	tutorial	for	creating	a
simple	game	complete	with	an	introduction	screen,	game	over	screen,	a	score,	mouse
input,	and	sound.	This	tutorial	serves	the	purpose	of	introducing	you	to	Greenfoot	basics,
Java	basics,	and	good	programming	practices.

Chapter	2,	Animation,	discusses	how	to	perform	animation	in	Greenfoot.	Animation
requires	appropriate	and	well-timed	image	swapping	as	well	as	realistic	movement	around
the	screen.	After	reading	the	given	topic	and	seeing	an	example,	you	will	apply	learned
animation	techniques	to	the	game	you	created	in	Chapter	1,	Let’s	Dive	Right	in….

Chapter	3,	Collision	Detection,	discusses	why	collision	detection	is	necessary	for	most
simulations	and	games.	You	will	learn	how	to	use	Greenfoot’s	built-in	collision	detection
mechanisms	and	then	learn	more	accurate	methods	to	do	collision	detection.	You	will	use
both	border-based	and	hidden-sprite	methods	of	collision	detection	to	create	a	zombie
invasion	simulation.

Chapter	4,	Projectiles,	talks	about	how	actors	in	creative	Greenfoot	often	have	movement
that	can	best	be	described	as	being	launched.	A	soccer	ball,	bullet,	laser,	light	ray,
baseball,	and	firework	are	examples	of	this	type	of	object.	You	will	learn	how	to
implement	this	type	of	propelled	movement.	You	will	also	learn	how	gravity,	if	present,
affects	it	by	working	through	the	implementation	of	a	comprehensive	platform	game.

Chapter	5,	Interactive	Application	Design	and	Theory,	discusses	creating	engaging	and
immersive	experiences	in	Greenfoot,	which	is	far	more	involved	than	compiling	a
collection	of	programming	effects	into	one	application.	In	this	chapter,	you	will	learn	how
to	engage	your	user	by	understanding	the	relationship	between	user	choice	and	outcome,
conditioning	the	user,	and	including	the	right	level	of	complexity	into	your	work.	You	will
be	shown	a	proven	iterative	development	process	that	helps	you	put	the	theory	into
practice.

Chapter	6,	Scrolling	and	Mapped	Worlds,	discusses	how	to	create	worlds	that	are	much
more	extensive	than	the	ones	that	can	fit	into	the	confines	of	a	single	screen.	At	the
beginning	of	the	chapter,	you	will	code	a	scrolling	exploration	game	and	by	the	end	of	the
chapter	you	will	expand	it	into	a	large	mapped	game.

Chapter	7,	Artificial	Intelligence,	talks	about	how	AI,	despite	being	a	deep	and	complex
topic,	has	some	simple	techniques	you	can	learn	to	give	the	illusion	of	having	intelligent,
autonomous	actors	in	your	worlds.	First,	you	will	learn	how	to	effectively	use	random
behaviors.	Next,	you	will	implement	simple	heuristics	to	simulate	intelligent	behavior.
Last,	you	will	learn	the	A*	search	algorithm	to	allow	game	actors	to	intelligently	bypass
obstacles	when	moving	between	two	locations	on	the	screen.

Chapter	8,	User	Interfaces,	discusses	adding	an	interface	to	your	Greenfoot	scenarios.	In
this	chapter,	you	will	learn	how	to	communicate	with	your	user	through	buttons,	labels,
menus,	and	a	heads-up	display.



Chapter	9,	Gamepads	in	Greenfoot,	discusses	the	capabilities	of	a	gamepad	device	and
then	teaches	you	how	to	set	up	Greenfoot	to	work	with	it.	You	will	then	add	gamepad
support	to	the	game	we	created	in	Chapter	1,	Let’s	Dive	Right	in…,	and	Chapter	2,
Animation.

Chapter	10,	What	to	Dive	into	Next…,	gives	you	an	opportunity	to	reflect	on	the	skills	you
learned	during	the	course	of	this	book.	I	then	go	on	to	suggest	projects	you	should	attempt
in	order	to	continue	your	journey	as	a	programmer	and	interactive	application	author.





What	you	need	for	this	book
For	this	book,	you	will	need	to	download	Greenfoot	from	http://www.greenfoot.org/door
and	install	it	on	your	computer.	Greenfoot	is	free	and	works	on	Windows,	Mac,	and	Linux.
The	Greenfoot	website	provides	easy-to-follow	installation	instructions.	After	installation,
you	should	work	through	the	six	simple	tutorials	found	on	http://www.greenfoot.org/doc.
These	tutorials	can	be	completed	in	less	than	two	hours	and	will	give	you	all	you	need	to
know	to	get	the	most	from	this	book.

http://www.greenfoot.org/door
http://www.greenfoot.org/doc




Who	this	book	is	for
If	you	are	ready	to	explore	the	world	of	creative	programming,	then	you	will	appreciate
the	methods,	tips,	and	processes	described	in	this	book.	Appropriate	for	Java	programmers
of	all	levels	(novice	to	expert),	it	methodically	guides	you	through	topics	crucial	to
building	engaging	interactive	applications.	You	will	learn	how	to	build	games,
simulations,	and	animations	through	guided	programming	exercises.





Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“As	you
can	see,	we	made	some	really	simple	changes	to	the	Enemy	class.”

A	block	of	code	is	set	as	follows:

private	void	increaseLevel()	{

		int	score	=	scoreBoard.getValue();

		if(	score	>	nextLevel	)	{

				enemySpawnRate	+=	2;

				enemySpeed++;

				nextLevel	+=	100;

		}

}

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

		public	void	act()	{

				if(	Greenfoot.mouseClicked(this)	)	{

						AvoiderWorld	world	=	new	AvoiderWorld(pad);

						Greenfoot.setWorld(world);

				}

		}

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“Hit	the	Ok	button	in	the
New	class	pop-up	window,	and	then,	in	the	main	scenario	window,	hit	the	Compile
button.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.





Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors




Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.



Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support


Downloading	the	color	images	of	this	book
We	also	provide	you	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams	used	in
this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the	output.	You
can	download	this	file	from:
http://www.packtpub.com/sites/default/files/downloads/B00626_ColorImages.pdf

http://www.packtpub.com/sites/default/files/downloads/B00626_ColorImages.pdf


Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-
errata,	selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	on	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.	Any	existing	errata	can	be	viewed	by	selecting	your	title	from
http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support


Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com


Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com




Chapter	1.	Let’s	Dive	Right	in…
	 “It	does	not	matter	how	slowly	you	go	as	long	as	you	do	not	stop.” 	

	 —Confucius

In	this	chapter,	you	will	build	a	simple	game	where	the	player	controls	a	character	using
the	mouse	to	try	to	avoid	oncoming	enemies.	As	the	game	progresses,	the	enemies	become
harder	to	avoid.	This	game	contains	many	of	the	basic	elements	needed	to	create
interactive	Greenfoot	applications.	Specifically,	in	this	chapter,	you	will	learn	how	to:

Create	introduction	and	game-over	screens
Display	a	user	score
Use	the	mouse	to	control	the	movement	of	an	actor
Play	background	music
Dynamically	spawn	enemies	and	remove	them	when	appropriate
Create	game	levels

Throughout	this	chapter,	we’ll	learn	basic	programming	concepts	and	gain	familiarity	with
the	Greenfoot	development	environment.	As	you	proceed,	think	about	the	concepts
presented	and	how	you	would	use	them	in	your	own	projects.	If	you	are	new	to	Java,	or
it’s	been	a	while	since	you’ve	programmed	in	Java,	be	sure	to	take	the	time	to	look	up
things	that	may	be	confusing	to	you.	Java	is	a	well-established	programming	language,
and	there	are	endless	online	resources	you	can	consult.	Similarly,	this	book	assumes	a
minimal	understanding	of	Greenfoot.	Be	sure	to	look	at	the	simple	tutorials	and
documentation	at	www.greenfoot.org	when	needed.	Experiment	with	the	code	and	try	new
things—you’ll	be	glad	you	did.	In	other	words,	follow	the	advice	of	Confucius,	quoted	in
the	first	line	of	this	chapter.

Many	of	the	chapters	in	this	book	are	independent;	however,	most	are	dependent	on	this
chapter.	This	chapter	provides	the	framework	to	create	Greenfoot	applications	that	we	will
continue	to	use,	and	refer	to,	in	later	chapters.

http://www.greenfoot.org


The	Avoider	Game	tutorial
This	tutorial	is	heavily	based	on	AS3	Avoider	Game	Tutorial	by	Michael	James	Williams
(http://gamedev.michaeljameswilliams.com/as3-avoider-game-tutorial-base/).	In	that
tutorial,	you	build	a	game	that	creates	smiley-faced	enemies	that	rain	down	from	the	top	of
the	screen.	The	goal	for	the	player	is	to	avoid	these	enemies.	The	longer	you	avoid	them,
the	higher	your	score.	We	will	build	the	same	game	in	Greenfoot,	instead	of	Flash	and
ActionScript.	As	with	Michael	James	Williams’	tutorial,	we	will	start	small	and	slowly
layer	on	functionality.	We	will	pause	frequently	to	consider	best	practices	and	good
programming	practice.	Enjoy	these	learning	opportunities!

We	will	first	build	the	basic	components	of	the	Avoider	game,	including	the	initial
scenario,	the	game	environment,	the	enemies,	and	the	hero.	Then,	we	will	layer	on
additional	functionality,	such	as	scoring,	introduction	and	game-over	screens,	and	the
notion	of	levels.

As	mentioned	in	the	preface,	we’ll	assume	you	have	downloaded	Greenfoot	and	have	it
installed.	If	you	still	haven’t,	do	so	now.	Go	to	www.greenfoot.org	for	easy-to-follow
instructions	on	downloading	and	installing	Greenfoot.	While	you	are	there,	make	sure	you
are	minimally	familiar	with	all	the	tutorials	provided	on	http://www.greenfoot.org/doc.

http://gamedev.michaeljameswilliams.com/as3-avoider-game-tutorial-base/
http://www.greenfoot.org
http://www.greenfoot.org/doc




Basic	game	elements
All	games	have	an	environment	in	which	the	game	takes	place	and	objects	interact.	In
Greenfoot,	the	environment	is	represented	by	the	World	class,	and	objects	that	interact	in
the	environment	are	represented	by	the	Actor	class.	In	this	section	of	the	chapter,	we	will
create	a	world,	add	enemies	to	the	world,	and	add	a	hero	that	will	be	controlled	by	the
player.



Creating	a	scenario
Start	Greenfoot	and	create	a	new	scenario	by	clicking	on	Scenario	in	Greenfoot’s	Menu
bar	and	then	clicking	on	New….	You	will	see	the	window	shown	in	Figure	1.	Type
AvoiderGame	as	the	name	of	the	file,	and	then	hit	the	Create	button.

Figure	1:	Here’s	Greenfoot’s	New	Scenario	window

Creating	our	world
Next,	we	need	to	create	a	world	for	our	game.	We	do	this	by	right-clicking	(or	ctrl-clicking
on	Mac)	on	the	World	class	in	the	scenario	window	(see	Figure	2)	and	choosing	New
subclass…	in	the	pop-up	menu	that	appears.

Figure	2:	This	is	about	right-clicking	on	the	World	class	in	order	to	subclass	it



In	the	New	class	pop-up	window,	name	the	class	AvoiderWorld,	select	the	backgrounds
image	category,	and	then	select	the	space1.jpg	library	image	as	the	new	class	image.
Once	this	is	done,	the	pop-up	window	should	resemble	Figure	3.

Tip
Once	you	associate	an	image	with	a	new	World	class	or	Actor	class,	that	image	will	be
copied	to	the	images	directory	in	your	Greenfoot	project.	We	will	count	on	this	in	later
chapters.

Figure	3:	This	shows	the	New	class	pop-up	window

Hit	the	Ok	button	in	the	New	class	pop-up	window,	and	then,	in	the	main	scenario
window,	hit	the	Compile	button.	You	should	now	have	a	scenario	that	looks	like	that
shown	in	Figure	4.



Figure	4:	This	shows	our	AvoiderGame	scenario	after	compiling	the	AvoiderWorld	class

We	now	have	our	own	world,	named	AvoiderWorld,	which	we	will	soon	populate	with
actors.

Tip
Later	in	this	chapter,	we	will	add	two	subclasses	of	World	to	our	game—one	for	our
introduction	screen	and	one	for	our	game-over	screen.	Those	instructions	will	be
abbreviated.	Be	sure	to	refer	back	to	this	section	if	you	need	detailed	instructions	on
subclassing	the	World	class.

Creating	our	hero
Let’s	create	the	character	our	players	will	control	when	they	play	our	game.	Greenfoot
makes	this	really	easy.	We	will	just	follow	the	same	steps	we	used	to	create	the	World
class	earlier.	Start	by	right-clicking	on	the	Actor	class	in	the	scenario	window	(see	Figure
5)	and	choose	the	New	subclass…	menu	item.



Figure	5:	This	shows	right-clicking	on	the	Actor	class	in	order	to	subclass	it

In	the	New	class	pop-up	window,	name	the	class	Avatar	and	select	symbols->skull.png
as	the	new	class	image.	In	the	main	scenario	window,	hit	the	Compile	button.

Now,	to	create	an	enemy,	you	perform	the	same	steps	you	just	did	for	the	hero,	except
choose	symbols->Smiley1.png	as	the	image	and	Enemy	as	the	class	name.	Again,	hit	the
Compile	button	when	this	is	done.

You	should	now	have	a	scenario	that	looks	like	the	one	shown	in	Figure	6.

Figure	6:	This	shows	the	Avoider	Game	scenario	after	creating	the	world	and	adding	two
actors



What	have	we	just	done?
Greenfoot	views	a	scenario	as	World	that	contains	Actor.	The	main	responsibilities	of
World	is	to	add	and	remove	each	Actor	from	the	screen	and	to	periodically	call	the	act()
method	of	each	Actor.	It	is	the	responsibility	of	each	Actor	to	implement	their	act()
method	to	describe	their	actions.	Greenfoot	provides	you	with	the	code	that	implements
general	World	and	Actor	behavior.	(You	right-clicked	on	those	implementations
previously.)	As	a	game	programmer,	you	must	code	specific	behaviors	for	World	and
Actor.	You	do	this	by	subclassing	the	provided	World	and	Actor	classes	to	create	new
classes	and	writing	code	in	them.	You	have	already	done	the	subclassing,	and	now	it	is
time	to	add	the	code.

Tip
Look	at	http://www.greenfoot.org/files/javadoc/	to	learn	more	about	the	World	and	Actor
classes.

Oracle	provides	an	excellent	overview	of	object-oriented	programming	concepts	at
http://docs.oracle.com/javase/tutorial/java/concepts/.	If	you	are	serious	about	learning	Java
and	writing	good	Greenfoot	scenarios,	you	should	read	that	material.

Adding	our	hero
Last,	we	need	to	add	our	hero	to	the	game.	To	do	this,	right-click	on	the	Avatar	class,
select	new	Avatar()	from	the	pop-up	menu,	drag	the	picture	of	the	skull	that	appears
collocated	with	your	mouse	pointer	to	the	center	of	the	screen	and	then	click	the	left
mouse	button.	Now,	right-click	anywhere	on	the	black	space	background	(do	not	right-
click	on	the	skull)	and	choose	Save	the	world	in	the	pop-up	menu	that	appears.

Doing	this	will	permanently	add	our	hero	to	the	game.	If	you	hit	the	Reset	button	on
Greenfoot’s	scenario	window,	you	should	still	see	the	skull	you	placed	in	the	middle	of	the
screen.

Using	the	mouse	as	a	game	controller
Let’s	add	some	code	to	the	Avatar	class	that	will	allow	us	to	control	its	movement	using
the	mouse.	Double-click	on	Avatar	to	pull	up	the	code	editor	(You	can	also	right-click	on
the	class	and	select	Open	editor).

You	will	see	a	code-editing	window	appear	that	looks	as	shown	in	Figure	7.

http://www.greenfoot.org/files/javadoc/
http://docs.oracle.com/javase/tutorial/java/concepts/


Figure	7:	This	is	the	code	for	our	Avatar	class

You	can	see	the	act()	method	we	discussed	earlier.	Because	there	is	no	code	in	it,	Avatar
will	not	move	or	display	any	other	behavior	when	we	run	our	scenario.	What	we	would
like,	is	to	have	Avatar	follow	the	mouse.	Wouldn’t	it	be	nice	if	there	was	a
followMouse()	method	we	could	use?	Let’s	pretend	there	is!	Inside	the	act()	method,
type	followMouse();.	Your	act()	method	should	look	like	Figure	8.

Figure	8:	This	shows	the	act()	method	with	the	followMouse()	function	added

Just	for	fun,	let’s	compile	this	and	see	what	happens.	What	do	you	think	will	happen?
Click	the	Compile	button	to	find	out.	Did	you	see	something	like	what	is	shown	in	Figure
9?



Figure	9:	This	is	about	viewing	a	compilation	error	in	Greenfoot

If	you	look	at	the	bottom	of	the	window	in	Figure	9,	you’ll	see	that	Greenfoot	has
provided	us	with	a	useful	error	message	and	has	even	highlighted	the	code	that	has	the
problem.	As	we	know,	we	were	pretending	that	the	method	followMouse()	existed.	Of
course,	it	does	not.	We	will,	however,	write	it	soon.	Throughout	the	course	of	this	manual
(and	during	any	Java	coding),	you	are	going	to	make	errors.	Sometimes,	you’ll	make	a
“typo”	and	at	other	times,	you’ll	use	a	symbol	that	doesn’t	exist	(just	as	we	did	earlier).
There	are	other	common	errors	you	will	make	as	well.

Note
Help!	I	just	made	a	programming	error!

Don’t	panic!	There	are	a	number	of	things	you	can	do	to	remedy	the	situation.	I	will	list
some	here.	First	and	foremost,	the	process	you	use	to	code	can	greatly	aid	you	in
debugging	code	(finding	errors).	The	process	you	should	follow	is	called	Incremental
Development.	Simply	follow	these	steps:

Code	a	couple	of	lines	of	code.	(Really!!	Don’t	code	any	more!)
Save	and	compile.
Run	and	test	your	code.	(Really!!	Try	it	out!)
Repeat.

Now,	if	you	get	an	error,	it	has	to	be	due	to	the	last	2-5	lines	of	code	you	just	wrote.	You
know	exactly	where	to	look.	Compare	this	to	writing	30	lines	of	code	and	then	testing
them	out.	You	will	have	compounding	bugs	that	are	hard	to	find.	Here	are	some	other
debugging	tips:

Very	carefully	read	the	error	message	you	get.	While	they	can	be	cryptic,	they	really



do	point	you	to	the	location	of	the	bug	(sometimes	even	giving	line	numbers).
Sometimes,	you	get	multiple,	long	error	messages.	Don’t	worry.	Just	go	to	the	top
and	read	and	deal	with	only	the	first	one.	Often,	by	fixing	the	first	one,	many	others
will	be	taken	care	of	too.
If	you	just	can’t	find	it,	have	someone	else	read	your	code.	It’s	amazing	how	fast
someone	else	can	spot	your	error.
Print	some	information	out.	You	can	use	System.out.println()	to	print	out
variables	and	check	that	the	code	you	are	looking	at	is	actually	running.
Learn	how	to	use	a	debugger.	This	is	a	very	useful	tool,	but	beyond	the	scope	of	this
book.	Learn	what	a	debugger	is	and	use	it.	Greenfoot	has	a	nice,	built-in	debugger
you	can	use.

In	the	extremely	rare	case	that	there	is	an	error	in	the	Greenfoot	program,	report	it	by
following	the	instructions	found	at	http://www.greenfoot.org/support.

Creating	the	followMouse	function

Ok,	let’s	get	back	to	our	hero.	We	last	left	our	hero	(the	Avatar	class)	with	an	error,
because	there	was	actually	no	followMouse()	method.	Let’s	fix	that.	Add	the	method
shown	in	the	following	code	after	the	act()	method	in	the	Avatar	class:

private	void	followMouse()	{

		MouseInfo	mi	=	Greenfoot.getMouseInfo();

		if(	mi	!=	null	)	{

				setLocation(mi.getX(),	mi.getY());

		}

}

We	now	have	an	implementation	of	followMouse().	Save	the	file,	compile	the	Greenfoot
scenario,	and	try	the	code	out.	The	picture	of	the	skull	should	follow	your	mouse.	If
something	went	wrong,	look	closely	at	the	debugging	window	(shown	in	Figure	9)	to	see
the	clues	Java	is	giving	you	about	your	error.	Did	you	mistype	something?	Verify	that	the
code	in	your	Avatar	class	looks	exactly	like	the	code	in	Figure	10.	Follow	the	debugging
tips	provided	earlier.

http://www.greenfoot.org/support


Figure	10:	This	shows	the	Avatar	class	with	completed	followMouse()	method

Hey,	wait!	How	did	I	come	up	with	the	code	for	the	followMouse()	method?	Was	I	born
with	that	information?	No,	I	actually	just	looked	over	the	Greenfoot	documentation
(http://www.greenfoot.org/files/javadoc/)	and	saw	there	was	a	class	named	MouseInfo.	I
clicked	on	that	and	read	about	all	of	its	methods.

Tip
Go	read	the	Greenfoot	documentation	now.	It’s	actually	pretty	short.	There	are	only	seven
classes	and	each	only	has	around	20,	or	fewer,	methods.

Breaking	down	the	code

Let’s	break	down	this	code.	First,	we	get	access	to	an	object	that	represents	mouse	data	via
Greenfoot.getMouseInfo().	We	then	use	that	object	to	get	the	location	of	the	mouse,	via
getX()	and	getY(),	and	then	set	the	x	and	y	locations	of	our	hero	using
setLocation(x,y).	How	did	I	know	to	use	setLocation()?	Again,	it	is	in	the	Greenfoot
documentation	for	the	Actor	class.	It	is	a	method	that	Greenfoot	provides	for	all	actors.
Last,	we	had	to	include	the	if(mi	!=	null)	part	because	if	you	accidentally	move	the
mouse	outside	the	Greenfoot	window,	there	will	be	no	mouse	information,	so	trying	to
access	it	will	cause	an	error	(check	out	the	comment	in	the	code	in	Figure	10,	line	22).

Since	the	followMouse()	method	is	called	in	the	act()	method,	our	hero	will	continually
be	moved	to	the	location	of	the	mouse.

Tip

http://www.greenfoot.org/files/javadoc/


When	typing	a	method	in	Greenfoot,	you	can	hit	Ctrl	+	space	bar	and	Greenfoot	will
display	a	list	of	potential	methods	you	may	have	been	trying	to	write.	Select	a	method
from	the	list	and	Greenfoot	will	autocomplete	the	method	for	you,	including	space	holders
for	method	parameters.

Adding	enemies
We’re	going	to	add	enemies	to	our	game	in	two	steps.	First,	we	need	to	write	the	code	for
the	Enemy	class,	and	then	we	will	add	code	to	our	world,	AvoiderWorld,	to	create	a	never-
ending	army	of	enemies.	Both	steps	are	surprisingly	simple.

Enemy	code

Double-click	on	the	Enemy	class	and	change	its	act()	method	to	look	like	the	following
code	snippet:

public	void	act()	{

		setLocation(getX(),	getY()	+	1);

}

Remember	using	setLocation()	earlier	in	the	Avatar	class?	We	use	it	again	here	to	move
an	enemy	down	one	pixel	every	time	the	act()	method	is	called.	In	Greenfoot,	the	upper-
left	corner	of	the	screen	is	the	coordinate	(0,0).	The	x	coordinate	increases	as	you	move	to
the	right	and	the	y	coordinate	increases	as	you	move	down.	That	is	why	we	set	the	x
location	of	the	enemy	to	be	its	current	x	coordinate	value	(we	are	not	moving	to	the	left	or
the	right)	and	its	y	location	to	be	its	current	y	coordinate	plus	one	(we	are	moving	down
one	pixel.)

Save	your	Enemy	class,	and	then	compile	your	scenario.	Run	the	scenario,	right-click	on
the	Enemy	class,	and	choose	new	Enemy()	in	the	pop-up	menu.	Add	this	enemy	to	the
screen	and	watch	it	move	down.

Creating	an	army

Now	that	we	have	completed	our	Enemy	class,	we	can	use	it	to	create	an	army.	To	do	this,
we	are	going	to	add	code	to	the	act()	method	in	our	AvoiderWorld	class.	Open	the	editor
for	AvoiderWorld	by	double-clicking	on	it,	or	right-clicking	on	it	and	selecting	Open
editor	in	the	pop-up	menu.	If	you	look	around	the	code	for	AvoiderWorld,	you’ll	notice
that	Greenfoot	does	not	automatically	create	an	act()	method	for	you.	No	problem,	we’ll
just	add	it.	Put	the	following	code	in	AvoiderWorld:

public	void	act()	{

		//	Randomly	add	enemies	to	the	world

		if(	Greenfoot.getRandomNumber(1000)	<	20	)	{

				Enemy	e	=	new	Enemy();

				addObject(e,	Greenfoot.getRandomNumber(getWidth()-20)+10,	-30);

		}

}

The	act()	method	starts	by	checking	whether	a	randomly	generated	number	between	0
and	1000,	including	0	but	not	1000,	was	less	than	20.	In	the	long	run,	this	code	will	run	2
percent	of	the	times	the	act()	method	is	called.	Is	this	enough?	Well,	the	act()	method	is



typically	called	50	times	per	second	(ranges	from	1	to	100,	depending	on	the	position	of
the	speed	slider	bar),	so	2	percent	of	50	is	1.	Therefore,	on	average	one	enemy	will	be
created	per	second.	This	feels	about	right	for	the	starting	level	of	our	game.

Inside	the	if	statement,	we	create	an	enemy	and	place	it	at	a	specific	location	in	the	world
using	the	method	addObject().	The	addObject()	method	takes	three	parameters:	the
object	to	add,	the	x	coordinate	of	the	object,	and	the	y	coordinate	of	the	object.	The	y
coordinate	is	constant	and	chosen	so	that	the	newly	created	enemy	starts	off	at	the	top	of
the	screen	and	will	appear	as	it	slowly	moves	down.	The	x	coordinate	is	trickier.	It	is
dynamically	generated	so	that	the	enemy	could	appear	on	any	valid	x	coordinate	on	the
screen.	The	following	is	the	code	we	are	talking	about:

Greenfoot.getRandomNumber(	(getWidth()	–	20)	+	10,	-30);

Figure	11	demonstrates	the	range	of	x	coordinate	values	that	are	generated.	In	this	figure,
the	rectangles	represent	the	possible	set	of	values	for	the	x	coordinate	for	the	given	code.
This	method	of	generating	ranges	of	values	for	screen	coordinates	is	common	in
Greenfoot.

Figure	11:	This	is	the	range	of	x	coordinate	values	generated	by	the	code

Compile	and	run	the	scenario;	you	should	see	a	continuous	stream	of	enemy	hordes
moving	down	the	screen.

Unbounding	the	world
After	running	the	scenario,	you’ll	notice	that	the	enemies	end	up	piling	up	at	the	bottom	of
the	screen.	In	Greenfoot,	you	can	create	worlds	that	are	bounded	(where	actors	are	not
allowed	to	go	past	the	screen	borders)	and	unbounded	(where	actors	are	allow	to	exit	the
screen.)	By	default,	Greenfoot	creates	bounded	worlds.	However,	changing	the	world	to
unbounded	is	extremely	easy.	Double-click	on	AvoiderWorld	to	open	the	code	editor.	Take
this	line	of	code:

super(600,	400,	1);

Change	the	preceding	code	to	the	following	line	of	code:

super(600,	400,	1,	false);



Looking	at	the	Greenfoot	documentation	for	the	World	class,	we	notice	there	are	two
constructors	(see	http://www.greenfoot.org/files/javadoc/greenfoot/World.html	for	detailed
information	on	these	constructors):	one	that	takes	three	parameters	and	another	that	takes
four.	The	constructor	with	four	parameters	has	the	same	parameters	as	the	one	that	takes
three,	plus	one	additional	boolean	parameter	that	indicates	whether	the	world	is	bounded
or	not.	Our	code	change	added	the	fourth	Boolean	parameter	and	set	it	to	false	(no
bounds	in	the	world.)

Now,	compile	and	run	the	scenario.	The	enemies	fall	off	the	bottom	of	the	screen	as
required.

Where	do	all	those	enemies	go?	We’ll	deal	with	that	next.

Memory	management
In	Greenfoot	applications,	you’ll	create	hundreds	and	thousands	of	actors.	When	we	are
done	with	an	actor,	such	as	when	it	is	killed	or	goes	off	screen,	we	would	like	to	remove
that	object	and	not	have	it	consume	any	more	system	resources.	Java	manages	memory
resources	via	a	method	called	garbage	collection.	With	this	method,	Java	tries	to
automatically	determine	whether	you	no	longer	need	an	actor,	and	if	you	don’t,	it	deletes
that	actor	and	frees	up	all	resources	associated	with	it.	In	Greenfoot,	you	can	let	Java
know	you	are	done	with	the	actor	by	removing	it	from	World	using	the	removeObject()
method.	This	is	what	we	want	to	do	to	an	Enemy	actor,	after	we	have	successfully	avoided
it	and	it	has	moved	off	the	screen.

The	most	convenient	place	to	remove	an	Enemy,	after	it	has	gone	off	the	screen,	is	within
the	Enemy	class	itself.	Add	the	following	code	as	the	last	line	of	code	inside	the	act()
method	in	the	Enemy	class:

checkRemove();

Now,	we	need	to	add	the	checkRemove()	method.	Put	the	definition	of	this	method	below
the	act()	method.	Here	is	the	definition:

private	void	checkRemove()	{

		World	w	=	getWorld();

		if(	getY()	>	w.getHeight()	+	30	)	{

				w.removeObject(this);

		}

}

The	code	for	your	Enemy	class	should	look	like	that	shown	in	Figure	12.

http://www.greenfoot.org/files/javadoc/greenfoot/World.html


Figure	12:	This	shows	the	adding	of	code	to	remove	the	enemy	if	it	goes	off	the	bottom	of
the	screen

Now,	compile	and	run	the	scenario.	The	enemies	fall	of	the	bottom	of	the	screen,	as
before,	but	you	can	feel	good	knowing	that	they	are	soon	removed	from	the	world	and	the
garbage	is	collected.

Your	assignment
Learning	is	not	passive,	and	you	really	need	to	engage	in	the	process.	Before	moving	on	to
the	next	section	of	this	chapter,	you	should:

1.	 Make	sure	your	version	of	our	Avoider	Game	works,	click	on	Scenario	in
Greenfoot’s	main	application	menu,	and	then	choose	Save	as…	to	create	an
experimental	copy	of	Avoider	Game.	Let’s	name	this	experimental	copy
AvoiderGameIExperimentation.

2.	 Play	around	with	your	experimental	copy.	Change	the	spawn	rates	of	the	enemies.
Change	how	fast	the	enemies	descend.

3.	 Add	turn(5);	to	the	act()	method	of	the	Enemy	class.	Compile	and	run.	What’s
going	on?	Try	different	values	instead	of	5	as	the	input	parameter	to	turn().

If	things	get	too	crazy,	delete	your	experimental	copy	and	make	a	new	copy	to	play	with
from	our	original	Avoider	Game.	There’s	no	harm	done,	nor	any	foul.

Tip
Throughout	this	book,	take	this	approach	of	experimenting	with	the	code.	Much	learning



will	happen	during	the	playing.	The	very	act	of	thinking	about	how	to	change	the	code
provides	your	brain	with	a	new	way	to	process	and	understand	it.	Making	mistakes	in	a
controlled	environment	will	better	prepare	you	to	handle	mistakes	later	on.	You	will	start
to	become	familiar	with	Greenfoot’s	error	messages.

Next…

Great	work	until	now!	We	have	built	the	basics	of	our	game	and	will	next	add	some
things,	such	as	an	introduction	screen,	game-over	screen,	and	a	score,	to	make	it	look	and
feel	more	like	a	game.



Making	it	a	game
In	this	section,	we	will	add	a	game-over	screen,	an	introduction	screen,	and	some
background	music.	But,	before	we	do	all	that,	we	need	to	know	when	our	hero	touches	one
of	the	enemies.	This	will	be	our	cue	to	end	the	game.	The	act	of	determining	when	two
actors	touch	is	called	collision	detection.	Collision	detection	is	used	to	tell	whether	a
bullet	hit	an	enemy,	whether	the	player	landed	on	a	platform	after	jumping,	or	to	tell
whether	a	falling	leaf	landed	on	a	surface.	We	will	discuss	this	important	topic	next	and
spend	considerable	time	on	it	in	the	upcoming	chapters.

Detecting	collisions
Greenfoot	provides	several	Actor	methods	you	can	use	to	determine	whether	you	are
touching	another	Actor.	These	methods,	in	no	particular	order,	are:
getIntersectingObjects(),	getNeighbors(),	getObjectsAtOffset(),
getObjectsInRange(),	getOneIntersectingObject(),	and	getOneObjectAtOffset().
They	all	provide	slightly	different	ways	of	determining	collision.	For	our	game,	we	are
going	to	use	getOneIntersectingObject().	The	prototype	of	this	method	is	as	follows:

protected	Actor	getOneIntersectingObject(java.lang.Class	cls)

This	method	takes	one	parameter,	which	is	the	class	of	the	objects	you	want	to	check	for
collision.	This	method	defines	collision	in	terms	of	bounding	boxes;	a	bounding	box	is
the	minimal	rectangle	that	can	surround	all	pixels	in	the	graphic.	This	method	is	efficient
and	fast,	but	not	the	most	accurate.	In	Figure	12,	we	can	see	a	picture	of	a	skull	and	a
picture	of	a	smiley	face.	Even	though	the	pixels	of	the	two	pictures	are	not	overlapping,
we	can	see	that	their	bounding	boxes	are	overlapping;	therefore,
getOneIntersectingObject()	would	report	that	these	two	actors	are	touching.	In	Chapter
3,	Collision	Detection,	we	will	explore	more	advanced	methods	of	collision	detection.

Figure	13:	This	shows	the	bounding	boxes	of	two	actors

Armed	with	this	new	information,	we	are	going	to	add	collision	detection	to	our	Avatar
class.	We	will	remove	our	hero	from	the	game	if	it	touches	one	of	the	enemies.	(Later	in
this	chapter,	we	will	display	a	game-over	screen	after	removing	our	hero.)	Double-click	on
the	Avatar	class	to	bring	up	its	editing	window.	Change	its	act()	method	to	this:



public	void	act()	{

	followMouse();

	checkForCollisions();

}

Then,	add	this	checkForCollisions()	method’s	definition	under	the	act()	method:

private	void	checkForCollisions()	{

		Actor	enemy	=	getOneIntersectingObject(Enemy.class);

		if(	enemy	!=	null	)	{

				getWorld().removeObject(this);

				Greenfoot.stop();

		}

}

The	Avatar	class	should	look	like	the	code	shown	in	Figure	14.

Figure	14:	The	Avatar	class	with	collision	detection	added.

Let’s	examine	exactly	what’s	going	on	in	the	checkForCollisions()	method.	The	first
thing	we	do	is	call	getOneIntersectionObject()	and	save	its	return	value	in	the	variable
enemy.	This	variable	will	be	null	if	this	object	is	not	touching	any	enemies,	in	which	case,
the	expression	in	the	if	statement	will	evaluate	to	false,	and	we	will	not	execute	the
statements	inside.	Otherwise,	we	are	touching	an	object	of	the	type	Enemy	and	do	execute



the	contents	of	the	if	statement.

There	are	only	two	lines	of	code	in	the	if	statement.	In	the	first	line,	we	use	the	method
getWorld(),	implemented	in	the	Actor	class,	to	get	a	reference	to	the	instance	of	the
World	we	are	in.	Instead	of	saving	the	reference	in	a	variable,	we	immediately	invoke	the
World	method	removeObject()	supplying	the	keyword	this	as	the	argument	to	remove
our	hero.	Lastly,	we	use	the	stop()	method	in	the	Greenfoot	utility	class	to	pause	our
game.

Now,	compile	and	run	the	scenario.	Enemies	should	stream	down	from	the	top	of	the
screen	and	exit	out	at	the	bottom.	You	should	be	able	to	control	the	hero,	an	instance	of	the
Avatar	class,	by	moving	your	mouse.	If	our	hero	touches	one	of	the	enemies,	the	game
should	stop.

Adding	a	game-over	screen
First,	you	need	to	draw	an	entire	game-over	screen	in	your	favorite	graphic
design/drawing	program,	such	as	GIMP,	CorelDRAW,	Inkscape,	Greenfoot’s	built-in
graphic	editor,	or	even	Windows	Paint.	I	used	Adobe	Illustrator	to	create	the	screen	shown
in	Figure	15.

Figure	15:	My	AvoiderGame	game-over	screen;	try	designing	your	own.

Whatever	you	use	to	draw	your	image,	make	sure	you	can	save	it	in	either	PNG	or	JPG
format.	Its	size	should	be	600	x	400	(the	same	size	as	your	world).	Save	this	image	in	the
images	folder	in	your	AvoiderGame	scenario.

Using	the	same	steps	that	you	used	to	create	AvoiderWorld	(The	Avoider	Game	tutorial
section),	create	another	world;	call	it	AvoiderGameOverWorld	and	associate	the	image	you
created	earlier	with	it.	In	the	World	classes	area	of	your	scenario,	you	should	see	what	is
shown	in	Figure	16.



Figure	16:	The	World	classes	section	after	adding	AvoiderGameOverWorld

Switching	scenes

Now,	we	want	to	display	the	game-over	screen	if	our	hero	touches	an	enemy.	To	do	this,
we	need	to	perform	the	following	three	steps:

1.	 Detect	when	we	collide	with	an	enemy	and	then	tell	(by	calling	a	method)	our	world,
AvoiderWorld,	that	the	game	is	over.

2.	 In	our	AvoiderWorld	class,	we	need	to	implement	the	game-over	method	that	the
Avatar	will	use	to	signal	the	end	of	days.

3.	 In	our	game-over	method,	set	the	world	to	be	AvoiderGameOverWorld,	instead	of
AvoiderWorld.

Let’s	start	with	step	1.	Previously,	in	the	Detecting	collisions	subsection	of	this	section,
you	wrote	code	to	remove	the	hero	from	the	game	if	it	touches	one	of	the	enemies.	This
code	was	contained	in	the	method	checkForCollisions().	To	implement	step	1,	we	need
to	change	that	method	to	the	following	method:

private	void	checkForCollisions()	{

		Actor	enemy	=	getOneIntersectingObject(Enemy.class);

		if(	enemy	!=	null	)	{

				AvoiderWorld	world	=	(AvoiderWorld)	getWorld();

				world.endGame();

		}

}

The	only	difference	is	the	code	inside	the	if	statement.	I	hope	it	makes	sense	that	we	are
now	asking	the	world	to	end	the	game,	as	opposed	to	removing	the	hero	object.	The	part
that	could	be	confusing	is	the	substitution	of	AvoiderWorld	for	World	and	the	addition	of
the	(AvoiderWorld)	part.	The	problem,	is	that	we	are	going	to	implement	endGame()	in
AvoiderWorld,	not	World.	So,	we	need	some	way	of	specifying	that	the	return	value	of
getWorld()	will	be	treated	as	AvoiderWorld	and	not	just	plain	old	ordinary	World.	In	Java
terms,	this	is	called	casting.

Now,	let’s	look	at	steps	2	and	3.	Here’s	the	code	you	need	to	add	to	AvoiderWorld.



Figure	17:	This	shows	the	endGame()	method	added	to	AvoiderWorld

We	have	changed,	and	added,	a	minimal	amount	of	code,	but	if	you	have	followed	along
carefully,	you	should	be	able	to	save,	compile,	and	run	the	code.	See	the	game-over	screen
when	our	hero	touches	an	enemy?	(If	not,	go	back	and	retrace	your	steps.	Something	you
typed	in	is	wrong.)

Note
The	three	Ps:	Plan,	Plan,	and	Plan

Coding	is	complicated	stuff.	When	you	have	a	problem	to	solve,	you	don’t	just	want	to	sit
down	and	start	hacking	away	at	the	computer	until	you	bang	out	a	solution.	You	want	to
sit	down	with	a	stylus	and	ePad	(used	to	be	pen	and	paper	in	my	day)	and	plan.	I	gave	you
a	small	example	when	I	wrote	out	the	three	steps	needed	to	display	the	game-over	screen.
One	of	the	best	methods	to	help	you	design	a	solution	is	a	top-down	design	(also	know	as
divide	and	conquer).

In	the	top-down	design,	you	start	thinking	of	a	solution	to	a	problem	at	a	very	high	level
and	then	repeatedly	break	down	this	solution	into	subsolutions	until	the	subsolutions	are
small	and	manageable

Adding	a	“play	again”	button

The	game-over	screen	is	great	and	all,	but	we	don’t	want	to	just	stare	at	it	all	day.	OK,	so
let’s	make	it	so	that	you	can	restart	the	game	by	clicking	on	the	game-over	screen.
AvoiderGameOverWorld	needs	to	keep	checking	whether	the	mouse	has	been	clicked	and
then	set	the	world	back	to	AvoiderWorld,	so	that	we	can	play	the	game	again.	Looking	at
the	Greenfoot	documentation,	we	can	see	the	mouseClicked()	function.	Let’s	use	that
method	in	the	act()	method	of	AvoiderGameOverWorld,	along	with	the	change	world
code.	Add	the	following	code	to	AvoiderGameOverWorld:

public	void	act()	{

		//	Restart	the	game	if	the	user	clicks	the	mouse	anywhere

		if(	Greenfoot.mouseClicked(this)	)	{

				AvoiderWorld	world	=	new	AvoiderWorld();

				Greenfoot.setWorld(world);

		}

}

This	code	should	look	very	familiar	to	you.	The	code	inside	the	if	statement	is	nearly
identical	to	the	code	we	added	to	the	endGame()	method	in	the	AvoiderWorld	class,	except
this	time	we	are	creating	and	switching	to	AvoiderWorld.



The	new	part	is	to	check	to	see	whether	the	user	clicked	the	mouse	anywhere	on	the
screen.	The	Greenfoot.mouseClicked()	method	returns	true	if	the	user	just	clicked	on	the
object	supplied	in	its	parameter.	We	supplied	the	this	variable,	which	represents	the
whole	instance	of	the	AvoiderGameOverWorld	world.

Compile	and	run.	Great	job!	Our	game	is	coming	along	nicely!

Adding	an	introduction	screen
Adding	an	introduction	screen	is	really	easy,	and	we	just	need	to	perform	many	of	the
same	steps	we	did	in	creating	a	game-over	screen.	First,	we	need	to	create	an	introduction
screen	image	in	whatever	graphics	editor	program	you	want.	The	one	I	created	is	shown	in
Figure	18.

Figure	18:	The	image	of	the	introduction	screen	for	our	game.

Make	sure	the	image	is	either	in	PNG	or	JPG	format	and	has	a	pixel	size	of	600	x	400.
Save	this	image	in	the	images	folder	in	your	AvoiderGame	scenario.

Create	a	new	world	(by	subclassing	World),	call	it	AvoiderGameIntroScreen,	and
associate	the	image	you	just	created	with	it.	When	you	are	done	with	this,	the	World
classes	area	of	your	scenario	should	look	like	the	screenshot	shown	in	Figure	19.



Figure	19:	These	are	all	the	worlds	you	created	in	your	AvoiderGame

Setting	the	initial	screen

We	obviously	want	our	new	introduction	screen	to	display	first	when	the	player	first	starts
the	game.	To	select	AvoiderGameIntroScreen	world	as	our	starting	World,	we	need	to
right-click	on	it	in	the	World	classes	area	and	select	the	new	AvoiderGameIntroScreen()
menu	option	in	the	pop-up	window	that	appears	(see	Figure	20).

Figure	20:	This	is	about	selecting	our	starting	world

Let’s	make	sure	everything	is	hooked	up	correctly.	Compile	and	run	your	Greenfoot
application.	You	should	start	with	the	introduction	screen	you	just	created,	but	can’t	do
much	else.	We’ll	fix	that	now.

Adding	a	“play”	button

We	are	going	to	repeat	exactly	the	same	steps	we	did	in	implementing	the	restarting	of	the
game	from	the	game-over	screen.

Add	the	following	code	to	AvoiderGameIntroScreen:

public	void	act()	{

		//	Start	the	game	if	the	user	clicks	the	mouse	anywhere	

		if(	Greenfoot.mouseClicked(this)	)	{

				AvoiderWorld	world	=	new	AvoiderWorld();

				Greenfoot.setWorld(world);

		}

}

This	code	should	look	very	familiar	to	you.	This	is	exactly	the	same	code	we	added	to	the
AvoiderGameOverWorld	class.

Compile	and	run.	Have	some	fun.	See	how	long	you	can	last!

So	far	so	good,	but	it	is	definitely	missing	some	key	gaming	elements.

Adding	background	music
In	this	part	of	the	tutorial,	you	need	to	search	the	Web	for	a	song	(.mp3)	you	would	like	to
play	during	the	game.

Note



Acquiring	music

Whenever	you	are	adding	assets	(music	or	graphics)	to	your	game,	make	sure	you	do	so
legally.	There	are	many	sites	on	the	Internet	that	offer	free	use	of	the	music	or	pictures
provided.	Never	use	proprietary	music,	and	always	cite	the	sources	from	which	you
acquired	assets.	I	got	the	music	I	added	to	the	game	from	newgrounds.com,	and	I	gave
credit	to	the	author	in	my	code.

We	only	want	the	music	to	play	when	we	start	playing	the	game,	not	during	the
introduction	or	game-over	screens.	Therefore,	we’ll	start	the	music	when	we	display
AvoiderWorld	and	turn	it	off	before	we	display	AvoiderGameOverWorld.	We	only	want	to
start	the	music	once,	so	we	don’t	want	to	add	the	code	to	play	the	music	in	the	act()
method—imagine	the	noise	from	doing	that!	What	we	need	is	a	method	that	is	only	called
once	at	the	creation	of	the	object.	That’s	what	the	constructors	of	a	class	provide.	(If	you
need	to	review	what	a	class	and	an	object	are,	see	the	information	box	in	the	What	have	we
just	done?	section)

Note
What	is	a	constructor?

In	programming	in	Java	(and	other	object-oriented	languages),	we	write	code	in	classes.	A
class	describes	the	methods	and	attributes	of	objects	we	want	to	create	in	our	program.
You	can	think	of	a	class	as	a	blueprint	for	building	objects.	For	example,	our	Enemy	class
describes	the	behavior	and	attributes	of	every	enemy	object	that	appears	in	our	Avoider
Game.	Each	class	has	a	constructor	that	performs	all	initialization	needed	for	each	object
created.	You	can	identify	the	constructor	of	a	class	easily.	Constructors	have	exactly	the
same	name	as	the	class	they	are	in	and	have	no	return	type.	As	a	quick	test,	find	the
constructor	in	our	AvoiderWorld	class.	Found	it?

We	call	the	constructor	every	time	we	create	a	new	object.	In	Greenfoot,	right-click	on	the
Enemy	class	and	you’ll	see	that	the	top-menu	choice	is	new	Enemy().	The	Enemy()	part	is
the	constructor.	The	new	keyword	creates	the	new	object	and	the	Enemy()	initializes	that
new	object.	Got	it?

The	following	are	some	good	resources	you	should	read	to	learn	more	about	constructor
functions:

http://docs.oracle.com/javase/tutorial/java/javaOO/constructors.html

http://java.about.com/od/workingwithobjects/a/constructor.htm

Writing	the	music	code

Now	that	we	know	where	to	put	the	code	(everyone	say	constructor),	we	need	to	know
what	code	to	write.	Greenfoot	provides	a	class	for	playing	and	managing	music	called
GreenfootSound.	This	class	makes	playing	music	really	easy.	Before	I	show	you	the	code
to	put	in	the	constructor,	you	should	take	a	look	at	the	documentation	for	GreenfootSound
and	see	if	you	can	figure	out	what	to	write.

Tip

http://newgrounds.com
http://docs.oracle.com/javase/tutorial/java/javaOO/constructors.html
http://java.about.com/od/workingwithobjects/a/constructor.htm


No,	really!	Go	read	the	documentation!	Trying	to	do	it	on	your	own	will	really	help	you.

Here’s	the	code	you	need	to	add	to	the	constructor	of	AvoiderWorld.

Figure	21:	Here’s	the	constructor	for	AvoiderWorld

Analyzing	the	music	code

Let’s	look	at	every	line	of	code	in	the	AvoiderWorld	constructor.	First,	you	have	the	call	to
the	superclass’s	constructor,	which	is	needed,	as	described	earlier,	to	properly	initialize
your	game	world.	Next,	we	have	this	line:

bkgMusic	=	new	GreenfootSound("sounds/UFO_T-Balt.mp3");

This	creates	a	new	GreenfootSound	object	and	saves	a	reference	to	it	in	the	bkgMusic
variable.	You	need	to	change	the	preceding	code,	so	that	instead	of	sounds/UFO_T-
Balt.mp3,	you	use	a	string	that	gives	the	name	of	the	music	file	you	downloaded	to	play
(you	need	to	save	the	music	in	your	sounds	folder	in	your	Greenfoot	project’s	folder).	We
also	need	to	declare	the	bkgMusic	variable	we	are	using	in	the	constructor.	To	do	that,	you
need	to	add	a	variable	declaration	at	the	top	of	your	class,	as	shown	in	Figure	22.	By
declaring	the	variable	at	the	top	of	your	class,	it	will	be	accessible	to	all	the	methods	in
your	class.	This	will	be	important	when	we	add	code	to	stop	playing	the	music.

Figure	22:	This	shows	the	variable	declaration	for	bkgMusic	in	the	AvoiderWorld	class



The	next	line	of	code	we	have	to	discuss	is	this	one:

bkgMusic.playLoop();

This	line	starts	playing	the	music	and	will	start	it	over	once	it	finishes.	If	we	would	have
only	done	bkgMusic.play(),	then	the	song	would	have	played	through	only	once.

The	last	line	in	the	constructor	is	a	very	important	one,	and	it	was	added	automatically	by
Greenfoot.	Remember	when,	back	in	the	Adding	our	hero	section	of	this	chapter,	I
instructed	you	to	place	an	instance	of	the	Avatar	class	(our	hero)	in	the	center	of	the
screen,	right-click,	and	choose	the	menu	option	Save	the	World?	When	you	did	this,
Greenfoot	created	this	prepare()	method.	If	you	look	at	the	contents	of	this	method,	you
will	see	that	it	contains	the	code	to	create	an	Avatar	object	and	add	it	to	the	screen.	Then,
it	added	the	call	to	use	prepare()	in	the	constructor.	If	you	choose	the	menu	option	Save
the	World	again,	this	prepare()	method	will	be	updated.

OK,	save,	compile,	and	run.	Did	it	work?	If	not,	go	back	and	find	the	typo.

Stop	the	music

If	you	ran	your	code,	you	had	music	during	the	game,	but	it	did	not	turn	off	when	you	died
and	went	to	the	game-over	screen.	We	have	to	explicitly	turn	off	the	music	before
displaying	AvoiderGameOverWorld.	This	is	super	easy!	All	we	need	to	do	is	add	the
following	line	of	code	at	the	beginning	of	the	endGame()	method	you	added	to
AvoiderWorld	earlier:

bkgMusic.stop();

Now,	save,	compile,	and	run.	It	should	all	work	according	to	plan.

Note
Private,	Protected,	and	Public

The	Java	keywords	private,	protected,	and	public	modify	how	a	variable,	method,	or
class	is	accessed	in	Java.	Good	programming	practice	dictates	that	you	make	all	of	your
class	instance	variables	private	and	require	access	to	that	variable	to	only	occur	through
methods.	For	methods,	you	want	to	make	ones	you	only	access	within	the	private	class;
otherwise,	make	it	public.	The	keyword	protected	is	used	to	a	method	available	to
subclasses	of	the	class	but	not	to	external	classes.	For	more	information,	refer	to	the
following	links:

http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
http://www.tutorialspoint.com/java/java_access_modifiers.htm

Your	assignment
Perform	the	following	actions	before	continuing:

Once	the	game-over	screen	is	displayed,	play	music.	Are	you	going	to	make	it	peppy
music	to	lift	the	spirits	of	your	player	or	sad	and	morose	to	really	rub	it	in?	Make	sure

http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
http://www.tutorialspoint.com/java/java_access_modifiers.htm


you	turn	it	off	before	switching	to	AvoiderWorld.
Our	enemy’s	movements	are	pretty	vanilla.	Can	you	spice	it	up?	Some	ideas	are	to
have	the	enemy	characters	have	variable	speed,	drift	left	or	right,	or	enter	from	the
top	or	bottom.	What	will	you	come	up	with?

Remember	to	create	a	backup	copy	of	AvoiderGame	before	trying	these	challenges.

Next…
Almost	done!	We	have	built	the	basics	of	our	game	and	will	next	add	some	things	to	make
it	challenging.



Enhancing	playability
In	the	final	section	of	this	chapter,	we	will	add	code	to	increase	the	game’s	playability.
First,	we	will	add	a	score.	Next,	we	need	to	increase	the	challenge	of	the	game	over	time.
As	the	player	gets	better	at	the	game,	we	want	to	ramp	up	the	challenge;	we	will	add	a
leveling	system	to	do	this.

Game	scoring
Our	game	is	evolving;	however,	we	need	a	way	to	judge	how	well	we	are	doing	in	the
game.	There	are	many	ways	to	judge	game	performance,	for	example,	levels	completed,
time,	progression,	and	so	on—but	the	most	common	method	is	to	assign	the	player	a
score.	We	are	going	to	add	a	scoring	system	to	the	game	that	rewards	players	for	the
number	of	enemies	they	avoid.

Adding	the	Counter	class

Keeping	a	count	of	things	and	displaying	that	count	is	so	common	in	games	that	Greenfoot
provides	you	with	a	Counter	class.	To	get	access	to	this	class,	you	need	to	import	it	into
your	scenario.	To	do	this,	select	Edit	in	Greenfoot’s	main	menu,	and	then	select	the
Import	Class…	submenu	choice.	You	will	see	a	window,	like	the	one	shown	in	Figure	23.
Make	sure	the	Counter	box	is	selected	on	the	left-hand	side	and	then	click	on	the	Import
button.



Figure	23:	Here’s	Greenfoot’s	Import	Class	window

This	will	add	the	Counter	class	to	your	list	of	Actor	classes	available	for	use	in	our	game
as	shown	in	Figure	24.

Figure	24:	The	Actor	classes	section	of	your	scenario	window	now	includes	the	Counter
class

We	want	the	score	to	appear	immediately	in	the	game.	In	tutorial	4
(http://www.greenfoot.org/doc/tut-4)	on	the	Greenfoot	site,	you	were	introduced	to
“Saving	the	World”	to	have	the	World	class	automatically	place	Actor	in	your	world.	I’m

http://www.greenfoot.org/doc/tut-4


going	to	describe	how	to	place	Actor	in	your	world	manually;	specifically,	you	are	going
to	add	an	instance	of	the	Counter	class	to	your	AvoiderWorld	world.

We	discussed	that	Greenfoot	already	added	the	call	to	the	prepare()	method	in	your
AvoiderWorld()	constructor.	Locate	the	definition	of	this	method	in	the	AvoiderWorld
class.	Change	this	method	to	look	like	the	following	code:

private	void	prepare()	{

		Avatar	avatar	=	new	Avatar();

		addObject(avatar,	287,	232);

		scoreBoard	=	new	Counter("Score:	");

		addObject(scoreBoard,	70,	20);

}

The	first	two	lines	of	this	method	were	already	present.	The	last	two	lines	put	a	score
display	on	our	game	screen.	The	scoreBoard	=	new	Counter("Score:	");	code	creates
a	new	Counter	object	with	a	label	Score:	and	stores	a	reference	to	it	in	the	scoreBoard
variable	(we	haven’t	declared	this	variable	yet,	but	will	soon.)	The	next	line	of	code	adds
our	Counter	to	the	upper-left	corner	of	our	game	screen.

Lastly,	we	need	to	declare	the	scoreBoard	variable	at	the	top	of	our	class.	Add	private
Counter	scoreBoard;	above	the	constructor,	as	shown	in	Figure	25.

Figure	25:	The	declaration	of	the	scoreBoard	variable	in	the	class	AvoiderWorld.

Compile,	run,	and	test	your	scenario.

Increasing	the	score	over	time

We	need	to	do	just	one	more	thing.	We	need	to	call	setValue()	on	our	scoreBoard
variable	to	increase	our	score	over	time.	One	place	we	could	do	this	is	where	we	create	the
enemies	in	AvoiderWorld.	The	thinking,	is	that	you	get	some	points	for	every	enemy
created,	because	you	will	ultimately	have	to	avoid	it.	Here’s	how	you	should	change	the
act()	method	in	AvoiderWorld:

public	void	act()	{

		//	Randomly	add	enemies	to	the	world

		if(	Greenfoot.getRandomNumber(1000)	<	20)	{

				Enemy	e	=	new	Enemy();



				addObject(	e,	Greenfoot.getRandomNumber(getWidth()-20)+10,	-30);

				//	Give	us	some	points	for	facing	yet	another	enemy

				scoreBoard.setValue(scoreBoard.getValue()	+	1);

		}

}

The	only	thing	I	changed	was	adding	the	comment	about	points	and	adding	the	call	to
setValue()	on	scoreBoard.	This	line	of	code	retrieves	the	current	score	using
getValue(),	adds	1	to	it,	and	then	sets	the	new	value	using	setValue().	The	typical	usage
of	the	Counter	class	is	also	provided	in	a	comment	at	the	top	of	the	Counter	class.	Check
it	out!

Compile	your	AvoiderGame	scenario	and	try	it	out.	Are	you	getting	an	increased	score?

Adding	levels
Our	game	isn’t	very	challenging	at	this	point.	One	thing	we	could	do,	is	make	the	game
become	more	challenging	over	time.	To	do	this,	we	are	going	to	add	the	notion	of	levels	to
Avoider	Game.	We	are	going	to	increase	the	challenge	of	the	game	by	periodically
increasing	the	rate	at	which	enemies	spawn	and	the	speed	at	which	they	travel.

Increasing	spawn	rates	and	enemy	speed

In	AvoiderWorld,	add	two	variables,	enemySpawnRate	and	enemySpeed,	and	give	them
initial	values;	we	will	use	these	two	variables	to	increase	difficulty.	The	top	of	your
AvoiderWorld	class	should	look	like	Figure	26.

Figure	26:	This	shows	the	variables	in	AvoiderWorld

Increasing	difficulty	based	on	the	score

Next,	we	need	to	add	a	method	that	increases	the	difficulty	of	the	game	based	on	the
player’s	score.	To	do	this,	we	need	to	add	the	following	method	to	AvoiderWorld:

private	void	increaseLevel()	{

		int	score	=	scoreBoard.getValue();

		if(	score	>	nextLevel	)	{

				enemySpawnRate	+=	2;

				enemySpeed++;

				nextLevel	+=	100;

		}

}



We	introduced	a	new	variable,	nextLevel,	in	increaseLevel(),	and	we	need	to	add	its
declaration	at	the	top	of	the	AvoiderWorld	class.	Here	is	the	declaration	you	need	to	add
next	to	the	variable	declarations	of	enemySpawnRate	and	enemySpeed:

private	int	nextLevel	=	100;

As	evident	from	the	code	in	increaseLevel(),	we	increase	both	enemySpawnRate	and
enemySpeed	as	the	player’s	score	increases.	The	last	thing	we	need	to	do	is	use	the
enemySpawnRate	and	enemySpeed	variables	in	the	creation	of	enemies	and	call
increaseLevel()	from	the	act()	method	in	AvoiderWorld.	Here	is	the	new	act()
method:

public	void	act()	{

		//	Randomly	add	enemies	to	the	world

		if(	Greenfoot.getRandomNumber(1000)	<	enemySpawnRate)	{

				Enemy	e	=	new	Enemy();

				e.setSpeed(enemySpeed);

				addObject(	e,	Greenfoot.getRandomNumber(getWidth()-20)+10,	-30);

				//	Give	us	some	points	for	facing	yet	another	enemy

				scoreBoard.setValue(scoreBoard.getValue()	+	1);

		}

		increaseLevel();

}

Implementing	enemy	speed	increases

I’d	love	to	yell	compile	and	run!	at	this	point,	but	there	is	one	last	detail.	In	the	act()
method,	we	use	the	line	e.setSpeed(enemySpeed);	to	change	the	speed	of	the	enemy;
however,	we	never	have	implemented	that	method	in	the	Enemy	class.	In	addition,	we	need
to	change	the	Enemy	class	a	bit	to	use	the	newly	set	speed.

Figure	27	gives	the	complete	code	for	the	Enemy	class.



Figure	27:	This	shows	the	finished	Enemy	class

As	you	can	see,	we	made	some	really	simple	changes	to	the	Enemy	class.	We	added	the
setSpeed()	method,	which	simply	accepts	an	integer	parameter	and	uses	that	value	to	set
the	speed	variable	that	has	been	declared	at	the	top	of	the	class.	In	the	act()	method,	we
use	the	value	of	the	speed	variable	in	the	setLocation()	call;	we	continually	add	speed
to	the	current	y	coordinate.

Compile	and	run	and	enjoy	your	new	game!

Your	assignment
Since	this	is	the	end	of	the	Avoider	Game	instruction.	I’m	going	to	give	you	a	few
challenge	assignments.	Good	luck!	Try	to	implement	the	following:

Once	the	player’s	score	is	above	600,	add	a	new	enemy	that	spawns	in	addition	to	the
enemies	we	have	now.	The	new	enemy	should	visually	be	very	distinct	from	our
existing	enemies.	If	you	are	feeling	up	to	it,	have	the	new	enemy	move	differently
from	the	existing	enemies	too.
Periodically,	spawn	a	power-up	that	gives	our	hero	a	special	ability.	For	example,	the
power-up	could	make	our	hero	temporarily	invincible,	allow	our	hero	to	kill	three
enemies,	or	shrink	the	size	of	the	avatar	making	it	easier	to	avoid	enemies.



Display	the	player’s	final	score	on	the	game-over	screen.

These	challenges	will	definitely	take	some	time	and	you	should	not	feel	compelled	to	try
them.	I	just	wanted	to	give	those	who	are	really	interested	a	way	to	continue	working	on
the	Avoider	Game.	You	will	not	need	to	have	completed	these	challenges	to	move	on	to
the	next	chapter.

Next…
Congratulations!	You	did	it!	Have	fun.	Play	your	new	game.





Summary
This	chapter	demonstrated	how	to	make	a	fun	and	engaging	game.	We	have	mouse
control,	a	hero,	enemies,	a	score,	and	introduction	and	game-over	screens.

As	this	book	assumes	you	have	some	experience	working	in	Greenfoot,	this	chapter	also
served	the	purpose	of	refreshing	your	memory	of	how	to	program	in	Greenfoot.

In	the	upcoming	chapters,	we’ll	look	at	advanced	programming	concepts	in	Greenfoot	that
will	allow	you	to	create	fun,	innovative,	and	engaging	applications.	These	chapters	will
assume	that	you	have	mastered	the	material	in	this	one.





Chapter	2.	Animation
	 “Study	without	desire	spoils	the	memory,	and	it	retains	nothing	that	it	takes	in.” 	

	 —Leonardo	da	Vinci

It	is	fairly	simple	to	move	actors	around	in	Greenfoot	scenarios	by	handling	keyboard	or
mouse	events	and	using	setLocation()	appropriately.	However,	we	can	do	better.	By
animating	our	actors	further,	we	can	breath	life	into	them.	We	can	give	our	players/users
the	illusion	of	a	vibrant,	living	world.

In	essence,	programming	animation	is	the	art	of	illusion.	By	adding	small	movements	or
image	changes	at	the	right	time,	we	beguile	our	users	into	believing	our	creations	are	more
than	just	static	pixels	on	a	screen.	In	this	chapter,	you	will	learn	the	following	techniques
for	animating	Greenfoot	actors:

Image	swapping	and	movement
Timing	and	synchronization
Easing

Greenfoot	is	a	wonderful	platform	for	creating	interactive	and	engaging	applications	that
you	can	share	on	the	Internet	or	use	as	a	desktop	application.	It	is	your	desire	to	create
these	types	of	applications	that	brought	you	here,	and,	according	to	Leonardo	da	Vinci,	it
is	that	desire	that	will	help	you	retain	the	information	in	this	book	indefinitely.



Revisiting	Avoider	Game
In	this	chapter,	we	are	going	to	continue	to	work	on	Avoider	Game,	which	we	created	in
Chapter	1,	Let’s	Dive	Right	in….	If	you	skipped	that	chapter,	or	just	prefer	to	start	off	with
a	fresh	copy,	you	can	download	the	code	for	this	game	from	this	book’s	product	page	on
the	Packt	Publishing	website	at	http://www.packtpub.com/support.	Any	concepts	I	gloss
over	in	this	chapter	were	most	likely	covered	in	detail	in	the	previous	chapter;	be	sure	to
refer	to	that	chapter	as	needed.	Now,	open	the	AvoiderGame	scenario	in	Greenfoot	and
read	on.

http://www.packtpub.com/support




Image	swapping	and	movement
Image	swapping	is	the	age-old	technique	for	animating.	Perhaps	as	a	child,	you	drew	a
stick	figure	in	the	corner	of	a	pad	of	paper	and	slightly	changed	it	on	every	succeeding
page.	When	you	rapidly	flipped	through	the	pages,	your	stick	figure	came	to	life.	Figure	2
shows	my	attempt	at	this	type	of	animation.

Figure	1:	This	shows	old-school	stick	figure	animation

In	Greenfoot,	we	are	going	to	animate	actors	by	rapidly	switching	between	images	and
achieve	the	same	effect	as	the	paper	animation	shown	in	Figure	1.	We	will	learn	how	to
use	Greenfoot’s	setImage()	method	to	do	this.



Using	setImage()
When	we	create	a	new	Actor	in	Greenfoot	by	subclassing	from	the	Actor	class,	or	one	of
our	subclasses	of	Actor,	Greenfoot	prompts	us	to	enter	in	the	name	of	our	new	class	and
to	select	an	image	for	it.	Greenfoot	also	allows	us	to	dynamically	set	the	image	of	our
Actor	objects	while	the	scenario	is	running,	using	the	method	setImage()provided	by
Greenfoot’s	Actor	class.	The	following	is	an	excerpt	from	Greenfoot’s	documentation:

public	void	setImage(java.lang.String	filename)

throws	java.lang.IllegalArgumentException

Set	an	image	for	this	actor	from	an	image	file.	The	file	may	be	in	jpeg,	

gif	or	png	format.	The	file	should	be	located	in	the	project	directory.

Parameters:

filename	-	The	name	of	the	image	file.

As	you	can	see,	setImage()	allows	us	to	set	an	image	of	an	actor	by	specifying	the	path	to
any	JPEG,	GIF,	or	PNG	file.	By	default,	Greenfoot	looks	in	the	images	folder	contained	in
your	Greenfoot	project.	You	should	place	all	images	you	are	going	to	use	in	your	scenario
in	this	folder.

Let’s	use	this	method	to	animate	the	enemies	in	Avoider	Game.

Making	enemies	less	happy
The	enemies	in	Avoider	Game	are	just	too	happy.	Let’s	animate	them	to	get	sad	and
disappointed,	as	they	realize	that	our	hero	is	going	to	avoid	them.

Finding	assets

The	first	thing	we	need	to	do,	is	to	find	a	set	of	appropriate	smiley	images	that	we	can
switch	to	for	our	Enemy	actor	in	our	scenario.	Often,	you’ll	need	to	create	your	own	image
assets	using	Greenfoot’s	built-in	image	editor,	or	tools	such	as	GIMP	or	Adobe	Illustrator,
or	you	could	download	images	from	the	Internet;	there	are	plenty	of	free	images	available.
Luckily,	the	default	installation	of	Greenfoot	already	contains	all	the	images	we	need.	On
OSX,	the	images	are	in	the	following	folder:

/Applications/Greenfoot	2.3.0/Greenfoot.app/Contents	

/Resources/Java/greenfoot/imagelib/symbols

On	Windows,	the	images	are	in	the	following	folder:

C:/Program	Files/Greenfoot/lib/greenfoot/imagelib/symbols

For	your	convenience,	I	have	made	all	the	smiley	images	available	in	this	book’s	file
repository	on	the	Packt	Publishing	website	at
https://www.packtpub.com/sites/default/files/downloads/0383OS_ColoredImages.pdf.

You’ll	need	to	place	the	files	smiley1.png,	smiley3.png,	smiley4.png,	and	smiley5.png
into	the	images	folder	in	your	AvoiderGame	directory.	After	doing	this,	your	images	folder
should	contain	the	files	shown	in	Figure	2.

https://www.packtpub.com/sites/default/files/downloads/0383OS_ColoredImages.pdf


Figure	2:	These	are	the	contents	of	the	images	folder	in	your	AvoiderGame	project.

Now	that	we	have	our	images	available	to	us,	we	can	start	coding.

Tip
Notice	that	once	you	set	an	actor’s	image	to	one	provided	by	Greenfoot	at	creation	time,
such	as	skull.png	in	Figure	2,	Greenfoot	automatically	places	the	image	in	your	images
folder.	So,	instead	of	copying	the	smiley	images	from	their	location	on	the	disk,	you	could
have	created	a	new	actor	and	then	set	the	image	of	this	actor	to	be	each	of	the	smiley	faces
in	turn.	Then,	you	could	just	delete	this	new	actor.	You	will	see	that	your	images	folder
will	look	like	that	shown	in	Figure	2.

Calling	setImage()	based	on	Actor	location

Double-click	on	the	Enemy	actor	in	the	Actor	classes	section	of	Greenfoot’s	main	scenario
window	to	begin	editing	the	Enemy	code.	We	practice	good	functional	decomposition	and
simply	add	a	call	to	changeDispositon()	in	the	act()	method	of	Enemy;	we	will	write
that	method	soon.	Your	act()	method	should	now	look	like	this:

public	void	act()	{

		setLocation(getX(),	getY()	+	speed);

		changeDisposition();

		checkRemove();

}

Now,	we	will	implement	the	changeDisposition()	method.	In	this	method,	we	want	to
change	the	disposition	of	the	enemies,	as	they	slowly	realize	they	will	not	get	the	hero.
Let’s	presume	our	enemies	remain	optimistic	until	they	reach	the	middle	of	the	screen.
After	that,	we	will	slowly	have	them	succumb	to	despair.

In	the	implementation	of	changeDisposition(),	we	are	going	to	use	an	instance	variable
to	keep	track	of	what	image	we	need	to	display	next.	You	need	to	add	this	variable
declaration	and	initialization	right	below	the	declaration	of	the	speed	instance	variable	(at
the	top	of	the	class	outside	of	any	method):

private	int	timeToChange	=	1;

With	that	in	place,	we	can	now	view	the	implementation	of	changeDisposition().	The
following	is	our	code:

private	void	changeDisposition()	{



		int	ypos	=	getY();

		int	worldHeight	=	getWorld().getHeight();

		int	marker1	=	(int)	(worldHeight	*	0.5);

		int	marker2	=	(int)	(worldHeight	*	0.75);

		int	marker3	=	(int)	(worldHeight	*	0.90);

		if(	timeToChange	==	1	&&	ypos	>	marker1)	{

				setImage("smiley4.png");

				timeToChange++;

		}

		else	if(	timeToChange	==	2	&&	ypos	>	marker2)	{

				setImage("smiley3.png");

				timeToChange++;

		}

		else	if(	timeToChange	==	3	&&	ypos	>	marker3)	{

				setImage("smiley5.png");

				timeToChange++;

		}

}

The	logic	behind	this	code	is	simple.	We	want	to	pick	specific	locations	in	the	downward
motion	of	the	enemy	to	change	the	image.	One	complication	is	that	the	enemy’s	speed	can
be	changed	through	the	setSpeed()	method.	We	use	this	method	in	the	AvoiderWorld
class	to	increase	the	speed	of	the	enemy,	so	as	to	increase	the	difficulty	of	the	game.	So,
we	cannot	simply	change	the	image	of	the	enemy	with	code	such	as	if(	ypos	==	300)
because	the	actor	might	never	have	a	y	position	of	exactly	300.	For	example,	if	the
enemy’s	speed	was	7,	then	it	would	have	the	following	y	positions	as	it	went	down:	7,	14,
21,	…,	294,	301,	308,	and	so	on.

As	we	can	see,	the	enemy	never	has	a	y	position	of	exactly	300.	You	might	next	want	to
try	code	such	as	if(	ypos	>	300	);	however,	this	is	suboptimal,	as	this	will	cause	the
image	to	continually	be	set	for	every	y	position	it	has	over	300.	Therefore,	we	should	take
the	approach	demonstrated	in	changeDisposition()	and	use	timeToChange	to	control	a
one-time,	sequential	image	change.

Now	that	we	understand	the	logic	behind	changeDisposition(),	let’s	go	over	it	line	by
line.	The	first	thing	we	do	is	create	variables	to	hold	the	positions	where	we	want	to
change	the	image	of	the	enemy.	These	positions	are	based	on	the	height	of	the	scenario;
marker1	is	at	50	percent	of	this	height,	marker2	is	at	75	percent	of	this	height,	and
marker3	is	at	a	position	slightly	before	the	enemy	exits	off	the	bottom	of	the	screen.	The
if	statements	test	for	two	conditions	before	changing	the	image	of	the	actor.	It	checks	to
see	whether	to	use	timeToChange	to	that	specific	image	and	whether	the	actor	has	passed	a
given	y	position.

Tip
In	the	previous	code,	there	are	lines	that	convert	a	decimal	number	(of	type	double)	into	a
whole	number	(of	type	int),	such	as	this	one:

int	marker1	=	(int)	(worldHeight	*	0.5)

For	more	information	on	converting	one	variable	into	another	(also	called	casting),	refer	to
the	following	link:



http://docs.oracle.com/javase/specs/jls/se7/html/jls-5.html

Compile	your	Greenfoot	scenario	and	play	the	game.	See	if	you	can	get	a	score	greater
than	250!	Full	disclosure:	after	writing	that	last	sentence	I	played	the	game	four	times	in	a
row	and	got	the	following	scores:	52,	33,	28,	254.	Woot!	254!

Note
Functional	decomposition

Functional	decomposition	is	closely	related	to	the	top-down	design,	a	process	of
repeatedly	redefining	the	problem	in	terms	of	smaller,	less	complex	subproblems.	When
you	are	writing	code	for	a	specific	action	or	functionality	in	your	program,	try	to	think	of
smaller	methods	you	could	write	that	you	could	compose	to	solve	the	larger	issue.

Typically,	you	would	like	to	write	methods	that	contain	less	than	40	lines	of	code	and
which	only	implement	one	well-defined	task.	I	actually	prefer	to	go	much	smaller	when
possible.	You’ll	find	code	is	easier	to	write,	debug,	and	modify	if	you	follow	this	practice.
In	this	book,	I	use	functional	decomposition.	You’ll	notice	that	the	act()	methods
throughout	the	book	mainly	contain	a	sequence	of	calls	to	other	methods.

http://docs.oracle.com/javase/specs/jls/se7/html/jls-5.html


Using	setLocation()
The	method	setImage()	is	by	far	the	most	useful	Greenfoot	method	for	animating	actors;
however,	moving	an	actor	in	certain	ways	can	also	produce	interesting	effects.	We	already
use	setLocation()	to	move	both	the	enemies	and	our	hero;	let’s	use	it	now	to	animate	the
background	star	field	to	make	it	seem	like	we	are	flying	through	space.

Creating	a	star	field
Our	star	field	is	going	to	provide	various	sized	stars	moving	in	the	background	at	various
speeds,	to	produce	the	effect	of	moving	through	space	at	high	speed.	Creating	a	star	field
is	very	simple	and	we	have	already	written	very	similar	code.	Imagine	that	our	enemies
had	the	image	of	a	small	speck	of	light,	instead	of	a	smiley	face	and	we	had	many	more	of
them.	Voila!	You	have	a	star	field.

A	blank	slate

If	we	are	going	to	create	our	own	dynamic	star	field,	then	we	no	longer	need	the	current
background	image	associated	with	AvoiderWorld.	However,	if	we	change	this	class	to
have	no	image	associated	with	it,	then	we	will	get	a	white	background—not	a	very	good
representation	of	outer	space.

The	solution	is	to	create	a	new	pure	black,	600	x	400	pixel	image	and	then	select	that	as
the	background	image	for	the	AvoiderWorld	class.	Start	up	your	favorite	image	editor	or
use	Greenfoot’s	built-in	editor,	create	a	big	black	rectangle,	save	it	as	a	PNG	file	in	your
Avoider	project’s	images	folder,	and	then	set	AvoiderWorld	to	use	this	new	image	as	the
background.

The	Star	class

For	our	stars,	we	are	going	to	do	something	a	little	different.	Instead	of	setting	the	image
of	the	star	to	a	file	containing	a	graphic,	we	are	going	to	dynamically	draw	the	image.	This
will	be	easy	to	do	since	a	speck	of	light	is	not	very	complicated.

To	create	our	star	actor,	right-click	on	the	Actor	class	in	the	Actor	classes	section	and
choose	New	subclass….	In	the	New	class	window	that	pops	up,	enter	Star	as	New	class
name	and	choose	No	image	as	New	class	image.

Tip
Remember,	we	went	over	how	to	create	new	actors	in	Chapter	1,	Let’s	Dive	Right	in….

Open	up	a	code	editor	window	for	your	new	Star	class	and	add	the	following	constructor
to	it:

public	Star()	{

		GreenfootImage	img	=	new	GreenfootImage(10,10);

		img.setColor(Color.white);

		img.fillOval(0,0,10,10);

		setImage(img);

}



This	constructor	dynamically	creates	an	image	to	use	for	the	image	of	our	Star	class.
First,	we	create	a	new	image	that	has	a	width	of	10	pixels	and	a	height	of	10	pixels.	Next,
we	set	the	color	to	use	for	any	drawing	we	do	in	this	image.	We	gain	access	to	the	Color
class	(see	the	information	box	below	to	learn	more	about	it)	by	adding	the	following
import	statement	at	the	top	of	our	class	file:

import	java.awt.Color;

After	setting	the	color,	we	draw	an	oval	using	the	fillOval()	method.	The	first	two
parameters	of	fillOval()	specify	the	offset	of	the	upper-left	corner	of	the	shape	we	are
drawing	from	the	offset	of	the	upper-left	corner	of	our	image.	Figure	3	displays	this
mapping.	The	next	two	parameters	of	fillOval()	specify	the	width	and	height	of	the
bounding	box	containing	our	oval.	Since	our	width	and	height	are	the	same,	fillOval()
will	draw	a	circle.	Finally,	we	set	the	image	of	our	actor	to	be	the	new	image	we	just
created.

Figure	3:	This	shows	the	effect	of	using	values	of	8	and	5	for	the	first	two	parameters	of
fillOval()

Note
Working	with	color

In	the	Star()	constructor,	we	do	an	operation	that	involves	color.	There	are	several
different	ways	to	represent	color	on	computers	(and	basically	anything	with	a	screen),	and
we	are	going	to	use	an	RGBA	color	model.	If	you	are	curious,	you	can	read	more	about	it
at	http://en.wikipedia.org/wiki/RGBA_color_space.

Luckily,	we	don’t	have	to	know	much	about	the	theory.	Java	provides	a	class—Color—
that	manages	most	of	the	complexity	for	us.	To	get	this	Color	class	into	your	code,	you
need	to	have	an	import	statement	at	the	top	of	the	file.	The	import	statement	is	import
java.awt.Color;.	If	you	don’t	add	this	to	the	code	above,	you’ll	get	compile	errors.

To	learn	more	about	this	Color	class,	look	at	the	official	documentation	at
http://docs.oracle.com/javase/7/docs/api/java/awt/Color.html.

The	next	thing	to	do	to	our	Star	class,	is	fill	in	the	act()	method.	We	just	need	to	slowly
move	this	actor	down	the	screen	and	then	remove	it	once	it	has	exited	off	the	bottom	of	the
screen.	We	use	setLocation()	to	do	the	former	and	the	checkRemove()	method	to	do	the
latter.	The	following	is	the	completed	code	for	both	act()	and	checkRemove():

http://en.wikipedia.org/wiki/RGBA_color_space
http://docs.oracle.com/javase/7/docs/api/java/awt/Color.html


public	void	act()	{

		setLocation(getX(),	getY()+1);

		checkRemove();

}

private	void	checkRemove()	{

		World	w	=	getWorld();

		if(	getY()	>	w.getHeight()	+	30	)	{

				w.removeObject(this);

		}

}

The	checkRemove()	method	is	exactly	the	same	code	as	the	one	used	in	the	Enemy	class
and	explained	in	Chapter	1,	Let’s	Dive	Right	in….	In	fact,	there	are	many	similarities
between	the	Star	class	and	the	Enemy	class,	so	much	so,	that	I	think	we	should	pre-
emptively	add	the	setSpeed()	method	the	Enemy	has	to	the	Star	class,	as	it	is	very	likely
we	will	need	it	later	in	our	implementation	of	a	moving	star	field.	Add	this	method	to	the
Star	class:

public	void	setSpeed(	int	s)	{

		speed	=	s;

}

Just	as	we	did	in	the	Enemy	class,	we	need	to	add	the	instance	variable	speed	at	the	top	of
the	class.	Here’s	the	code	for	the	variable	declaration:

int	speed	=	1;

We	should	make	one	more	change	in	the	act()	method	to	now	use	the	speed	variable	to
move	Star	objects.	Change	the	setLocation()	code	in	the	act()	method	to	this:

setLocation(getX(),	getY()	+	speed);

The	complete	code	for	the	Star	class	is	shown	in	Figure	4.



Figure	4:	This	shows	the	completed	Star	class	implementation

This	would	be	a	great	time	to	compile	the	scenario	and	make	sure	you	do	not	have	any
spelling	errors.	We	have	not	added	any	stars	to	our	game,	so	you	will	not	notice	any
difference	in	the	game.	Adding	stars	is	what	we	are	going	to	do	next.

Creating	a	moving	field

We	will	generate	our	stars	in	the	AvoiderWorld	class.	Open	the	editor	window	for	this
class	and	add	a	line	of	code	to	the	act()	method	to	call	the	method	generateStars(),
which	we	haven’t	written	yet,	but	will	soon.	Your	act()	method	should	now	look	like	this:

public	void	act()	{

		generateEnemies();

		generateStars();

		increaseLevel();

}

The	generateStars()	method	creates	new	stars	in	a	way	similar	to	how
generateEnemies()	creates	new	enemies.	Here	is	the	code	for	generateStars():

private	void	generateStars()	{

		if(	Greenfoot.getRandomNumber(1000)	<	350)	{



				Star	s	=	new	Star();

				addObject(	s,	Greenfoot.getRandomNumber(getWidth()-20)+10,	-1);

		}

}

The	if	statement	determines	whether	or	not	we	want	to	create	a	star	at	this	point	in	time.
With	a	35	percent	probability,	we	will	create	a	star,	which	ultimately	creates	a	fairly	dense
star	field.	Inside	the	if	statement,	we	create	a	new	Star	object	and	add	it	to	the	World.
Add	this	code	and	compile	and	run	the	game,	and	see	what	you	think.	Do	you	like	the
stars?	They’re	OK,	but	it	looks	a	little	more	like	it’s	raining	golf	balls.	We	can	do	better.

Using	parallax

Parallax	is	the	effect	that	closer	objects	seem	to	be	in	different	positions	relative	to	farther
objects	based	on	the	viewing	angle.	For	example,	if	you	have	ever	looked	out	of	a	car
window	and	watched	trees	go	by,	you’ll	notice	that	the	trees	closer	to	you	seem	to	move
faster	than	the	trees	in	the	background.	We	can	use	this	phenomenon	to	give	the	illusion	of
depth	to	our	star	field.

Let’s	change	our	generateStars()	method	to	create	two	types	of	stars.	Some	will	be	near
and	some	will	be	far.	Nearer	stars	will	move	faster	and	be	brighter	than	stars	that	are
further	away,	but	we	will	generate	more	stars	that	are	far	away.	If	you	imagine	our	screen
as	a	window	out	into	space,	we	will	have	a	wider	view	of	objects	that	are	far	away,	as
opposed	to	close	by.	Therefore,	we	need	more	of	them.	Figure	5	illustrates	this	point.

Figure	5:	This	demonstrates	that	you	have	a	wider	field	of	view	for	objects	that	are	further
away	when	looking	through	a	window

Finally,	we	want	to	add	some	random	variation	in	the	stars,	so	that	the	resulting	star	field
does	not	look	too	uniform.	Here’s	our	parallax-augmented	generateStars()	method:

private	void	generateStars()	{

		if(	Greenfoot.getRandomNumber(1000)	<	350)	{

				Star	s	=	new	Star();

				GreenfootImage	image	=	s.getImage();

				if(	Greenfoot.getRandomNumber(1000)	<	300)	{

						//	this	is	a	close	bright	star

						s.setSpeed(3);

						image.setTransparency(

						Greenfoot.getRandomNumber(25)	+	225);

						image.scale(4,4);

				}	else	{

						//	this	is	a	further	dim	star



						s.setSpeed(2);

						image.setTransparency(

						Greenfoot.getRandomNumber(50)	+	100);

						image.scale(2,2);

				}

				s.setImage(image);

				addObject(	s,	Greenfoot.getRandomNumber(

				getWidth()-20)+10,	-1);

		}

}

We	have	added	accessing	the	current	image	of	the	star,	changing	the	image,	and	then
setting	it	to	be	the	new	image	for	the	star.	The	inner	if-else	statement	handles	the
changes	for	nearby	and	faraway	stars.	With	a	30	percent	chance,	the	star	will	be	a	near
one.	Nearby	stars	are	faster	(setSpeed()),	brighter	(setTransparency()),	and	larger
(scale()).

The	setTransparency()	method	accepts	one	integer	parameter	that	specifies	how	see-
through	the	image	is.	You	would	enter	in	the	value	255	for	a	completely	opaque	object	and
0	for	a	completely	transparent	object.	We	make	stars	that	are	far	away	more	transparent	so
that	more	of	the	black	background	will	come	through	and	make	it	less	bright.	The	scale()
method	on	GreenfootImages	changes	the	size	of	the	image,	so	that	it	fits	into	the
bounding	box	defined	by	the	first	two	parameters	of	this	method.	As	we	can	see	in	the
code,	nearby	stars	are	scaled	to	fit	into	a	4	x	4	pixel	image	and	stars	further	away	are
scaled	to	fit	into	a	2	x	2	pixel	image.

We	are	so	close	to	finishing	our	star	field.	Compile	and	run	the	scenario	and	see	what	you
think	of	it	up	to	now.

The	star	field	is	looking	great,	but	there	are	still	two	problems.	First,	when	the	game	starts,
the	background	is	completely	black,	and	then	stars	start	to	fall.	To	really	keep	the	illusion
that	you	are	in	space,	we	need	the	game	to	start	in	a	field	of	stars.	Second,	the	stars	are
being	generated	over	the	enemies,	our	hero,	and	the	score	counter;	this	really	wrecks	the
illusion	that	they	are	far	away.	Let’s	fix	this.

Solving	the	issue	that	the	stars	are	in	front	of	other	actors	on	the	screen	is	a	one-liner.
Here’s	the	line	of	code	you	need	to	add	to	the	constructor	in	AvoiderWorld:

setPaintOrder(Avatar.class,	Enemy.class,	Counter.class);

The	setPaintOrder()method	is	defined	in	the	World	class	that	AvoiderWorld	subclasses.
This	method	allows	you	set	the	order	of	classes	displayed	on	the	screen.	So,	we	list	the
Avatar	class	first	(it	will	be	at	the	top	of	everything),	then	the	Enemy	class,	and	last	the
Counter	class.	With	this	ordering,	for	example,	our	enemies	will	be	displayed	above	the
score.	Any	class	not	listed	will	be	drawn	behind	all	the	ones	listed;	therefore,	our	stars	will
be	behind	all	actors	on	the	screen.

Drawing	the	initial	field	of	stars	is	easy	if	we	make	a	small	change	to	the
generateStars()	method.	Presently,	our	stars	are	hardcoded	to	start	with	a	y	coordinate
of	-1	because	of	this	line:



addObject(	s,	Greenfoot.getRandomNumber(getWidth()-20)+10,	-1);

If	we	change	generateStars()	to	take	one	integer	parameter	that	specifies	the	y	value	to
draw	the	star	at,	then	we	can	use	this	method	to	create	the	initial	star	field.	Take	the	first
line	of	generateStars():

private	void	generateStars()	{

Change	it	to	this:

private	void	generateStars(int	yLoc)	{

Take	the	last	line	of	the	method:

addObject(	s,	Greenfoot.getRandomNumber(getWidth()-20)+10,	-1);

Change	it	to	this:

addObject(	s,	Greenfoot.getRandomNumber(getWidth()-20)+10,	yLoc);

These	two	line	changes	allow	us	to	specify	any	starting	y	value	for	our	stars.	Because	of
this	change,	we	need	to	change	the	call	to	generateStars()	in	our	act()	method	to	the
following	line	of	code:

generateStars(-1);

If	you	compile	and	run	the	scenario,	the	only	difference	you	should	see	is	that	the	stars	are
now	truly	in	the	background.	We	still	need	to	add	one	simple	method	definition	and	call	to
draw	the	initial	star	field.	The	method	definition	is	as	follows:

private	void	generateInitialStarField()	{

		for(	int	i=0;	i<getHeight();	i++	)	{

				generateStars(i);

		}

}

If	the	height	of	our	game	is	four	hundred,	then	this	method	calls	generateStars()	four
hundred	times.	Each	time,	it	supplies	a	different	y	value	to	draw	stars	on.	We	will	fill	up
the	screen	with	stars	by	adding	this	line	to	our	constructor:

generateInitialStarField();

We	have	made	a	lot	of	changes	to	the	AvoiderWorld	class	definition,	making	it
increasingly	likely	that	you	may	have	put	code	in	the	wrong	place.	Here	is	the	full	listing
of	the	AvoiderWorld	class	you	can	use	to	check	your	code	against:

import	greenfoot.*;

public	class	AvoiderWorld	extends	World	{

		private	GreenfootSound	bkgMusic;

		private	Counter	scoreBoard;

		private	int	enemySpawnRate	=	20;

		private	int	enemySpeed	=	1;

		private	int	nextLevel	=	100;

		

		public	AvoiderWorld()	{



				super(600,	400,	1,	false);

				bkgMusic	=	new	GreenfootSound("sounds/UFO_T-Balt.mp3")

				//	Music	Credit:

				//	 http://www.newgrounds.com/audio/listen/504436	by	T-balt

				bkgMusic.playLoop();

				setPaintOrder(Avatar.class,	Enemy.class,	Counter.class);

				prepare();

				generateInitialStarField();

		}

		

		public	void	act()	{

				generateEnemies();

				generateStars(-1);

				increaseLevel();

		}

		

		private	void	generateEnemies()	{

				if(	Greenfoot.getRandomNumber(1000)	<	enemySpawnRate)	{

						Enemy	e	=	new	Enemy();

						e.setSpeed(enemySpeed);

						addObject(	e,	Greenfoot.getRandomNumber(

						getWidth()-20)+10,	-30);

						scoreBoard.setValue(scoreBoard.getValue()	+	1);

				}

		}

		

		private	void	generateStars(int	yLoc)	{

				if(	Greenfoot.getRandomNumber(1000)	<	350)	{

						Star	s	=	new	Star();

						GreenfootImage	image	=	s.getImage();

						if(	Greenfoot.getRandomNumber(1000)	<	300)	{

								//	this	is	a	close	bright	star

								s.setSpeed(3);

								image.setTransparency(

								Greenfoot.getRandomNumber(25)	+	225);

								image.scale(4,4);

						}	else	{

								//	this	is	a	further	dim	star

								s.setSpeed(2);

								image.setTransparency(

								Greenfoot.getRandomNumber(50)	+	100);

								image.scale(2,2);

						}

						s.setImage(image);

						addObject(	s,	Greenfoot.getRandomNumber(

						getWidth()-20)+10,	yLoc);

				}

		}

		

		private	void	increaseLevel()	{

				int	score	=	scoreBoard.getValue();

				if(	score	>	nextLevel	)	{

						enemySpawnRate	+=	2;

						enemySpeed++;

						nextLevel	+=	100;

				}



		}

		

		public	void	endGame()	{

				bkgMusic.stop();

				AvoiderGameOverWorld	go	=	new	AvoiderGameOverWorld();

				Greenfoot.setWorld(go);

		}

		

		private	void	prepare()	{

				Avatar	avatar	=	new	Avatar();

				addObject(avatar,	287,	232);

				scoreBoard	=	new	Counter("Score:	");

				addObject(scoreBoard,	70,	20);

		}

		

		private	void	generateInitialStarField()	{

				int	i	=	0;

				for(	i=0;	i<getHeight();	i++	)	{

						generateStars(i);

				}

		}

}

Compile	and	run	your	game.	This	is	getting	good.	Your	game	should	look	like	the
screenshot	shown	in	Figure	6A.

Figure	6A:	This	shows	our	game	up	to	now

Using	GreenfootImage

Wait	a	minute.	How	did	I	know	about	Greenfoot’s	GreenfootImage	class	and	the
setColor()	and	fillOval()	methods	it	contains?	The	answer	is	simply	that	I	read	the
documentation.	I	learned	that	Greenfoot	provides	the	class	GreenfootImage	to	aid	in	the
handling	and	manipulation	of	images.	In	general,	Greenfoot	provides	a	useful	set	of
classes	to	help	programmers	create	interactive	applications.	We	learned	about	the	World



class	and	Actor	class	in	Chapter	1,	Let’s	Dive	Right	in….	Figure	6B	displays	all	the	classes
Greenfoot	provides.

Figure	6B:	This	shows	the	classes	provided	by	Greenfoot	to	help	you	write	applications.
This	screenshot	is	taken	directly	from	Greenfoot’s	help	documentation.

You	can	access	Greenfoot’s	documentation	by	going	to	Greenfoot’s	website,	as	I
suggested	in	Chapter	1,	Let’s	Dive	Right	in….	If	you	are	not	online,	you	can	access	the
documentation	by	selecting	the	Help	menu	option	in	Greenfoot’s	main	menu	and	then
selecting	Greenfoot	Class	Documentation	from	the	drop-down	menu.	This	will	bring	up
Greenfoot’s	class	documentation	in	your	default	web	browser.

Tip
Greenfoot’s	class	documentation	is	very	short	and	concise.	You	should	take	20–30
minutes	to	read	about	each	class	Greenfoot	provides	and	each	method	contained	in	those
classes.	This	will	be	a	very	good	investment	of	your	time.





Timing	and	synchronization
Timing	is	very	important	in	creating	realistic	animations	in	Greenfoot.	Often,	we	have	the
need	for	an	actor	to	do	temporary	animation	in	response	to	an	event.	We	need	a	way	to
allow	(or	prevent)	things	for	a	certain	amount	of	time.	It	is	possible	to	wait	for	a	specific
amount	of	time	using	the	SimpleTimer	class	provided	by	Greenfoot	(you	can	import	it	into
your	scenario	in	the	same	way	you	imported	the	Counter	class	in	Chapter	1,	Let’s	Dive
Right	in…);	however,	waiting	for	a	specific	amount	of	time	is	rarely	the	right	choice.

Why	is	that?	Well,	Greenfoot	provides	the	player/user	with	the	ability	to	slow	down	and
speed	up	a	scenario	via	the	Speed	slider	that	is	located	at	the	bottom	of	Greenfoot’s	main
scenario	window.	If	you	waited	for	2	seconds	in	your	code	and	then	the	player	sped	the
game	up,	the	2	seconds	wait	would	last	much	longer	in	the	game	relative	to	the	speed	of
everything	else;	the	reverse	effect	would	happen	if	the	user	slowed	down	the	scenario.	We
want	to	use	a	method	for	“waiting”	in	Greenfoot	that	scales	with	the	speed	of	the	game.

We	will	look	at	three	different	ways	to	time	events	in	Greenfoot:	delay	variables,	random
actions,	and	triggered	events.



Delay	variables
Delay	variables	are	very	similar	to	the	concept	of	a	timer.	However,	instead	of	counting
seconds	(or	milliseconds),	we	will	count	the	number	of	calls	to	the	act()	method	that
have	gone	by.	This	will	exactly	scale	with	the	Speed	slider,	as	this	slider	controls	the	time
between	act()	method	calls.	Next,	we	will	take	a	look	at	an	example	of	using	a	delay
variable.

Hurting	the	avatar
Our	game	is	a	little	unforgiving.	If	you	touch	an	enemy	once,	you	die.	Let’s	change	the
game,	so	that	you	take	damage	for	every	hit	and	it	takes	four	hits	to	kill	our	hero.	The	first
thing	we	need	to	do,	is	create	an	instance	variable	that	is	going	to	keep	track	of	the	health
of	our	hero.	Add	this	instance	variable	to	the	top	of	the	Avatar	class	outside	of	any
method:

private	int	health	=	3;

Every	time	our	hero	touches	an	enemy,	we	are	going	to	subtract	one	from	this	variable.
When	this	variable	is	0,	we	will	end	the	game.

When	our	hero	is	hit	by	an	enemy,	we	want	to	provide	visual	feedback	to	the	player.	We
could	do	this	with	a	health	bar	or	life	indicator	at	the	top	of	the	game;	however,	let’s	just
animate	our	hero	so	that	it	looks	injured.	To	do	this,	we	need	to	create	copies	of	the
skull.png	image	that	is	used	to	represent	an	instance	of	the	Avatar	class	and	augment
them	to	look	damaged.	You	can	make	the	changes	using	an	image	editor,	such	as	GIMP,
Adobe	Illustrator,	or	others.	Figure	7	shows	my	versions	of	the	damaged	skull.png
image.	Make	sure	you	name	your	skull	images	exactly	the	way	I	did.	The	first	image
skull.png	is	already	in	the	images	folder;	the	other	three	need	to	be	named	skull1.png,
skull2.png,	and	skull3.png.	The	reason	why	it	is	so	important	to	name	them	in	this
manner	will	become	apparent	soon.

Figure	7:	These	are	my	four	copies	of	skull.png	showing	increased	damage.	They	are
named	skull.png,	skull1.png,	skull2.png,	and	skull3.png,	respectively.

Presently,	our	act()	method	in	the	Avatar	class	looks	like	the	following	code	snippet:

public	void	act()	{

		followMouse();

		checkForCollisions();

}

We	are	going	to	change	the	implementation	of	checkForCollisions()	to	handle	our	hero
having	life	and	looking	damaged.	It	presently	looks	like	the	following	code	snippet:



private	void	checkForCollisions()	{

		Actor	enemy	=	getOneIntersectingObject(Enemy.class);

		if(	enemy	!=	null	)	{

				getWorld().removeObject(this);

				Greenfoot.stop();

		}

}

We	need	to	change	it	to	this:

private	void	checkForCollisions()	{

		Actor	enemy	=	getOneIntersectingObject(Enemy.class);

		if(	hitDelay	==	0	&&	enemy	!=	null	)	{

				if(	health	==	0	)	{

						AvoiderWorld	world	=	(AvoiderWorld)	getWorld();

						world.endGame();

				}

				else	{

						health--;

						setImage("skull"	+	++nextImage	+	".png"););

						hitDelay	=	50;

				}

		}

		if(	hitDelay	>	0	)	hitDelay--;

}

As	we	can	see,	we	added	quite	a	bit	of	code.	The	first	if	statement	checks	the	two
conditions	that	need	to	be	true	before	we	take	damage	from	an	enemy:	firstly,	that	enough
time	has	passed	since	the	last	time	we	took	damage	from	an	enemy,	and	secondly,	that	we
are	presently	touching	an	instance	of	the	Enemy	class.	When	the	hero	touches	an	enemy
and	takes	damage,	we	want	to	give	our	hero	a	short	time	of	invulnerability	in	order	to
move	away,	without	continuing	to	take	damage	every	time	the	act()	method	is	called.	If
we	didn’t	do	this,	the	hero	would	take	four	hits	before	you	could	blink	your	eye.	We	use
the	hitDelay	integer	variable	to	count	how	long	to	wait.	If	we	have	been	hit,	we	set
hitDelay	to	50,	as	shown	in	the	else	part	of	the	inner	if-else	statement.	The	last	if
statement	in	the	function	continues	to	decrement	hitDelay.	When	hitDelay	gets	to	0,	we
can	be	hit	by	an	enemy	and	no	longer	decrement	hitDelay.

Note
Java	increment	and	decrement	operators

In	the	last	bit	of	code,	we	used	Java’s	increment	(++)	and	decrement	(--)	operators	quite	a
bit.	They	simply	add	one	or	subtract	one,	respectively,	from	the	variable	they	are	applied
to.	However,	there	is	a	bit	of	subtlety	you	need	to	be	aware	of	in	their	use.	Look	at	the
following	code:

int	x	=	0,	y=0,	z=0;

y	=	++x;

z	=	x++;

Notice	that	the	increment	operator	can	be	applied	before	(prefix)	or	after	(postfix)	the
variable.	After	this	code	completes,	x	is	2,	y	is	1,	and	z	is	1.	You	might	be	surprised	that	z



is	1	and	not	2.	The	reason	is	that	the	postfix	increment	operator	will	return	the	value	of	the
variable	before	it	is	incremented.	Refer	to	the	following	link	for	more	information:

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/op1.html

In	the	inner	if-else	statement,	we	know	we	have	been	hit	by	an	enemy.	We	check	to	see
if	our	health	is	0;	if	it	is,	we	are	dead,	and	the	game	ends	as	before.	If	we	still	have
health,	we	decrement	our	health,	change	our	image,	and	set	hitDelay.

The	way	we	change	our	image	to	the	next,	more	damaged,	image	is	based	on	how	we
named	the	files	earlier.	We	build	the	name	of	the	file	by	concatenating	the	skull	string
with	an	integer	and	then	again	with	the	.png	string.	This	method	provides	us	with	a	short
and	easy	programmatic	way	of	changing	the	image.	The	alternative	would	be	to	use	a
switch	statement	that	calls	setImage()	with	different	file	names	based	on	the	value	of
health.	In	our	new	version	of	checkForCollisions(),	we	used	two	new	instance
variables;	we	still	need	to	declare	and	initialize	those	variables.	Add	these	lines	at	the	top
of	the	class	under	the	declaration	of	the	health	variable	we	added	at	the	beginning	of	this
section:

private	int	hitDelay	=	0;

private	int	nextImage	=	0;

Now,	compile	your	scenario	and	verify	that	your	hero	takes	four	hits	to	die.

Tip
The	hitDelay	variable	is	a	good	example	of	a	delay	variable.	Throughout	the	rest	of	the
book,	we	will	use	delay	variables	to	time	various	activities.	Make	sure	you	understand
how	we	use	hitDelay	before	continuing.

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/op1.html


Random	actions
Random	actions	are	one	of	the	most	effective	ways	to	approximate	simple	intelligence	or
natural	phenomena.	It	repeats	actions	in	a	non-predictable	way	and	adds	both	suspense
and	challenge	to	a	game.	We	already	randomly	generate	a	flow	of	enemies	our	hero	has	to
avoid.	We	will	now	use	them	to	improve	our	star	field	animation.

Blinking
The	stars	already	look	great	and	provide	a	real	sense	of	movement	in	the	game.	We	are
going	to	enhance	them	by	making	them	twinkle	like	real	stars.	To	do	this,	we	use	the
method	setTransparency()	to	make	the	star	completely	see-through	and	use	a	delay
variable	to	wait	for	a	short	period	of	time	before	making	the	star	opaque	again.	We	will
use	Greenfoot’s	random	number	generator	to	ensure	that	the	stars	twinkle	infrequently.
First,	we	add	a	method	call,	checkTwinkle(),	to	the	act()	method	in	the	Star	class:

public	void	act()	{

		setLocation(getX(),	getY()+speed);

		checkRemove();

		checkTwinkle();

}

We	need	to	add	the	following	delay	variable	and	the	variable	to	hold	the	current
transparency	of	the	object	at	the	top	of	the	class	under	the	declaration	of	the	speed
variable:

int	twinkleTime	=	0;

int	currentTransparency	=	0;

The	following	is	an	implementation	of	checkTwinkle():

private	void	checkTwinkle()	{

		GreenfootImage	img	=	getImage();

		if(	twinkleTime	>	0	)	{

				if(	twinkleTime	==	1)	{

						img.setTransparency(currentTransparency);

				}

				twinkleTime--;

		}	else	{

				if(	Greenfoot.getRandomNumber(10000)	<	10)	{

						twinkleTime	=	10;

						currentTransparency	=	img.getTransparency();

						img.setTransparency(0);

				}

		}

}

Let’s	look	at	the	else	part	of	the	outer	if-else	statement.	With	a	small	random
probability,	we	set	twinkleTime	(our	delay	variable)	to	10,	save	the	current	transparency
of	the	star	so	that	we	can	restore	it	later,	and	then	set	the	transparency	to	0.

The	if	part	of	the	initial	if-else	statement	decrements	twinkleTime	if	it	is	greater	than	0
and	restores	the	transparency	of	our	star	when	twinkleTime	equals	1.	Because



twinkleTime	is	only	set	to	10,	the	star	will	only	be	invisible	for	a	very	short	period	of
time.	This	short	flicker	gives	the	illusion	that	the	star	twinkles.

Compile	and	run	the	scenario	and	see	whether	you	can	catch	a	star	twinkling.	If	you	have
a	hard	time	verifying	this,	change	the	frequency	at	which	the	twinkling	occurs	and	try
again.



Triggered	events
Triggering	a	change	in	an	actor	when	a	certain	event	occurs	is	another	way	to	do
animation.	For	example,	you	might	have	an	enemy	actor	that	will	only	chase	you	when
you	get	within	a	certain	range.	You	might	also	have	an	actor	respond	to	keyboard	events	or
location.

In	this	section,	we	are	going	to	give	our	hero	eyes.	Obviously,	our	hero	is	very	concerned
with	nearby	enemies	and	definitely	wants	to	keep	an	eye	on	them.

Tip
Adding	animated	eyes	to	an	actor	is	a	fantastic	way	to	give	that	actor	personality.	Eyes	are
very	expressive	and	can	easily	portray	excitement,	sadness,	or	fear.	Never	hesitate	to	add
animated	eyes.

Adding	eyes
This	might	seem	a	bit	weird,	but	we	are	going	to	create	a	separate	Eye	actor.	We	are	going
to	do	this	for	a	couple	of	reasons.	First,	to	get	the	eyes	to	look	around	is	going	to	take	a
fair	amount	of	code.	We	can	encapsulate	this	code	in	the	Eye	class	and	keep	our	Avatar
class	more	streamlined.	Second,	having	the	eyes	as	separate	entities	means	we	could	add
them	to	future	actors	and	they	would	still	work	even	if	we	changed	the	image	of	the
Avatar	class.

The	alternative	would	be	to	create	a	skull	image	with	eyes	for	every	direction	we	would
want	to	look.	The	fact	that	we	have	different	images	for	our	hero	to	show	different	levels
of	damage	would	further	complicate	matters.	Therefore,	we	are	going	to	create	a	separate
Eye	actor.

Create	a	new	subclass	of	Actor	called	Eye.	Do	not	associate	an	image	with	this	Actor
class.	We	will	dynamically	draw	an	image	of	an	eye	and	redraw	it	appropriately	when	we
need	to	look	in	a	different	direction.	Here	is	the	implementation	of	the	Eye	class:

import	greenfoot.*;	

import	java.awt.Color;

import	java.util.List;

public	class	Eye	extends	Actor	{

		

		public	Eye()	{

				drawEye(2,2);

		}

		

		public	void	act()	{

				lookAtEnemies();

		}

		

		public	void	lookAtEnemies()	{

				List<Enemy>	eList	=	getObjectsInRange(120,	Enemy.class);

				if(	!eList.isEmpty()	)	{

						Enemy	e	=	eList.get(0);



						if(	e.getX()	<	getX()	)	{

								if(	e.getY()	<	getY()	)	{

										drawEye(1,1);

								}	else	{

										drawEye(1,3);

								}

						}	else	{

								if(	e.getY()	<	getY()	)	{

										drawEye(3,1);

								}	else	{

										drawEye(3,3);

								}

						}

				}

		}

		

		private	void	drawEye(int	dx,	int	dy)	{

				GreenfootImage	img	=	new	GreenfootImage(10,10);

				img.setColor(Color.white);

				img.fillOval(0,0,10,10);

				img.setColor(Color.black);

				img.fillOval(dx,dy,6,6);

				setImage(img);

		}

}

The	two	main	methods	of	this	class	are	the	drawEye()	method	and	the	lookAtEnemies()
method.	The	drawEye()	image	uses	the	same	methods	to	draw	an	eye	that	we	used	to	draw
the	image	of	a	star	in	the	Star	class.	For	an	eye,	we	just	need	to	draw	one	additional	black
circle	to	serve	as	the	iris.	The	method	drawEye()	takes	two	integer	parameters	that	provide
the	position	of	the	iris	in	the	eye.	This	offset	portion	of	fillOval()	was	demonstrated	in
Figure	3.	To	summarize,	the	first	fillOval()	command	draws	the	larger	white	part	of	the
eye,	and	the	second	fillOval()	command	draws	the	small	black	iris	at	a	given	offset	to
simulate	staring	in	a	certain	direction.

The	lookAtEnemies()	method	finds	all	enemies	within	a	given	distance	of	the	eye	and
uses	drawEye()	to	stare	at	the	first	enemy	it	finds.	Using	if	statements	to	compare	the	x
and	y	position	of	the	enemy	with	its	own	position,	the	eye	classifies	the	enemy	as	being	in
one	of	four	quadrants:	upper-left,	lower-left,	upper-right,	and	lower-right.	Using	this
information,	drawEye()	is	called	with	the	integer	parameters	(1,1),	(1,3),	(3,1),	and
(3,3),	respectively.	Figure	8	demonstrates	the	correlation	between	the	quadrant	the
enemy	is	in	and	the	call	to	drawEye().



Figure	8:	This	shows	the	mapping	between	the	position	of	the	enemy	and	the	call	to
drawEye()

In	lookAtEnemies(),	we	used	a	new	collision	detection	method	called
getObjectsInRange().	This	method	differs	from	getOneIntersectingObject()	in	two
ways.	First,	instead	of	using	the	bounding	box	of	the	calling	Actor	class	to	determine
whether	a	collision	occurred,	it	draws	a	circle	around	the	calling	Actor	class	that	has	a
radius	of	the	size	defined	by	the	first	parameter	of	getObjectsInRange().	This	method
returns	all	of	the	enemies	found	in	that	circle,	instead	of	just	one	enemy.	The	enemies	are
returned	in	a	Java	List	array.	At	the	top	of	our	Eye	class,	we	need	to	include	the	code
import	java.util.List;	to	work	with	the	List	data	type.	We	only	have	the	ability	to
stare	at	one	enemy	at	a	time,	so	we	choose	to	stare	at	the	first	enemy	in	this	list	using	the
method	get()	and	passing	it	the	integer	value	0	to	access	it.	Here’s	Greenfoot’s
documentation	on	getObjectsInRange():

protected	java.util.List	getObjectsInRange(int	radius,	java.lang.Class	cls)

The	preceding	line	of	code	returns	all	objects	within	range	radius	around	this	object.	An
object	is	within	range	if	the	distance	between	its	center	and	this	object’s	center	is	less	than,
or	equal	to,	radius.

The	parameters	of	the	the	getObjectsInRange()	methods	are	described	as	follows:

radius:	This	is	the	radius	of	the	circle	(in	cells)
cls:	This	is	the	class	of	objects	to	look	for	(passing	null	will	find	all	objects)

Giving	our	hero	sight
Now	that	we	have	an	Actor	class	called	Eye,	we	just	need	to	make	a	few	modifications	to
the	Avatar	class	in	order	to	add	eyes	to	our	hero.	We	need	to	create	two	eyes,	place	them
on	our	hero,	and	then	we	need	to	make	sure	the	eyes	stay	in	place	every	time	our	hero
moves.	We	start	by	adding	instance	variables	to	the	Avatar	class:

private	Eye	leftEye;

private	Eye	rightEye;

We	then	create	and	place	those	eyes	on	the	skull	image	by	adding	this	method:

protected	void	addedToWorld(World	w)	{

		leftEye	=	new	Eye();

		rightEye	=	new	Eye();

		w.addObject(leftEye,	getX()-10,	getY()-8);

		w.addObject(rightEye,	getX()+10,	getY()-8);

}

Initially,	you	might	think	that	we	could	create	the	eyes	and	add	them	in	the	constructor
method	for	Avatar.	Normally,	this	would	be	an	excellent	location	for	code	that	is	run	once
at	creation	time.	The	problem	is	that	before	we	can	add	the	eyes	to	the	world,	an	instance
of	the	Avatar	class	needs	to	be	in	a	world.	If	we	look	at	the	code	in	AvoiderWorld	that
adds	our	hero,	we	see	this:



Avatar	avatar	=	new	Avatar();

addObject(avatar,	287,	232);

The	creation	of	our	hero	is	a	two-step	process.	First,	an	instance	of	the	Avatar	class	is
created	(the	first	line),	and	then	we	add	this	instance	to	the	world	(the	second	line).	Notice
that	the	constructor	runs	before	that	object	is	placed	in	a	world,	so	we	cannot	access	the
instance	of	the	world	we	are	in	via	the	method	getWorld().	The	developers	of	Greenfoot
recognized	that	some	actors	will	need	to	access	the	world	they	are	in	to	complete	their
initialization,	so	they	added	the	addedToWorld()	method	to	the	Actor	class.	The	Actor
class	overrides	this	method	when	initialization	requires	world	access,	and	it	will	be	called
by	Greenfoot	every	time	an	actor	is	added	to	a	world.	We	use	this	method	in	our	Avatar
class	in	order	to	place	the	eyes	on	our	hero.

We	have	now	created	our	eyes	and	added	them	to	our	hero.	Now,	we	just	need	to	ensure
that	the	eyes	stay	with	our	hero	whenever	it	moves.	To	do	that,	we	add	the	following	lines
to	our	followMouse()	function	in	the	Avatar	class:

leftEye.setLocation(getX()-10,	getY()-8);

rightEye.setLocation(getX()+10,	getY()-8);

The	preceding	code	is	added	after	the	following	line	of	code:

setLocation(mi.getX(),	mi.getY());

Why	do	the	10s	and	8s	in	the	setLocation()	call	leftEye	and	rightEye?	These	are	the
values	that	correctly	place	the	eyes	in	the	sockets	of	our	hero.	I	determined	these	values
through	trial	and	error.	Figure	9	presents	the	details.

Figure	9:	This	shows	how	the	location	of	the	eyes	was	determined

It	is	now	time	to	have	some	fun.	Compile	and	run	your	game	and	enjoy	the	fruits	of	your
labor.	Your	game	should	look	like	the	screenshot	shown	in	Figure	10.



Figure	10:	Our	game	has	animated	enemies,	a	moving	background	star	field	(with
twinkles),	and	a	hero	with	eyes	that	visually	changes	when	hit





Easing
For	our	last	major	section	of	this	chapter,	we	are	going	to	look	at	using	easing	equations	to
move	our	actors	around	in	interesting	ways.	Easing	functions	use	easing	equations	to
calculate	position	as	a	function	of	time.	Just	about	every	animation	you’ve	seen	on	the
web,	your	mobile	device,	or	in	the	movies	uses	easing	at	some	point	in	time.	We	are	going
to	add	three	new	actors	to	our	game	that	move	according	to	three	different	easing
functions:	linear,	exponential,	and	sinusoidal.



Power-ups	and	power-downs
Power-ups	are	an	excellent	way	to	add	new	challenges	and	balance	player	skill.	Power-ups
provide	players	with	momentary	boosts	in	speed,	power,	health,	or	some	other	game-
related	skill.	They	often	appear	randomly	and	might	not	be	in	the	most	convenient
location,	so	they	require	players	to	make	fast,	real-time	decisions	where	they	have	to
weigh	the	risk	of	moving	to	the	power-up	versus	its	beneficial	effects.

Similarly,	we	can	create	randomly	appearing	game	objects	that	negatively	affect	the
player’s	ability	to	do	well.	I	call	these	power-downs.	They	also	require	the	player	to	make
fast,	real-time	decisions,	but	now	they	are	deciding	between	avoiding	them	and	staying	on
their	current	trajectory	and	suffering	the	negative	impact.

We	are	going	to	add	two	new	actors	to	our	game	that	will	be	power-downs	and	one	new
actor	that	will	be	a	power-up.	All	three	of	them	will	use	easing	for	movement.	We	will
first	introduce	a	new	Actor	class	that	will	contain	all	the	common	code	for	easing	and
being	a	power	item	(power-up	or	power-down.)	Our	power-ups	and	power-downs	will
inherit	from	this	class.	It	is	good	object-oriented	programming	practice	to	use	inheritance
and	polymorphism	to	write	concise,	flexible,	and	maintainable	code.

Base	class
Creating	a	well-thought-out	base	class	for	our	power	items	will	provide	the	means	to
easily	create	new	power	items	and	augment	existing	ones	in	the	future.	Before	we	talk
about	the	code	for	our	new	class,	we	need	to	import	a	new	Greenfoot-supplied	class	into
our	project,	in	the	same	way	we	imported	the	Counter	class	in	Chapter	1,	Let’s	Dive	Right
in….	The	class	we	are	going	to	import	is	SmoothMover.	We	need	this	class	as	it	more
accurately	tracks	the	position	of	Actor.	Here’s	an	excerpt	from	its	documentation:

public	abstract	class	SmoothMover	extends	greenfoot.Actor

A	variation	of	an	actor	that	maintains	a	precise	location	(using	doubles	

for	the	co-ordinates	instead	of	ints).	This	allows	small	precise	movements	

(e.g.	movements	of	1	pixel	or	less)	that	do	not	lose	precision.

To	import	this	class,	click	on	Edit	in	Greenfoot’s	main	menu	and	then	click	on	Import
Class…	in	the	drop-down	menu	that	appears.	In	the	Import	Class	window	that	appears
next,	select	SmoothMover	on	the	left-hand	side	and	then	click	on	the	Import	button.

Now	that	we	have	SmoothMover	in	our	project,	we	can	create	the	PowerItems	class.	Right-
click	SmoothMover	and	choose	New	subclass….	You	will	not	need	to	associate	an	image
with	this	class,	so	choose	No	Image	in	the	Scenario	Images	section	in	the	New	class
window.

Let’s	take	a	look	at	the	implementation	of	PowerItems	(our	new	base	class	for	power-ups
and	power-downs):

import	greenfoot.*;

public	abstract	class	PowerItems	extends	SmoothMover

{



		protected	double	targetX,	targetY,	expireTime;

		protected	double	origX,	origY;

		protected	double	duration;

		protected	int	counter;

		

		public	PowerItems(	int	tX,	int	tY,	int	eT	)	{

				targetX	=	tX;

				targetY	=	tY;

				expireTime	=	eT;

				counter	=	0;

				duration	=	expireTime;

		}

		

		protected	void	addedToWorld(World	w)	{

				origX	=	getX();

				origY	=	getY();

		}

		

		public	void	act()	{

				easing();

				checkHitAvatar();

				checkExpire();

		}

		

		protected	abstract	double	curveX(double	f);

		

		protected	abstract	double	curveY(double	f);

		

		protected	abstract	void	checkHitAvatar();

		

		protected	void	easing()	{

				double	fX	=	++counter/duration;

				double	fY	=	counter/duration;

				fX	=	curveX(fX);

				fY	=	curveY(fY);

				setLocation((targetX	*	fX)	+	(origX	*	(1-fX)),

				(targetY	*	fY)	+	(origY	*	(1-fY)));

		}

		

		private	void	checkExpire()	{

				if(	expireTime--	<	0	)	{

						World	w	=	getWorld();

						if(	w	!=	null	)	w.removeObject(this);

				}

		}

}

We	first	need	to	discuss	all	the	instance	variables	of	this	class.	There	are	seven	of	them.
Two	of	them	are	used	to	track	the	starting	coordinates	(origX	and	origY)	and	two	of	them
are	used	to	track	the	ending	coordinates	(targetX	and	targetY).	The	instance	variable
expireTime	specifies	how	many	calls	of	the	act()	method	this	actor	should	execute
before	removing	itself.	In	other	words,	it	specifies	the	lifespan	of	the	actor.	The	duration
instance	variable	simply	saves	the	initial	value	of	expireTime.	The	expireTime	variable	is
continually	decremented	until	it	reaches	a	value	of	0,	but	we	need	to	know	its	original



value	for	our	easing	equations.	The	counter	variable	records	how	many	times	this	actor
has	moved.	Figure	11	shows	these	variables	pictorially.

Figure	11:	This	shows	the	meaning	of	the	instance	variables	in	PowerItems	graphically

The	instance	variables	are	initialized	in	the	constructor	except	for	origX	and	origY,	which
are	initialized	in	the	method	addedToWorld()	(the	purpose	of	this	method	was	discussed
earlier	in	this	chapter),	so	that	we	can	set	them	to	the	current	x	and	y	location	of	the	actor.

Because	of	our	judicious	use	of	functional	decomposition,	the	act()	method	is
straightforward	to	understand.	First,	it	moves	the	actor	by	calling	easing().	Next,
checkHitAvatar()	is	called	to	see	if	it	collided	with	our	hero.	This	method	is	abstract,
which	means	its	implementation	is	left	to	subclasses	of	this	class.	This	is	done	because
each	subclass	will	want	to	apply	its	own	unique	effect	on	our	hero	if	they	did	collide.	Last,
it	checks	to	see	whether	the	act()	method	has	been	called	expireTime	times.	If	so,
PowerItem	has	had	its	desired	lifespan,	and	it’s	time	to	remove	it.	We	will	talk	about	the
specific	implementation	of	easing(),	checkHitAvatar(),	and	checkExpire()	next.

The	easing()	method	is	really	the	key	method	of	this	class.	It	contains	a	generic	form	of
an	easing	equation	that	is	flexible	enough	to	allow	us	to	define	many	different	types	of
interesting	movements.	The	method	moves	the	actor	some	fraction	of	the	way	between	the
starting	point	and	the	endpoint.	It	starts	by	calculating	the	percentage	of	the	distance	we
need	to	travel	at	this	point	in	time	between	the	origin	value	and	the	target	value	in	the	x
direction	and	a	similar	calculation	for	the	y	direction	and	saves	those	values	in	the	local
variables	fX	and	fY,	respectively.	Next,	we	use	the	curveX()	and	curveY()	functions	to
manipulate	these	percentages,	and	then	we	use	those	percentages	in	a	call	to
setLocation().	As	with	checkHitAvatar(),	curveX()	and	curveY()	are	abstract,	as
their	details	depend	on	the	classes	that	subclass	from	PowerItems.	We’ll	discuss	the
abstract	methods	checkHitAvatar(),	curveX(),	and	curveY(),	as	well	as	provide	a
detailed	example	in	the	next	section.

Before	that,	let’s	look	quickly	at	the	last	method	in	the	act()	method	of	PowerItems.	The
last	method,	checkExpire(),	simply	removes	the	actor	when	expireTime	reaches	0.

Note
Abstract	classes

Abstract	classes	are	an	effective	way	to	share	code	and	instance	variables	between	several



related	classes.	In	the	abstract	class,	you	implement	as	much	code	as	you	can	without
needing	specific	knowledge	that	would	be	contained	in	a	child	class	(subclass).	For	us,	the
class	PowerItems	is	an	abstract	class	that	contains	the	code	common	to	all	of	our	power-
ups	and	power-downs.	Visit	http://docs.oracle.com/javase/tutorial/java/IandI/abstract.html
for	more	information	on	abstract	classes.

Linear	easing
The	first	power-down	we	are	going	to	add	to	the	game	is	one	that	temporarily	stuns	our
hero	if	touched.	Keeping	with	our	game’s	motif,	where	good	things	(smiley	faces)	are	bad,
we	will	make	our	new	power-down	look	like	a	cupcake.	To	create	our	new	Actor,	right-
click	PowerItems	in	the	Actor	classes	section	of	Greenfoot’s	main	scenario	window,	and
select	New	subclass…	from	the	menu	that	appears.	Name	the	class	Cupcake	and	choose
the	image	of	the	muffin	(it	looks	like	a	cupcake	to	me!)	located	in	the	food	category.

Open	up	the	Cupcake	class	in	an	editor	window,	and	make	it	look	like	this:

import	greenfoot.*;

public	class	Cupcake	extends	PowerItems

{		

		public	Cupcake(	int	tX,	int	tY,	int	eT)	{

				super(tX,	tY,	eT);

		}

						

		protected	double	curveX(double	f)	{

				return	f;

		}

		protected	double	curveY(double	f)	{

				return	f;

		}

		protected	void	checkHitAvatar()	{

				Avatar	a	=	(Avatar)	getOneIntersectingObject(Avatar.class);

				if(	a	!=	null	)	{

						a.stun();

						getWorld().removeObject(this);

				}

		}

}

Because	we	are	inheriting	from	the	code	from	PowerItems,	Cupcake	is	pretty	short	and
concise.	The	constructor	for	this	class	merely	passes	its	parameters	to	the	constructor	in
PowerItems.	Since	PowerItems	is	an	abstract	class,	we	need	to	implement	the	abstract
methods	in	PowerItems	(curveX(),	curveY(),	and	checkHitAvatar())	here.

The	Cupcake	class	is	going	to	be	our	example	of	linear	easing.	It	will	move	in	constant,
linear	steps	from	the	starting	position	to	the	ending	position.	Because	it	is	linear,	our
curveX()	and	curveY()	methods	are	extremely	simple.	They	don’t	change	the	input
parameter	at	all.

http://docs.oracle.com/javase/tutorial/java/IandI/abstract.html


Figure	12:	This	is	an	example	showing	how	instances	of	the	Cupcake	class	move	linearly
across	the	screen

Let’s	look	at	the	example	shown	in	Figure	12.	In	this	example,	Cupcake	was	called	with
the	target	location	(150,	100)	and	an	expire	time	of	4	and	was	added	to	the	world	at	the
location	(10,10).	Location	(a)	shows	the	initial	values	of	the	object.	Locations	(b),	(c),	(d),
and	(e)	show	the	values	associated	with	the	object	after	one,	two,	three,	and	four	act()
method	calls,	respectively.	As	we	can	see,	this	actor	moves	in	a	straight	line.	To	better
understand	linear	easing,	let’s	discuss	why	the	values	are	as	shown	at	location	(b).	After
initialization	(shown	at	location	(a)),	the	functions	in	the	act()	method	(inherited	from
PowerItems)	are	called.	The	easing()	method	sets	counter	to	1	and	then	sets	fX	and	fY	to
0.25,	as	shown	in	this	code:

double	fX	=	++counter/duration;	//	counter	is	incremented	to	1	

double	fy=	counter/duration;		//	counter	remains	1

The	curveX()	and	curveY()	methods	in	Cupcake	do	not	alter	fX	and	fY.	For	the	given
values,	the	first	parameter	to	setLocation()	has	a	value	of	45	((150	*	0.25)	+	(10	*	0.75))
for	its	first	parameter	and	32.5	((100*0.25)	+	(10	*	0.75))	for	its	second	parameter.

After	easing(),	the	next	method	called	in	the	act()	method	is	checkHitAvatar().	This
method	simply	invokes	the	method	stun()	on	an	instance	of	Avatar	(our	hero)	if	it
collides	with	it.	The	stun()	method	will	be	shown	after	all	the	power-ups	and	power-
downs	have	been	discussed.	At	this	time,	we	will	show	all	the	changes	needed	to	the
Avatar	class.

Exponential	easing
Now	that	we	have	discussed	most	of	the	theory	behind	power-ups	and	power-downs,	we
can	quickly	discuss	the	remaining	ones.	The	next	actor	we	are	going	to	add	is	a	power-up.
It	will	heal	our	hero	from	some	of	the	damage	sustained.	Given	the	motif	of	our	game,	this
beneficial	actor	will	have	to	look	bad.	We	will	make	it	a	rock.

To	create	our	new	Actor	class,	right-click	on	PowerItems	in	the	Actor	classes	section	of
Greenfoot’s	main	scenario	window	and	select	New	subclass…	from	the	menu	that



appears.	Name	the	class	Rock	and	choose	the	image	rock.png	located	in	the	nature
category.

Open	up	the	Rock	class	in	an	editor	window	and	change	it	to	this:

import	greenfoot.*;

public	class	Rock	extends	PowerItems

{

		

		public	Rock(	int	tX,	int	tY,	int	eT	)	{

				super(tX,	tY,	eT);

		}

		

		protected	double	curveX(double	f)	{

				return	f;	

}

		

		protected	double	curveY(double	f)	{

				return	f	*	f	*	f;	

}

		

		protected	void	checkHitAvatar()	{

				Avatar	a	=	(Avatar)	getOneIntersectingObject(Avatar.class);

				if(	a	!=	null	)	{

						a.addHealth();

						getWorld().removeObject(this);

				}

		}

}

The	two	main	differences	between	the	Cupcake	class	and	the	Rock	class	are	the
implementation	of	curveY()	and	the	fact	that	checkHitAvatar()	calls	addHealth()
instead	of	stun().	We	will	describe	addHealth()	later,	as	mentioned	earlier.	The	changes
in	curveY()	give	this	actor	a	curved	directory	by	cubing	the	value	it	is	given.	The	effect	of
this	is	demonstrated	in	the	example	shown	in	Figure	13.	Compare	the	changes	in	the	y
position	for	each	location.	The	y	value	grows	exponentially.	First,	it	only	moves	1.4	pixels
(from	location	(a)	to	location	(b))	and	in	the	end,	jumps	approximately	52	pixels	(from
location	(d)	to	location	(e)).



Figure	13:	This	is	an	example	showing	how	instances	of	the	Rock	class	move
exponentially	in	the	y	direction	across	the	screen

Sinusoidal	easing
The	last	power-down	we	are	adding	is	Clover.	It	will	slow	our	hero	down	for	a	short	time
and	employ	sinusoidal	easing.	To	create	this	class,	right-click	on	PowerItems	in	the	Actor
classes	section	of	Greenfoot’s	main	scenario	window	and	select	New	subclass…	from	the
menu	that	appears.	Name	the	class	Clover	and	choose	the	image	of	the	shamrock	located
in	the	nature	category.	Open	it	in	an	editor	window	and	change	it	to	this:

import	greenfoot.*;

import	java.lang.Math;

public	class	Clover	extends	PowerItems

{

		public	Clover(int	tX,	int	tY,	int	eT)	{

				super(tX,	tY,	eT);

		}

		

		protected	double	curveX(double	f)	{

				return	f;

		}

		

		protected	double	curveY(double	f)	{

				return	Math.sin(4*f);

		}

		

		protected	void	checkHitAvatar()	{

				Avatar	a	=	(Avatar)

				getOneIntersectingObject(Avatar.class);

				if(	a	!=	null	)	{

						a.lagControls();

						getWorld().removeObject(this);

				}

		}

}

Like	the	Rock	class,	the	Clover	class	does	something	unique	in	its	curveY()	method.	It
imports	Java’s	math	library	at	the	top	of	the	class	and	uses	Math.sin()	in	its
implementation	of	curveY().	This	makes	the	y	motion	oscillate	like	a	sine	wave.

In	Clover,	checkHitAvatar()	calls	lagControls()on	the	instance	of	the	Avatar	class	it
collided	with,	instead	of	stun()	or	addHealth().	In	the	next	section,	we	will	implement
stun(),	addHealth(),	and	lagControls()	in	the	Avatar	class.

Changes	to	the	Avatar	class
To	accommodate	the	effects	of	our	new	power	items,	the	Avatar	class	needs	to	implement
a	few	methods	and	change	some	existing	ones.	These	methods	are	stun(),	addHealth(),
and	lagControls().



Tip
Here’s	an	extra	challenge	before	continuing	ahead	in	the	chapter.	Try	to	implement	these
methods	yourself.	Think	each	one	through	and	rough	them	out	on	paper.	The	worst	case
scenario	for	attempting	this	is	that	you	learn	a	lot.

The	implementations	of	stun()	and	lagControls()	involves	adding	delay	variables	and
using	them	to	affect	movement.	In	the	Avatar	class,	all	movement	is	handled	in	the
followMouse()	method.	To	stun	our	hero,	we	only	need	to	disable	the	followMouse()
method	for	a	small	period	of	time.	Here	is	how	we	would	change	this	method:

private	void	followMouse()	{

		MouseInfo	mi	=	Greenfoot.getMouseInfo();

		if(	stunDelay	<	0	)	{

				if(	mi	!=	null	)	{

						setLocation(mi.getX(),	mi.getY());

						leftEye.setLocation(getX()-10,	getY()-8);

						rightEye.setLocation(getX()+10,	getY()-8);

				}

		}	else	{

				stunDelay--;

		}

}

We	also	need	to	define	the	stunDelay	instance	variable	at	the	top	of	the	class:

private	int	stunDelay	=	-1;

This	follows	the	pattern	of	usage	for	the	instance	variable	hitDelay	we	added	at	the
beginning	of	this	chapter.	It	was	our	example	of	a	delay	variable.	Now,	we	implement
stun():

public	void	stun()	{

		stunDelay	=	50;

}

Every	time	stun()	is	invoked,	the	followMouse()	method	will	not	work	for	50	cycles
(calls	of	the	act()	method).

Implementing	lagControls()	is	similar,	except	that	we	need	to	temporarily	change	the
movement,	instead	of	blocking	it.	Again,	we	need	to	change	the	followMouse()	method:

private	void	followMouse()	{

		MouseInfo	mi	=	Greenfoot.getMouseInfo();

		if(	stunDelay	<	0	)	{

				if(	mi	!=	null	)	{

						if(	lagDelay	>	0	)	{

								int	stepX	=	(mi.getX()	-	getX())/40;

								int	stepY	=	(mi.getY()	-	getY())/40;

								setLocation(stepX	+	getX(),	stepY	+	getY());

								--lagDelay;

						}	else	{

								setLocation(mi.getX(),	mi.getY());

						}

						leftEye.setLocation(getX()-10,	getY()-8);



						rightEye.setLocation(getX()+10,	getY()-8);

				}

		}	else	{

				stunDelay--;

		}

}

Let’s	first	add	the	instance	variable	lagDelay	and	then	talk	about	how	it	is	used	in
followMouse().	Add	this	line	at	the	top	of	the	class	under	stunDelay:

private	int	lagDelay	=	-1;

While	lagDelay	is	a	value	greater	than	0,	it	will	implement	the	laggy	controls.	In	the	inner
if-else	statement	in	the	above	method,	the	lag	is	implemented	by	only	moving	our	hero
one-fortieth	of	the	way	to	the	location	of	the	mouse.	This	makes	our	hero	slowly	crawl
towards	the	location	of	the	mouse.	The	delay	variable,	lagDelay,	is	decremented	until	it	is
less	than	0.	How	does	it	get	above	0?	It	is	set	in	the	lagControls()	method	called	by	the
Clover	class.	Here	is	the	code	for	that	method:

public	void	lagControls()	{

		lagDelay	=	150;

}

All	we	need	to	do	now	is	implement	the	addHealth()	method.	Here	is	the	code:

public	void	addHealth()	{

		if(	health	<	3	)	{

				health++;

				if(	--nextImage	==	0	)	{

						setImage("skull.png");

				}	else	{

						setImage("skull"	+	nextImage	+	".png");

				}

		}

}

This	method	simply	undoes	the	damage	that	occurs	when	we	hit	an	enemy.	This	method
does	nothing	if	we	are	already	at	full	health;	otherwise,	it	increments	the	health	instance
variable,	decrements	nextImage,	so	that	it	stays	in	sync	with	the	image	we	are	displaying,
and	sets	the	image	of	the	Avatar	to	the	previous,	less	damaged	image.	Pretty	cool!

We	made	some	substantial	changes	to	the	Avatar	class.	Here	is	its	code	in	its	entirety:

import	greenfoot.*;

public	class	Avatar	extends	Actor	{

		private	int	health	=	3;

		private	int	hitDelay	=	0;

		private	int	stunDelay	=	-1;

		private	int	lagDelay	=	-1;

		private	int	nextImage	=	0;

		private	Eye	leftEye;

		private	Eye	rightEye;

		

		protected	void	addedToWorld(World	w)	{

				leftEye	=	new	Eye();



				rightEye	=	new	Eye();

				w.addObject(leftEye,	getX()-10,	getY()-8);

				w.addObject(rightEye,	getX()+10,	getY()-8);

		}

		

		public	void	act()	{

				followMouse();

				checkForCollisions();

		}

		

		public	void	addHealth()	{

				if(	health	<	3	)	{

						health++;

						if(	--nextImage	==	0	)	{

								setImage("skull.png");

						}	else	{

								setImage("skull"	+	nextImage	+	".png");

						}

				}

		}

		

		public	void	lagControls()	{

				lagDelay	=	150;

		}

		

		public	void	stun()	{

				stunDelay	=	50;

		}

		

		private	void	checkForCollisions()	{

				Actor	enemy	=	getOneIntersectingObject(Enemy.class);

				if(	hitDelay	==	0	&&	enemy	!=	null	)	{

						if(	health	==	0	)	{

								AvoiderWorld	world	=	(AvoiderWorld)	getWorld();

								world.endGame();

						}

						else	{

								health--;

								setImage("skull"	+	++nextImage	+	".png");

								hitDelay	=	50;

						}

				}

				if(	hitDelay	>	0	)	hitDelay--;

		}

		

		private	void	followMouse()	{

				MouseInfo	mi	=	Greenfoot.getMouseInfo();

				if(	stunDelay	<	0	)	{

						if(	mi	!=	null	)	{

								if(	lagDelay	>	0	)	{

										int	stepX	=	(mi.getX()	-	getX())/40;

										int	stepY	=	(mi.getY()	-	getY())/40;

										setLocation(stepX	+	getX(),	stepY	+	getY());

										--lagDelay;

								}	else	{

										setLocation(mi.getX(),	mi.getY());



								}

								leftEye.setLocation(getX()-10,	getY()-8);

								rightEye.setLocation(getX()+10,	getY()-8);

						}

				}	else	{

						stunDelay--;

				}

		}

}

We	are	so	close	to	trying	all	this	out.	We	just	need	to	randomly	create	and	add	the	power-
ups	and	power-downs	in	the	AvoiderWorld	class.

Changes	to	the	AvoiderWorld	class
We	need	to	create	three	new	instance	variables	at	the	top	of	the	AvoiderWorld	class	to
specify	the	probability	we	use	to	generate	one	of	our	new	power	items.	Add	these	lines	of
code	under	the	declaration	and	initialization	of	nextLevel:

private	int	cupcakeFrequency	=	10;

private	int	cloverFrequency	=	10;

private	int	rockFrequency	=	1;

Initially,	the	creation	of	these	items	will	not	be	very	frequent,	but	we	will	change	that	by
incrementing	them	in	the	increaseLevel()	function.	Here	is	the	code:

private	void	increaseLevel()	{

		int	score	=	scoreBoard.getValue();

		if(	score	>	nextLevel	)	{

				enemySpawnRate	+=	3;

				enemySpeed++;

				cupcakeFrequency	+=	3;

				cloverFrequency	+=	3;

				rockFrequency	+=	2;

				nextLevel	+=	50;

		}

}

In	the	act()	method,	we	call	a	function	to	generate	enemies	and	another	to	generate	stars.
Following	this	pattern,	add	this	line	to	the	act()	method:

generatePowerItems();

Because	all	of	the	power	item	classes	inherits	from	PowerItems,	we	can	use
polymorphism	to	write	some	pretty	concise	code.	Here	is	the	implementation	of
generatePowerItems():

private	void	generatePowerItems()	{

		generatePowerItem(0,	cupcakeFrequency);	//	new	Cupcake

		generatePowerItem(1,	cloverFrequency);	//	new	Clover

		generatePowerItem(2,	rockFrequency);	//	new	Health

}

It’s	pretty	nice	that	we	can	use	one	method	to	create	our	new	power	items
—generatePowerItem().	This	method	takes	an	integer	describing	the	type	of	power	item



we	want	to	create	and	a	frequency	to	generate	those	particular	items.	Here’s	the
implementation:

private	void	generatePowerItem(int	type,	int	freq)	{

		if(	Greenfoot.getRandomNumber(1000)	<	freq	)	{

				int	targetX	=	Greenfoot.getRandomNumber(

				getWidth()	-80)	+	40;

				int	targetY	=	Greenfoot.getRandomNumber(

				getHeight()/2)	+	20;

				Actor	a	=	createPowerItem(type,	targetX,	targetY,	100);

				if(	Greenfoot.getRandomNumber(100)	<	50)	{

						addObject(a,	getWidth()	+	20,

						Greenfoot.getRandomNumber(getHeight()/2)	+	30);

				}	else	{

						addObject(a,	-20,

						Greenfoot.getRandomNumber(getHeight()/2)	+	30);

				}

		}

}

This	method	looks	a	lot	like	our	other	methods	that	generate	actors.	It	will	generate	an
item	at	a	given	random	rate	and	place	those	items	to	emerge	from	either	the	left	or	the
right	of	the	screen	towards	a	randomly	generated	place	in	the	interior	of	the	screen.	The
local	variable	targetX	will	be	any	valid	x	coordinate	on	the	screen,	except	for	a	40	pixel
wide	border	on	the	left	and	right	of	the	screen.	We	just	want	to	ensure	that	it	travels	long
enough	to	be	seen	and	that	it	has	an	impact	on	the	game.	The	variable	targetY	has	slightly
tighter	constraints.	We	only	want	to	generate	a	y	value	in	the	upper	half	of	the	screen,	plus
an	initial	20	pixels	to	prevent	the	actor	from	traveling	too	close	to	the	top	of	the	screen.
The	inner	if-else	statement	simply	chooses	from	placing	the	object	either	on	the	left	or
the	right	of	the	screen	for	its	initial	location.

The	real	difference	here,	from	how	we	generated	other	actors,	is	the	call	to
createPowerItem().	Since	we	are	using	this	method	to	generate	any	one	of	three	power
items,	we	can’t	hardcode	the	creation	of	a	specific	item,	such	as,	new	Cupcake();.	We	use
createPowerItem()	to	create	the	right	object	that	matches	the	type	parameter	of
generatePowerItems().	Here’s	the	implementation	of	createPowerItem():

private	Actor	createPowerItem(int	type,	int	targetX,	int	targetY,	int	

expireTime)	{

		switch(type)	{

				case	0:	return	new	Cupcake(targetX,	targetY,

				expireTime);

				case	1:	return	new	Clover(targetX,	targetY,

				expireTime);

				case	2:	return	new	Rock(targetX,	targetY,

				expireTime);

		}

		return	null;

}

This	method	creates	a	new	Cupcake,	Clover,	or	Rock	power	item	based	on	type.

We	have	really	added	a	lot	to	this	game,	and	now	it’s	time	to	compile	and	test	it	out.



Normally,	you	would	not	want	to	add	this	much	code	without	testing	small	parts	along	the
way.	For	example,	we	could	have	just	implemented	the	Rock	power-up	completely	and
tested	it	before	adding	the	other	power	items.	For	pedagogical	reasons,	it	made	sense	to
continue	in	the	manner	we	did.	I	hope	you	don’t	encounter	too	many	typos	when	you
compile	your	code.	By	methodically	checking	your	code	against	the	code	in	this	chapter
and	paying	close	attention	to	the	compile	error	messages,	you	should	be	able	to	eliminate
any	mistakes	quickly.

Tip
If	you	need	to	refresh	yourself	on	how	a	Java	switch	statement	works,	refer	to	the
following	link:

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/switch.html

Compile,	debug,	and	play.	This	game	is	getting	good.	Check	out	my	screenshot	in	Figure
14.

Figure	14:	Here’s	Avoider	Game	complete	with	power-ups,	power-downs,	and	all	sorts	of
bling

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/switch.html




Avoider	Game
Our	Avoider	Game	is	getting	more	complete	and	fun	to	play.	In	Chapter	5,	Interactive
Application	Design	and	Theory,	we	will	look	at	game	design	theory	on	how	to	build	fun
and	engaging	games.	At	that	time,	we	will	revisit	our	game	and	increase	its	playability.





Your	assignment
When	an	Avatar	object	is	hit,	it	is	invulnerable	to	being	hit	again	for	a	short	time.
Unfortunately,	we	have	provided	no	visual	feedback	to	the	player	that	indicates	this	is
happening	or	when	it	expires.	Your	assignment	is	to	make	the	hero	blink	while	it	cannot
be	hit.	Look	at	the	Star	class	for	a	hint	on	how	to	make	an	object	blink.





Summary
We	covered	a	lot	of	material	in	this	chapter.	You	learned	several	important	techniques	for
animating	actors,	including	image	swapping,	delay	variables,	parallax,	and	easing.	Our
enemies,	our	hero,	and	the	background,	all	have	more	life.	You	should	use	all	the
techniques	of	this	chapter	when	creating	games,	simulations,	animated	shots,	or
educational	applications.





Chapter	3.	Collision	Detection
	 “Live	as	if	you	were	to	die	tomorrow.	Learn	as	if	you	were	to	live	forever.” 	

	 —Mahatma	Gandhi

Often,	you	will	need	to	determine	whether	two	or	more	objects	are	touching	in	Greenfoot.
This	is	known	as	collision	detection	and	it	is	necessary	for	most	simulations	and	games.
Detection	algorithms	range	from	simple	bounding-box	methods	to	very	complex	pixel
color	analysis.	Greenfoot	provides	a	wide	variety	of	simple	methods	to	accomplish
collision	detection;	you	were	introduced	to	some	of	them	in	Chapter	1,	Let’s	Dive	Right
in…,	and	Chapter	2,	Animation.	In	this	chapter,	you	will	learn	how	to	use	Greenfoot’s
other	built-in	collision	detection	mechanisms	and	then	learn	more	accurate	methods	to	use
them	to	do	collision	detection.	While	pixel-perfect	collision	detection	is	beyond	the	scope
of	this	book,	the	border-based	and	hidden-sprite	methods	of	collision	detection	will	be
sufficient	for	most	Greenfoot	applications.	The	topics	that	will	be	covered	in	this	chapter
are:

Greenfoot	built-in	methods
Border-based	methods
Hidden-sprite	methods

We	will	take	a	break	from	working	on	Avoider	Game	and	use	a	simple	zombie	invasion
simulation	to	illustrate	our	collision	detection	methods.	Zombies	seem	apropos	for	this
chapter.	Judging	from	his	quote	above,	I	think	Gandhi	wanted	you	to	learn	as	if	you	were	a
zombie.



ZombieInvasion	interactive	simulation
In	Chapter	1,	Let’s	Dive	Right	in…	and	Chapter	2,	Animation,	we	went	step	by	step	in
building	Avoider	Game	and	ended	up	with	playable	versions	of	the	game	by	the	end	of
each	chapter.	In	the	zombie	simulation,	we	will	watch	a	horde	of	zombies	break	through	a
wall	and	make	their	way	to	the	homes	on	the	other	side.	The	user	will	be	able	to	interact
with	the	simulation	by	placing	explosions	in	the	simulation,	that	will	destroy	both	types	of
zombies	and	the	wall.	For	our	zombie	simulation,	I	am	going	to	supply	most	of	the	code	in
the	beginning,	and	we	will	concentrate	our	efforts	on	implementing	collision	detection.	All
the	code	supplied	uses	concepts	and	techniques	we	covered	in	the	last	two	chapters,	and	it
should	look	very	familiar.	We	will	just	provide	an	overview	discussion	of	the	code	here.
Figure	1	provides	a	picture	of	our	scenario.

Figure	1:	Here’s	a	screenshot	of	ZombieInvasion

Let’s	create	a	new	scenario	called	ZombieInvasion	and	then	incrementally	add	and
discuss	the	World	subclass	and	Actor	subclasses.	Alternatively,	you	can	download	the
initial	version	of	ZombieInvasion	at:	http://www.packtpub.com/support

http://www.packtpub.com/support


Dynamically	creating	actors	in
ZombieInvasionWorld
This	class	has	two	main	responsibilities:	placing	all	the	actors	in	the	world	and	creating	an
explosion	whenever	the	mouse	is	clicked.	For	the	most	part,	the	user	will	just	observe	the
scenario	and	will	only	be	able	to	interact	with	it	by	creating	explosions.	The
ZombieInvasionWorld	class	is	rather	simple	because	we	are	creating	an	interactive
simulation	and	not	a	game.	Here’s	the	code	to	accomplish	this:

import	greenfoot.*;

public	class	ZombieInvasionWorld	extends	World	{

		private	static	final	int	DELAY	=	200;

		int	bombDelayCounter	=	0;	//	Controls	the	rate	of	bombs

		public	ZombieInvasionWorld()	{		

			super(600,	400,	1);	

			prepare();

		}

		public	void	act()	{

			if(	bombDelayCounter	>	0	)	bombDelayCounter--;

			if(	Greenfoot.mouseClicked(null)	&&	(bombDelayCounter	==	0)	)	{

					MouseInfo	mi	=	Greenfoot.getMouseInfo();

					Boom	pow	=	new	Boom();

					addObject(pow,	mi.getX(),	mi.getY());

					bombDelayCounter	=	DELAY;

			}

		}

		private	void	prepare()	{

			int	i,j;

			for(	i=0;	i<5;	i++)	{

					Wall	w	=	new	Wall();

					addObject(w,	270,	w.getImage().getHeight()	*	i);

			}

			for(	i=0;	i<2;	i++)	{

					for(	j=0;	j<8;	j++)	{

						House	h	=	new	House();

						addObject(h,	400	+	i*60,	(12	+h.getImage().getHeight())	*	j);

					}

			}

			for(	i=0;	i<2;	i++)	{

					for(	j=0;	j<8;	j++)	{

						Zombie1	z	=	new	Zombie1();

						addObject(z,	80	+	i*60,	15	+	(2	+z.getImage().getHeight())	*	j);

					}

			}

			for(	i=0;	i<2;	i++)	{

					for(	j=0;	j<7;	j++)	{

						Zombie2	z	=	new	Zombie2();

						addObject(z,	50	+	i*60,	30	+	(3	+z.getImage().getHeight())	*	j);

					}



			}

		}

}

When	you	right-click	on	the	scenario	screen	and	choose	Save	the	World	in	the	pop-up
menu,	Greenfoot	will	automatically	create	the	prepare()	method	for	you	and	will	supply
the	appropriate	code	to	add	each	Actor	on	the	screen.	This	creates	the	initial	state	of	your
scenario	(the	one	the	user	sees	when	they	first	run	your	scenario).	In
ZombieInvasionWorld,	we	are	manually	implementing	the	prepare()	method	and	can	do
so	in	a	more	compact	way	than	Greenfoot.	We	use	for-loops	to	add	our	actors.	Via	this
method,	we	add	Wall,	House,	Zombie1,	and	Zombie2.	We	will	implement	these	classes	later
in	the	chapter.

The	act()	method	is	responsible	for	listening	for	mouse-click	events.	If	the	mouse	is
clicked,	we	add	a	Boom	object	at	the	current	position	of	the	mouse.	Boom	is	an	actor	we
create	just	to	display	the	explosion,	and	we	want	it	placed	exactly	where	the	mouse	was
clicked.	We	use	a	delay	variable,	boomDelayCounter,	to	prevent	the	user	from	rapidly
creating	too	many	explosions.	Remember,	we	explained	delay	variables	in	detail	in	the
previous	chapter,	Chapter	2,	Animation.	If	you	want	the	user	to	have	the	ability	to	rapidly
create	explosions,	then	simply	remove	the	delay	variable.



Creating	obstacles
We	will	create	two	obstacles	for	our	zombie	horde:	houses	and	walls.	In	the	simulation,
the	House	object	has	no	functionality.	It	is	simply	an	obstacle	to	zombie	actors:

import	greenfoot.*;

public	class	House	extends	Actor	{

}

The	code	for	the	House	class	is	extremely	simple.	Its	sole	purpose	is	just	to	add	an	image
(buildings/house-8.png)	of	a	house	to	Actor.	It	has	no	other	functionality.

Walls	are	more	complex	than	houses.	As	the	zombies	beat	on	the	walls,	they	slowly
crumble.	The	majority	of	the	code	for	the	Wall	class	implements	this	animation,	as	shown
in	the	following	code:

import	greenfoot.*;	

import	java.util.List;

public	class	Wall	extends	Actor	{

		int	wallStrength	=	2000;

		int	wallStage	=	0;

		

		public	void	act()	{

			crumble();

		}	

		

		private	void	crumble()	{

			//	We	will	implement	this	in	the	next	section…

		}

		

}

The	implementation	of	the	animation	of	the	Wall	class	crumbling	is	very	similar	to	that	of
the	Avatar	class	taking	damage	that	we	looked	at,	in	the	previous	chapter,	Chapter	2,
Animation.	The	interesting	code	is	all	contained	in	the	crumble()	method,	which	is	called
repeatedly	from	the	act()	method.	Figure	1	shows	the	walls	in	various	states	of	decay.	We
will	implement	and	explain	in	detail	the	crumble()	method	in	the	Detecting	a	collision
with	multiple	objects	section.



Creating	our	main	actor	framework
The	Zombie	class	contains	all	the	code	that	describes	the	behavior	for	zombies	in	our
simulation.	Zombies	continually	lumber	forward	trying	to	get	to	the	humans	in	the	houses.
They	beat	on	and	eventually	destroy	any	walls	in	the	way,	as	shown	in	the	following	code:

import	greenfoot.*;	

import	java.util.*;

public	class	Zombie	extends	Actor	{

		int	counter,	stationaryX,	amplitude;

		

		protected	void	addedToWorld(World	w)	{

			stationaryX	=	getX();

			amplitude	=	Greenfoot.getRandomNumber(6)	+	2;

		}

		

		public	void	act()	{

			shake();

			if(	canMarch()	)	{

					stationaryX	=	stationaryX	+	2;

			}

		}	

		

		public	void	shake()	{

			counter++;

			setLocation((int)(stationaryX	+	amplitude*Math.sin(counter/2)),	getY());

		}

		

		private	boolean	canMarch()	{

			//	We	will	implement	this	in	the	next	section…	

			return	false;	//	Temporary	return	value	

		}

}

The	two	important	methods	in	this	class	are	shake()	and	canMarch().	The	shake()
method	implements	the	back-and-forth	lumbering	movement	of	the	zombies.	It	calls
setLocation()	and	leaves	the	y	coordinate	unchanged.	It	changes	the	x	coordinate	to	have
sinusoidal	motion	(back	and	forth).	The	distance	it	moves	back	and	forth	is	defined	by	the
amplitude	variable.	This	type	of	motion	was	also	used	by	one	of	the	power-downs
described	in	Chapter	2,	Animation	and	is	shown	in	Figure	2.

Figure	2:	This	is	an	illustration	of	using	a	sine	wave	to	produce	back	and	forth	motion	in



Zombie	objects.	We	start	with	a	standard	sine	wave	(a),	rotate	it	90	degrees	(b),	and
reduce	the	amount	we	move	in	the	y	direction	until	the	desired	effect	is	achieved	(not

moving	in	the	y-direction).	Callouts	(c)	and	(d)	show	the	effects	of	reducing	movement	in
the	y	direction.

We	will	fully	implement	and	explain	canMarch()	in	the	Detecting	a	collision	with	multiple
objects	section.	The	method	canMarch()	checks	surrounding	actors	(houses,	walls,	or
other	zombies)	to	see	whether	any	are	in	the	way	of	the	zombie	moving	forward.	As	a
temporary	measure,	we	insert	the	following	line	at	the	end	of	canMarch():

return	false;

This	allows	us	to	compile	and	test	the	code.	By	always	returning	false,	the	Zombie
objects	will	never	move	forward.	This	is	a	simple	placeholder,	and	we	will	implement	the
real	response	later	in	the	chapter.

We	have	two	subclasses	of	the	Zombie	class:	Zombie1	and	Zombie2:

public	class	Zombie1	extends	Zombie	{

}

public	class	Zombie2	extends	Zombie	{

}

This	allows	us	to	have	two	different-looking	zombies	but	only	write	code	for	zombie
behavior	once.	I	chose	to	have	a	blue	(people/ppl1.png)	zombie	and	a	yellow-orange
(people/ppl3.png)	zombie.	If	you	have	any	artistic	skill,	you	might	want	to	create	your
own	PNG	images	to	use.	Otherwise,	you	can	continue	to	use	the	images	provided	with
Greenfoot,	as	I	have	done.



Creating	an	explosion
Here	is	the	implementation	of	the	Boom	class	we	discussed	previously	in	the	description	of
the	ZombieInvasionWorld	class.	The	Boom	class	will	immediately	draw	an	explosion	that
will	wipe	out	everything	contained	in	the	blast	and	then	linger	for	a	short	time	before
disappearing.	We	create	an	explosion	using	the	following	code:

import	greenfoot.*;

import	java.awt.Color;

import	java.util.List;

public	class	Boom	extends	Actor	{

		private	static	final	int	BOOMLIFE	=	50;

		private	static	final	int	BOOMRADIUS	=	50;

		int	boomCounter	=	BOOMLIFE;

		

		public	Boom()	{

				GreenfootImage	me	=	new	GreenfootImage

				(BOOMRADIUS*2,BOOMRADIUS*2);

				me.setColor(Color.RED);

				me.setTransparency(125);

				me.fillOval(0	,	0,	BOOMRADIUS	*	2,	BOOMRADIUS*2);

				setImage(me);

		}

		

		public	void	act()	{

				if(	boomCounter	==	BOOMLIFE)

				destroyEverything(BOOMRADIUS);

				if(	boomCounter--	==	0	)	{

						World	w	=	getWorld();

						w.removeObject(this);

				}

		}

		

		private	void	destroyEverything(int	x)	{

				//	We	will	implement	this	in	the	next	section…

		}

}

Let’s	discuss	the	constructor	(Boom())	and	act()	methods.	The	Boom()	method	creates	an
image	manually	using	the	drawing	methods	of	GreenfootImage.	We	used	these	drawing
methods	in	this	way	to	draw	the	stars	and	eyes	in	AvoiderGame,	which	we	presented	over
the	last	two	chapters,	Chapter	1,	Let’s	Dive	Right	in…,	and	Chapter	2,	Animation.	The
constructor	concludes	by	setting	this	new	image	to	be	the	image	of	the	actor	using
setImage().

The	act()	method	has	an	interesting	use	of	a	delay	variable.	Instead	of	waiting	for	a
certain	amount	of	time	(in	terms	of	the	number	of	calls	to	the	act()	method)	before
allowing	an	event	to	occur,	the	boomCounter	delay	variable	is	used	to	control	how	long
this	Boom	object	lives.	After	a	short	delay,	the	object	is	removed	from	the	scenario.

We	will	discuss	the	implementation	of	the	destroyEverything()	method	in	a	later
section.



Test	it	out
You	should	now	have	a	nearly	complete	zombie	invasion	simulation.	Let’s	compile	our
scenario	and	make	sure	we	eliminate	any	typos	or	mistakes	introduced	while	adding	the
code.	The	scenario	will	not	do	much.	The	zombies	will	lumber	back	and	forth	but	not
make	any	forward	progress.	You	can	click	anywhere	in	the	running	scenario	and	see	the
Boom	explosion;	however,	it	won’t	destroy	anything	yet.

Let’s	make	this	scenario	a	bit	more	interesting,	using	Greenfoot’s	collision	detection
methods.





Built-in	collision	detection	methods
We	are	going	to	go	through	all	the	methods	provided	by	Greenfoot	to	do	collision
detection.	First,	we	will	go	over	some	methods	and	discuss	their	intended	use.	Then,	we’ll
discuss	the	remaining	methods	in	the	context	of	more	advanced	collision	detection
methods	(border-based	and	hidden-sprite).	We	have	already	used	a	few	collision	detection
methods	in	the	implementation	of	Avoider	Game.	We	will	only	briefly	describe	those
particular	methods	here.	Finally,	we	will	not	discuss	getNeighbors()	and	intersects(),
as	those	methods	are	only	useful	for	Greenfoot	scenarios	that	contain	worlds	that	are
created	with	a	cell	size	greater	than	one.

Note
Cell	size	and	Greenfoot	worlds

Until	now,	we	have	only	created	worlds	(AvoiderWorld	and	ZombieInvasionWorld)	that
have	set	the	cellSize	parameter	of	the	World	constructor	to	1.	The	following	is	an	excerpt
from	Greenfoot’s	documentation	on	the	World	class:

public	World(int	worldWidth,	int	worldHeight,	int	cellSize)

Construct	a	new	world.	The	size	of	the	world	(in	number	of	cells)	and	the	

size	of	each	cell	(in	pixels)	must	be	specified.

Parameters:

worldWidth	-	The	width	of	the	world	(in	cells).

worldHeight	-	The	height	of	the	world	(in	cells).

cellSize	-	Size	of	a	cell	in	pixels.

The	simple	tutorials	provided	on	Greenfoot’s	website	mainly	use	large	cell	sizes.	This
makes	game	movement,	trajectories,	and	collision	detection	very	simple.	We,	on	the	other
hand,	want	to	create	more	flexible	games	that	allow	for	smooth	motion	and	more	realistic
animation.	Therefore,	we	define	our	game	cells	to	be	1	x	1	pixels	(one	pixel)	and,
correspondingly,	will	not	discuss	methods	that	target	worlds	with	large	cell	sizes,	such	as
getNeighbors()	and	intersects().

As	we	go	through	our	discussion,	remember	that	we	will,	at	times,	add	code	to	our
ZombieInvasion	scenario.



Detecting	a	collision	with	a	single	object
The	method	getOneIntersectingObject()	is	great	for	simple	collision	detection	and
often	used	to	see	whether	a	bullet,	or	other	type	of	enemy,	hit	the	main	protagonist	of	the
game	in	order	to	subtract	health,	subtract	life,	or	end	the	game.	This	is	the	method	we	used
and	explained	in	Chapter	1,	Let’s	Dive	Right	in…,	to	build	our	first	working	version	of
Avoider	Game.	We	will	not	discuss	it	again	here	and	only	mention	it	in	the	next	section	as
a	means	to	illustrate	the	use	of	isTouching()	and	removeTouching().

isTouching()	and	removeTouching()
The	following	is	a	common	pattern	for	using	getOneIntersectingObject():

private	void	checkForCollisions()	{

		Actor	enemy	=	getOneIntersectingObject(Enemy.class);

		if(	enemy	!=	null	)	{	//	If	not	empty,	we	hit	an	Enemy

				AvoiderWorld	world	=	(AvoiderWorld)	getWorld();

				world.removeObject(this);

		}

}

We	used	this	basic	pattern	in	Avoider	Game	several	times.	The	isTouching()	and
removeTouching()	methods	provide	a	more	compact	way	to	implement	the	preceding
pattern.	Here	is	an	equivalent	function	using	isTouching()	and	removeTouching()
instead	of	getOneIntersectingObject():

private	void	checkForCollisions()	{

		if(	isTouching(Enemy.class)	)	{	

				removeTouching(Enemy.class);

		}

}

If	all	you’re	doing	is	removing	an	object	that	the	object	intersects	with,	all	you	need	is	the
isTouching()	and	removeTouching()	methods.	However,	if	you	want	to	do	something
with	the	object	that	you’re	intersecting	with,	which	requires	calling	methods	of	the
object’s	class,	then	you	need	to	store	the	intersected	object	in	a	named	variable,	which
requires	using	the	getOneIntersectingObject()	method.

Tip
In	general,	always	use	getOneIntersectingObject()	instead	of	isTouching()	and
removeTouching().	It	is	more	flexible	and	provides	code	that	is	easier	to	extend	in	the
future.



Detecting	a	collision	with	multiple	objects
The	collision	detection	method	getIntersectingObjects()	returns	a	list	of	all	the	actors
in	a	given	class	that	the	calling	actor	is	touching.	This	method	is	needed	when	you	need	to
take	an	action	on	every	object	that	is	touching	a	specific	actor,	or	you	need	to	change	the
state	of	an	actor	based	on	the	number	of	objects	touching	it.	When	using
getOneIntersectingObject(),	you	are	only	concerned	about	being	touched	by	at	least
one	object	of	a	given	type.	For	example,	in	the	game	PacMan,	you	lose	a	life	anytime	you
touch	a	ghost.	It	wouldn’t	matter	if	you	ran	into	one,	two,	or	three;	the	end	result	would	be
the	same—you’d	lose	a	life.	However,	in	our	zombie	simulation,	the	Wall	actors	take
damage	based	on	how	many	zombies	are	presently	beating	on	it.	This	is	a	perfect	use	for
getIntersectingObjects().

In	the	Wall	code	presented	above,	we	left	out	the	implementation	of	the	crumble()
method.	Here	is	that	code:

private	void	crumble()	{

		List<Zombie>	army	=	getIntersectingObjects(Zombie.class);

		wallStrength	=	wallStrength	-	army.size();

		if(	wallStrength	<	0	)	{

				wallStage++;

				if(	wallStage	>	4	)	{

						World	w	=	getWorld();

						w.removeObject(this);

				}

				else	{

						changeImage();

						wallStrength	=	2000;

				}

		}

}

private	void	changeImage()	{

		setImage("brick"+wallStage+".png");

}

Let’s	quickly	go	over	the	things	we	saw	before.	In	the	Hurting	the	avatar	section	of
Chapter	2,	Animation,	we	changed	the	image	of	the	avatar	to	look	damaged	every	time	it
was	touched	by	an	enemy.	We	are	using	the	same	animation	technique	here	to	make	it
look	like	walls	are	taking	damage.	However,	in	this	code,	we	have	given	walls	a	durability
property	that	is	defined	by	the	wallStrength	variable.	The	value	of	wallStrength
determines	how	many	times	a	wall	can	be	hit	by	a	zombie	before	it	visibly	looks	more
crumbled	and	cracked.

The	wallStrength	variable	is	actually	just	an	example	of	a	delay	variable	that	we
discussed	in	the	previous	chapter,	Chapter	2,	Animation.	Instead	of	this	variable	delaying	a
certain	amount	of	time,	it	is	delaying	a	certain	number	of	zombie	hits.	When
wallStrength	is	less	than	0,	we	change	the	image	using	the	method	changeImage()
unless	this	is	the	fourth	time	we	have	crumbled,	which	will	cause	us	to	remove	the	wall
altogether.	Figure	3	shows	the	wall	images	I	created	and	used	for	this	animation.



Figure	3:	These	are	the	four	images	used	to	animate	the	walls	crumbling

Now,	let’s	discuss	the	collision	detection	method	getIntersectingObjects().	When
called,	this	method	will	return	all	objects	of	a	given	class	that	intersect	with	the	calling
object.	You	specify	the	class	of	objects	you	are	interested	in	by	providing	it	as	the
argument	to	this	method.	In	our	code,	I	provided	the	argument	Zombie.class,	so	the
method	would	only	return	all	the	zombies	that	are	touching	the	wall.	Because	of
inheritance,	we	will	get	all	of	the	Zombie1	objects	and	all	of	the	Zombie2	objects	that
intersect.	You	can	access,	manipulate,	or	iterate	through	the	objects	returned	using	the
methods	defined	in	the	List	interface.	For	our	purposes,	we	only	wanted	to	count	how
many	zombies	we	collided	with.	We	get	this	number	by	calling	the	size()	method	on	the
List	object	returned	from	getIntersectingObjects().

Note
Java	interfaces	and	List

The	collision	detection	method	getIntersectingObjects()	introduces	us	for	the	first
time	to	the	List	interface.	In	Java,	interfaces	are	used	to	define	a	certain	set	of	methods
that	two	or	more	classes	will	have	in	common.	When	Java	classes	implement	an	interface,
that	class	is	promising	that	it	implements	all	of	the	methods	defined	in	that	interface.	So,
the	collection	of	Actor	objects	returned	by	getIntersectingObjects()	could	be	stored	in
an	array,	linked	list,	queue,	tree,	or	any	other	data	structure.	Whatever	the	data	structure
used	for	storing	these	objects,	we	know	that	we	can	access	those	objects	via	the	methods
defined	in	the	List	interface,	such	as	get()	or	size().

For	more	information,	refer	to	the	following	link:
http://docs.oracle.com/javase/tutorial/java/IandI/createinterface.html.

In	our	ZombieInvasion	simulation,	we	need	to	use	getIntersectingObjects()	one	more
time.	Earlier,	we	left	the	implementation	of	canMarch()	incomplete	when	we	looked	at	the
code	for	the	Zombie	class.	Let’s	implement	that	method	now	using
getIntersectingObjects().	Here	is	the	code:

private	boolean	canMarch()	{

		List<Actor>	things	=	getIntersectingObjects(Actor.class);

		for(	int	i	=	0;	i	<	things.size();	i++	)	{

				if(	things.get(i).getX()	>	getX()	+	20	)	{

						return	false;

				}

		}

		return	true;

}

http://docs.oracle.com/javase/tutorial/java/IandI/createinterface.html


This	method	checks	whether	or	not	there	are	any	actors	in	the	way	of	this	object	moving
forward.	It	accomplishes	this	by	first	getting	all	objects	of	the	Actor	class	that	are
touching	it	and	then	checking	each	one	to	see	if	it	is	in	front	of	this	object.	We	do	not	care
if	Actor	is	touching	the	calling	object	at	the	top,	bottom,	or	back	as	these	actors	will	not
prevent	this	object	from	moving	forward.	This	line	of	code	in	canMarch()	gives	us	the	list
of	all	intersecting	actors:

List<Actor>	things	=	getIntersectingObjects(Actor.class);

We	then	iterate	through	the	list	of	actors	using	a	for	loop.	To	access	an	item	in	a	list,	you
use	the	get()	method.	The	get()	method	has	one	formal	parameter	that	specifies	the
index	of	the	object	in	the	list	that	you	want.	For	each	actor	in	the	list,	we	check	to	see	if
the	x	coordinate	is	in	front	of	us.	If	it	is,	we	return	false	(we	can’t	move);	otherwise,	we
return	true	(we	can	move).

We	have	added	the	implementation	of	the	crumble()	method	to	the	Wall	class	(don’t
forget	to	add	changeImage()	too)	and	the	implementation	of	canMarch()	to	the	Zombie
class.	Let’s	compile	our	scenario	and	observe	what	happens.	Our	simulation	is	almost
complete.	The	only	thing	missing	is	the	implementation	of	the	destroyEverything()
method	in	the	Boom	class.	We	will	look	at	that	implementation	next.



Detecting	multiple	objects	in	range
The	last	method	we	need	to	implement	to	complete	our	simulation	is
destroyEverything().	In	this	method,	we	will	use	the	Greenfoot	collision	detection
method	getObjectsInRange().	This	method	takes	two	parameters.	We	have	seen	the
second	parameter	in	all	of	the	rest	of	the	collision	detection	methods,	and	it	specifies	the
class	of	actors	we	are	testing	for	collision.	The	first	parameter	provides	the	radius	of	a
circle	drawn	around	the	actor	that	defines	where	to	search	for	collision.	Figure	4	shows
the	relationship	between	the	radius	parameter	and	the	search	area.	Unlike
getIntersectingObjects(),	getObjectsInRange()	returns	a	list	of	actors	that	are	within
the	range	specified	by	the	calling	object.

Figure	4:	This	shows	the	purpose	of	the	radius	parameter	of	the	getObjectsInRange()
method

Now	that	we	know	about	the	method	getObjectsInRange(),	let’s	look	at	the
implementation	of	destroyEverything():

private	void	destroyEverything(int	x)	{

		List<Actor>	objs	=	getObjectsInRange(x,	Actor.class);

		World	w	=	getWorld();

		w.removeObjects(objs);

}

This	method	is	short,	yet	powerful.	It	calls	getObjectsInRange()	with	a	radius	x,	the
value	that	was	passed	to	destroyEverything()	when	called,	and	Actor.class,	which	in
Greenfoot	terms	means	everything.	All	objects	within	the	circle	defined	by	the	radius	will
be	returned	by	getObjectsInRange()	and	stored	in	the	objs	variable.	Now,	we	could
iterate	through	all	the	objects	contained	in	objs	and	remove	them	one	at	a	time.	Luckily,
Greenfoot	provides	a	function	that	can	remove	a	list	of	objects	with	one	call.	Here’s	its
definition	in	Greenfoot’s	documentation:

public	void	removeObjects(java.util.Collection	objects)

Remove	a	list	of	objects	from	the	world.

Parameters:

objects	-	A	list	of	Actors	to	remove.



Time	to	test	it	out
The	simulation	is	complete.	Compile	and	run	it	and	make	sure	everything	works	as
anticipated.	Remember,	you	can	click	anywhere	to	blow	up	buildings,	walls,	and	zombies.
Reset	the	scenario	and	move	things	around.	Add	walls	and	zombies	and	see	what	happens.
Nice	work!





Border-based	collision	detection	methods
Border-based	collision	detection	involves	incrementally	searching	outward	from	Actor
until	either	a	collision	is	detected,	or	it	is	determined	there	are	no	obstacles	in	the	way.	The
method	finds	the	edge	(or	border)	of	the	item	collided	with.	This	method	is	especially
useful	when	objects	need	to	bounce	off	each	other	or	one	object	is	landing	on	another	and
needs	to	remain	on	that	object	for	a	certain	amount	of	time,	for	example,	when	a	user-
controlled	Actor	is	jumping	on	a	platform.	We	will	introduce	this	method	of	collision
detection	in	this	chapter,	as	well	as	use	it	in	upcoming	chapters.



Detecting	single-object	collisions	at	an	offset
The	at	offset	versions	of	Greenfoot’s	collision	detection	methods	are	well	suited	to	border-
based	collision	detection.	They	allow	us	to	check	for	a	collision	at	a	certain	distance,	or
offset,	from	the	center	of	the	calling	Actor.	To	demonstrate	the	use	of	this	method,	we	will
change	the	implementation	of	the	canMarch()	method	in	the	Zombie	class.	Here	is	our
revised	version:

private	boolean	canMarch()	{

		int	i=0;

		while(i<=step)	{

				int	front	=	getImage().getWidth()/2;

				Actor	a	=	getOneObjectAtOffset(i+front,	0,	Actor.class);

				if(	a	!=	null	)	{

						return	false;

				}

				i++;

		}

		return	true;

}

Typically,	when	an	actor	moves,	it	will	change	its	position	by	a	certain	number	of	pixels.
In	the	Zombie	class,	how	far	zombies	will	move,	if	they	can,	is	stored	in	the	step	variable.
We	need	to	declare	and	initialize	this	instance	variable	by	inserting	the	following	line	of
code	at	the	top	of	the	Zombie	class,	as	follows:

private	int	step	=	4;

Using	a	step	variable	to	store	the	length	of	movement	for	an	actor	is	common	practice.	In
the	implementation	of	canMarch()	above,	we	check	each	pixel	in	front	of	a	zombie	up	to
and	including	taking	a	full	step.	This	is	handled	by	the	while	loop.	We	increment	the
variable	i	from	0	to	step,	checking	for	a	collision	each	time	at	the	location	i	+	front.
Since	the	origin	location	of	an	object	is	its	center,	we	set	front	to	be	half	of	the	width	of
the	image	representing	this	actor.	Figure	5	illustrates	this	search.

Figure	5:	Using	border-based	detection,	an	object	searches	for	a	collision	one	pixel	at	a
time.	It	starts	from	its	front	and	then	searches	for	an	object	starting	at	front	+	0	all	the

way	to	front	+	step.

If	we	detect	a	collision	any	time	in	our	while	loop,	we	return	false,	indicating	the	actor
cannot	move	forward;	otherwise,	we	return	true.	Test	out	this	new	version	of	canMarch().



Detecting	multiple-object	collisions	at	an	offset
The	collision	detection	method	getObjectsAtOffset()	is	very	similar	to
getOneObjectAtOffset().	It	just,	as	the	name	implies,	returns	all	actors	that	collide	at	the
given	offset.	To	demonstrate	its	use,	we	are	going	to	re-implement	canMarch()	as	we	did
for	getOneObjectAtOffset().	To	take	advantage	of	getting	a	list	of	actors	that	collide,	we
are	going	to	add	some	additional	functionality	to	canMarch().	For	each	actor	blocking	the
forward	movement	of	the	zombie,	we	are	going	to	shove	them	a	little.

Here’s	the	implementation	of	canMarch():

private	boolean	canMarch()	{

		int	front	=	getImage().getWidth()/2;

		int	i	=	1;

		while(i<=step)	{

				List<Actor>	a	=	getObjectsAtOffset(front+i,0,Actor.class);

				if(	a.size()	>	0	)	{

						for(int	j=0;j<a.size()&&a.get(j)	instanceof	Zombie;j++){

								int	toss	=	Greenfoot.getRandomNumber(100)<50	?	1	:	-1;

								Zombie	z	=	(Zombie)	a.get(j);

								z.setLocation(z.getX(),z.getY()+toss);

						}

						return	false;

				}

				i++;

		}

		return	true;

}

In	this	version,	we	use	a	while	loop	and	step	variable	in	much	the	same	way	we	did
previously	for	the	getOneObjectAtOffset()	version	of	canMarch().	Inside	the	while	loop
is	where	we	added	the	new	“shoving”	functionality.	When	we	detect	that	there	is	at	least
one	Actor	in	the	list,	we	iterate	through	the	list	using	a	for	loop	to	slightly	push	each	actor
we	collided	with.	The	first	thing	we	do	in	the	for	loop	is	check	whether	or	not	the	Actor
class	is	a	Zombie	class	using	the	instanceof	operator.	If	it	isn’t,	we	skip	over	it.	We	don’t
want	the	ability	to	shove	Wall	or	House.	For	each	zombie	we	collided	with,	we	set	the
toss	variable	to	1	or	-1	with	equal	probability	We	then	move	that	zombie	with
setLocation().	The	effect	is	interesting	and	gives	the	illusion	that	the	zombies	are	trying
to	push	and	shove	their	way	to	the	front.	Compile	and	run	the	scenario	with	the	changes	to
canMarch()	and	see	for	yourself.	Figure	6	shows	how	the	zombies	bunch	up	with	the
preceding	changes.

Note
The	instanceof	Operator

Java’s	instanceof	operator	checks	whether	the	left-hand	side	argument	is	an	object
created	from	the	class	(or	any	of	its	subclasses)	specified	on	the	right-hand	side.	It	will
return	true	if	it	is	and	false	otherwise.	It	will	also	return	true	if	the	left-hand	side	object
implements	the	interface	specified	on	the	right-hand	side.



Figure	6:	Here’s	a	view	of	the	zombies	pushing	and	shoving	to	get	to	the	humans	in	the
houses	first





Hidden-sprite	collision	detection	methods
One	flaw	with	the	getOneObjectAtOffets()	and	getObjectsAtOffset()	methods	is	that
they	only	check	the	granularity	of	a	single	pixel.	If	an	object	of	interest	is	one	pixel	above
or	below	the	offset	provided	to	these	methods,	then	no	collision	will	be	detected.	In	fact,
in	this	implementation,	if	you	allow	the	simulation	to	run	until	the	zombies	reach	the
houses,	you’ll	notice	that	some	zombies	can	move	past	the	houses.	This	is	because	the
pixel-only	check	fails	between	houses.	One	way	to	handle	this	deficiency	is	to	use	hidden-
sprite	collision	detection.	Figure	7	illustrates	this	method.

Figure	7:	This	shows	the	use	of	a	hidden	sprite	to	check	for	collisions.

In	the	hidden-sprite	method,	you	use	another	Actor	class	to	test	for	collisions.	Figure	7
shows	a	Zombie	object	using	a	smaller,	auxiliary	Actor	class	to	determine	if	a	collision
occurred	with	the	flower.	While	the	hidden	sprite	is	shown	as	a	translucent	red	rectangle,
in	practice,	we	would	set	the	transparency	(using	setTransparency())	to	0,	so	that	it
would	not	be	visible.	The	hidden-sprite	method	is	very	flexible	because	you	can	create	any
shape	or	size	for	your	hidden	sprite,	and	it	does	not	have	the	problem	of	only	looking	at	a
single	pixel	that	the	two	previous	collision	detection	methods	had.	Next,	we	will	once
again	change	the	canMarch()	method	in	the	Zombie	class,	this	time	using	hidden-sprite
collision	detection.

The	first	thing	we	need	to	do,	is	create	a	new	Actor	that	will	serve	as	the	hidden	sprite.
Because	we	are	going	to	use	this	hidden	sprite	for	zombies,	let’s	call	it	ZombieHitBox.
Create	this	subclass	of	Actor	now	and	do	not	associate	an	image	with	it.	We	will	draw	the
image	in	the	constructor.	Here	is	the	implementation	of	ZombieHitBox:

import	greenfoot.*;

import	java.awt.Color;

import	java.util.*;

public	class	ZombieHitBox	extends	Actor	{

		GreenfootImage	body;

		int	offsetX;

		int	offsetY;

		Actor	host;

		

		public	ZombieHitBox(Actor	a,	int	w,	int	h,	int	dx,	int	dy,	boolean	

visible)	{

				host	=	a;

				offsetX	=	dx;



				offsetY	=	dy;

				body	=	new	GreenfootImage(w,	h);

				if(	visible	)	{

						body.setColor(Color.red);

						//	Transparency	values	range	from	0	(invisible)

						//	to	255	(opaque)

						body.setTransparency(100);

						body.fill();

				}

				setImage(body);

		}

		

		public	void	act()	{

				if(	host.getWorld()	!=	null	)	{

						setLocation(host.getX()+offsetX,	host.getY()+offsetY);

				}	else	{

						getWorld().removeObject(this);

				}

		}

		

		public	List	getHitBoxIntersections()	{

				return	getIntersectingObjects(Actor.class);

		}

}

The	constructor	for	ZombieHitBox	takes	six	parameters.	The	reason	it	takes	so	many
parameters	is	that	we	need	to	provide	the	Actor	class	to	which	it	is	attached	(the	a
parameter),	define	the	size	of	the	rectangle	to	draw	(the	w	and	h	parameters),	provide	the
offset	of	the	rectangle	from	the	provided	Actor	(the	dx	and	dy	parameters),	and	check
whether	the	hidden	sprite	is	visible	(the	visible	parameter).	In	the	constructor,	we	use
GreenfootImage(),	setColor(),	setTransparency(),	fill(),	and	setImage()	to	draw
the	hidden	sprite.	We	went	over	these	methods	previously	in	Chapter	2,	Animation.

We	use	the	act()	method	to	ensure	that	this	hidden	sprite	moves	along	with	the	Actor
class	it	is	attached	to	(we	will	call	this	the	host	actor).	To	do	this,	we	simply	call
setLocation(),	provide	the	current	x	and	y	position	of	the	host	actor	and	shift	a	little
according	to	the	offset	values	provided	in	the	constructor.	Before	doing	this,	however,	we
check	whether	the	host	has	not	been	deleted.	If	it	has,	we	delete	the	hit	box,	as	it	only	has
meaning	in	relation	to	host.	This	handles	the	case	where	an	explosion	destroys	host,	but
did	not	quite	reach	the	hit	box.

Finally,	we	provide	one	public	method	that	the	host	actor	will	use	to	get	all	the	actors	that
are	colliding	with	the	hidden	sprite.	We	named	this	method	as
getHitBoxIntersections().

Next,	we	need	to	augment	the	Zombie	class	to	use	this	new	hidden	sprite.	We	need	a
handle	on	this	hidden	sprite,	so	we	need	to	add	a	new	property	to	the	Zombie	class.	Insert
this	line	of	code	under	the	declaration	of	the	step	variable:

private	ZombieHitBox	zbh;

Next,	we	need	to	augment	the	addedToWorld()	method	to	create	and	connect
ZombieHitBox	to	Zombie.	Here	is	the	implementation	of	that	method:



protected	void	addedToWorld(World	w)	{

		stationaryX	=	getX();

		amplitude	=	Greenfoot.getRandomNumber(6)	+	2;

		zbh	=	new	ZombieHitBox(this,	10,	25,	10,	5,	true);

		getWorld().addObject(zbh,	getX(),	getY());

}

We	create	a	10	x	25	rectangle	for	our	hidden	sprite	and	initially	make	it	visible,	so	that	we
can	test	it	in	our	scenario.	Once	you	are	satisfied	with	the	placement	and	size	of	your
hidden	sprite,	you	should	change	the	visible	parameter	of	ZombieHitBox	from	true	to
false.

Now	that	we	have	created,	initialized,	and	placed	ZombieHitBox,	we	can	make	our
changes	to	canMarch()	to	demonstrate	the	use	of	the	hidden-sprite	method:

private	boolean	canMarch()	{

		if(	zbh.getWorld()	!=	null	)	{

				List<Actor>	things	=	zbh.getHitBoxIntersections();

				if(	things.size()	>	1	)	{

						int	infront	=	0;

						for(int	i=0;	i	<	things.size();	i++	)	{

								Actor	a	=	things.get(i);

								if(	a	==	this	||	a	instanceof	ZombieHitBox)

								continue;

								if(	a	instanceof	Zombie)	{

										int	toss	=

										Greenfoot.getRandomNumber(100)<50	?	1:-1;

										infront	+=	(a.getX()	>	getX())	?	1	:	0;

										if(	a.getX()	>=	getX()	)

										a.setLocation(a.getX(),a.getY()+toss);

								}	else	{

										return	false;

								}

						}

						if(	infront	>	0	)	{

								return	false;

						}	else	{

								return	true;

						}

				}

				return	true;

		}	else	{

				getWorld().removeObject(this);

		}

		return	false;

}

Unlike	previous	implementations	of	canMarch(),	we	need	to	first	ask	the	hidden	sprite	for
a	list	of	actors	colliding	with	this	zombie.	Once	we	get	that	list,	we	check	that	it	has	a	size
greater	than	one.	The	reason	why	it	needs	to	be	greater	than	one,	is	that	ZombieHitBox	will
include	the	zombie	it	is	attached	to.	If	we	are	not	colliding	with	any	other	zombies	or
actors,	we	return	true.	If	we	are	colliding	with	a	number	of	actors,	then	we	iterate	through
them	all	and	make	some	decisions	based	on	the	type	of	Actor.	If	Actor	is	this	zombie	or
an	instance	of	ZombieHitBox,	we	skip	it	and	don’t	take	any	action.	The	next	check	is



whether	or	not	Actor	is	an	instance	of	the	Zombie	class.	If	it	isn’t,	then	it	is	some	other
object,	such	as	House	or	Wall,	and	we	return	false,	so	that	we	will	not	move	forward.	If	it
is	an	instance	of	the	Zombie	class,	we	check	whether	or	not	it	is	in	front	of	this	zombie.	If
it	is,	we	shove	it	a	little	(just	as	we	did	in	the	previous	implementation	of	canMarch())	and
increment	the	infront	variable.	At	the	end	of	iterating	through	the	list	of	actors,	we	check
the	infront	variable.	If	there	were	any	zombies	in	front	of	this	zombie,	we	return	false	to
prevent	it	from	moving	forward.	Otherwise,	we	return	true.	The	outermost	if	statement
simply	checks	that	the	hitbox	(zbh)	associated	with	this	object	has	not	been	previously
destroyed	by	a	Boom	object.	If	it	has,	then	we	need	to	remove	this	object	too.

Compile	and	run	this	version	of	the	scenario.	You	should	observe	that	the	zombies	bunch
up	nicely,	push	and	shove	each	other,	yet	they	are	not	able	to	move	past	the	houses.	Using
the	hidden-sprite	method	of	collision	detection	is	a	bit	more	complex	than	the	rest,	but
gives	us	good	accuracy.





Challenge
Okay,	we	have	implemented	several	forms	of	collision	detection	in	our	zombie	simulation.
Which	method	of	collision	detection	do	you	prefer	for	this	simulation?

For	a	challenge,	create	an	Actor	ball	that	occasionally	rolls	in	from	the	left	and	knocks
zombies	out	of	the	way.	If	the	ball	hits	Wall,	have	it	do	1,000	damage	to	it.	Which	form	of
collision	detection	will	you	use	to	detect	collisions	between	the	ball	and	zombies	and
between	the	ball	and	a	wall?





Summary
Collision	detection	is	a	crucial	component	of	any	game,	simulation,	or	interactive
application.	Greenfoot	provides	built-in	methods	of	detecting	collisions.	In	this	chapter,
we	carefully	explained	each	of	these	methods	and	then	demonstrated	how	you	could	use
them	to	do	more	advanced	collision	detection.	Specifically,	we	discussed	border-based	and
hidden-sprite	techniques.	Moving	forward,	we	will	use	collision	detection	often	and	will
choose	a	method	appropriate	for	our	example.	In	the	next	chapter,	we	will	look	at
projectiles	and	will	have	ample	opportunity	to	put	into	practice	what	you	have	learned	in
this	chapter.





Chapter	4.	Projectiles
	 “Flying	is	learning	how	to	throw	yourself	at	the	ground	and	miss.” 	

	 —Douglas	Adams

Actors	in	creative	Greenfoot	applications,	such	as	games	and	animations,	often	have
movement	that	can	best	be	described	as	being	launched.	For	example,	a	soccer	ball,	bullet,
laser,	light	ray,	baseball,	and	firework	are	examples	of	this	type	of	object.	One	common
method	of	implementing	this	type	of	movement	is	to	create	a	set	of	classes	that	model
real-world	physical	properties	(mass,	velocity,	acceleration,	friction,	and	so	on)	and	have
game	or	simulation	actors	inherit	from	these	classes.	Some	refer	to	this	as	creating	a
physics	engine	for	your	game	or	simulation.	However,	this	course	of	action	is	complex	and
often	overkill.	As	you	learned	in	Chapter	2,	Animation,	there	are	often	simple	heuristics
we	can	use	to	approximate	realistic	motion.	This	is	the	approach	we	will	take	here.

In	this	chapter,	you	will	learn	about	the	basics	of	projectiles,	how	to	make	an	object
bounce,	and	a	little	about	particle	effects.	We	will	apply	what	you	learn	to	a	small	platform
game	that	we	will	build	up	over	the	course	of	this	chapter.	In	this	chapter,	we	will	cover
the	following	topics:

Gravity	and	jumping
Bouncing
Particle	effects
Bullets	and	turrets

Creating	realistic	flying	objects	is	not	simple,	but	we	will	cover	this	topic	in	a	methodical,
step-by-step	approach,	and	when	we	are	done,	you	will	be	able	to	populate	your	creative
scenarios	with	a	wide	variety	of	flying,	jumping,	and	launched	objects.	It’s	not	as	simple
as	Douglas	Adams	makes	it	sound	in	his	quote,	but	nothing	worth	learning	ever	is.



Cupcake	Counter
It	is	beneficial	to	the	learning	process	to	discuss	topics	in	the	context	of	complete
scenarios.	Doing	this	forces	us	to	handle	issues	that	might	be	elided	in	smaller,	one-off
examples.	In	this	chapter,	we	will	build	a	simple	platform	game	called	Cupcake	Counter
(shown	in	Figure	1).	We	will	first	look	at	a	majority	of	the	code	for	the	World	and	Actor
classes	in	this	game	without	showing	the	code	implementing	the	topic	of	this	chapter,	that
is,	the	different	forms	of	projectile-based	movement.	We	will	then	present	and	explain	the
missing	code	in	subsequent	sections.	This	is	the	same	approach	we	took	in	the	preceding
chapter,	in	order	to	study	collision	detection.

Figure	1:	This	is	a	screenshot	of	Cupcake	Counter



How	to	play
The	goal	of	Cupcake	Counter	is	to	collect	as	many	cupcakes	as	you	can	before	being	hit
by	either	a	ball	or	a	fountain.	The	left	and	right	arrow	keys	move	your	character	left	and
right	and	the	up	arrow	key	makes	your	character	jump.	You	can	also	use	the	space	bar	key
to	jump.	After	touching	a	cupcake,	it	will	disappear	and	reappear	randomly	on	another
platform.	Balls	will	be	fired	from	the	turret	at	the	top	of	the	screen	and	fountains	will
appear	periodically.	The	game	will	increase	in	difficulty	as	your	cupcake	count	goes	up.
The	game	requires	good	jumping	and	avoiding	skills.



Implementing	Cupcake	Counter
Create	a	scenario	called	Cupcake	Counter	and	add	each	class	to	it	as	they	are	discussed.	If
you	prefer,	you	can	download	the	initial	version	of	Cupcake	Counter	from:
http://www.packtpub.com/support

http://www.packtpub.com/support


The	CupcakeWorld	class
This	subclass	of	World	sets	up	all	the	actors	associated	with	the	scenario,	including	a
score.	It	is	also	responsible	for	generating	periodic	enemies,	generating	rewards,	and
increasing	the	difficulty	of	the	game	over	time.	The	following	is	the	code	for	this	class:

import	greenfoot.*;

import	java.util.List;

public	class	CupcakeWorld	extends	World	{

		private	Counter	score;

		private	Turret	turret;

		public	int	BCOUNT	=	200;

		private	int	ballCounter	=	BCOUNT;

		public	int	FCOUNT	=	400;

		private	int	fountainCounter	=	FCOUNT;

		private	int	level	=	0;

		

		public	CupcakeWorld()	{

				super(600,	400,	1,	false);

				setPaintOrder(Counter.class,	Turret.class,	Fountain.class,

				Jumper.class,	Enemy.class,	Reward.class,	Platform.class);

				prepare();

		}

		

		public	void	act()	{

				checkLevel();

		}

		

		private	void	checkLevel()	{

				if(	level	>	1	)	generateBalls();

				if(	level	>	4	)	generateFountains();

				if(	level	%	3	==	0	)	{

						FCOUNT--;

						BCOUNT--;

						level++;

				}

		}

		

		private	void	generateFountains()	{

				fountainCounter--;

				if(	fountainCounter	<	0	)	{

						List<Brick>	bricks	=	getObjects(Brick.class);

						int	idx	=	Greenfoot.getRandomNumber(bricks.size());

						Fountain	f	=	new	Fountain();

						int	top	=	f.getImage().getHeight()/2	+	

bricks.get(idx).getImage().getHeight()/2;

						addObject(f,	bricks.get(idx).getX(),

						bricks.get(idx).getY()-top);

						fountainCounter	=	FCOUNT;

				}

		}

		

		private	void	generateBalls()	{

				ballCounter--;



				if(	ballCounter	<	0	)	{

						Ball	b	=	new	Ball();

						turret.setRotation(15	*	-b.getXVelocity());

						addObject(b,	getWidth()/2,	0);

						ballCounter	=	BCOUNT;

				}

		}

		

		public	void	addCupcakeCount(int	num)	{

				score.setValue(score.getValue()	+	num);

				generateNewCupcake();

		}

		

		private	void	generateNewCupcake()	{

				List<Brick>	bricks	=	getObjects(Brick.class);

				int	idx	=	Greenfoot.getRandomNumber(bricks.size());

				Cupcake	cake	=	new	Cupcake();

				int	top	=	cake.getImage().getHeight()/2	+

				bricks.get(idx).getImage().getHeight()/2;

				addObject(cake,	bricks.get(idx).getX(),

				bricks.get(idx).getY()-top);

		}

		

		public	void	addObjectNudge(Actor	a,	int	x,	int	y)	{

				int	nudge	=	Greenfoot.getRandomNumber(8)	-	4;

				super.addObject(a,	x	+	nudge,	y	+	nudge);

		}

		

		private	void	prepare(){

				//	Add	Bob

				Bob	bob	=	new	Bob();

				addObject(bob,	43,	340);

				//	Add	floor

				BrickWall	brickwall	=	new	BrickWall();

				addObject(brickwall,	184,	400);

				BrickWall	brickwall2	=	new	BrickWall();

				addObject(brickwall2,	567,	400);

				//	Add	Score

				score	=	new	Counter();

				addObject(score,	62,	27);

				//	Add	turret

				turret	=	new	Turret();

				addObject(turret,	getWidth()/2,	0);

				//	Add	cupcake

				Cupcake	cupcake	=	new	Cupcake();

				addObject(cupcake,	450,	30);

				//	Add	platforms

				for(int	i=0;	i<5;	i++)	{

						for(int	j=0;	j<6;	j++)	{

								int	stagger	=	(i	%	2	==	0	)	?	24	:	-24;

								Brick	brick	=	new	Brick();

								addObjectNudge(brick,	stagger	+	(j+1)*85,	(i+1)*62);

						}

				}

		}

}



Let’s	discuss	the	methods	in	this	class	in	order.	First,	we	have	the	class	constructor
CupcakeWorld().	After	calling	the	constructor	of	the	superclass,	it	calls	setPaintOrder()
to	set	the	actors	that	will	appear	in	front	of	other	actors	when	displayed	on	the	screen.	You
were	introduced	to	setPaintOrder()	in	Chapter	2,	Animation.	The	main	reason	why	we
use	it	here,	is	so	that	no	actor	will	cover	up	the	Counter	class,	which	is	used	to	display	the
score.	Next,	the	constructor	method	calls	prepare()	to	add	and	place	the	initial	actors	into
the	scenario.	We	will	discuss	the	prepare()	method	later	in	this	section.

Inside	the	act()	method,	we	will	only	call	the	function	checkLevel().	As	the	player
scores	points	in	the	game,	the	level	variable	of	the	game	will	also	increase.	The
checkLevel()	function	will	change	the	game	a	bit	according	to	its	level	variable.	When
our	game	first	starts,	no	enemies	are	generated	and	the	player	can	easily	get	the	cupcake
(the	reward).	This	gives	the	player	a	chance	to	get	accustomed	to	jumping	on	platforms.
As	the	cupcake	count	goes	up,	balls	and	fountains	will	be	added.	As	the	level	continues	to
rise,	checkLevel()	reduces	the	delay	between	creating	balls	(BCOUNT)	and	fountains
(FCOUNT).	The	level	variable	of	the	game	is	increased	in	the	addCupcakeCount()	method,
which	we	will	discuss	in	detail	soon.

The	generateFountains()	method	adds	a	Fountain	actor	to	the	scenario.	The	rate	at
which	we	create	fountains	is	controlled	by	the	delay	variable	(refer	to,	Chapter	2,
Animation	to	review)	fountainContainer.	After	the	delay,	we	create	a	fountain	on	a
randomly	chosen	Brick	(the	platforms	in	our	game).	The	getObjects()	method	returns	all
of	the	actors	of	a	given	class	presently	in	the	scenario.	We	then	use	getRandomNumber()	to
randomly	choose	a	number	between	one	and	the	number	of	Brick	actors.	Next,	we	use
addObject()	to	place	the	new	Fountain	object	on	the	randomly	chosen	Brick	object.

Generating	balls	using	the	generateBalls()	method	is	a	little	easier	than	generating
fountains.	All	balls	are	created	in	the	same	location	as	the	turret	at	the	top	of	the	screen
and	sent	from	there	with	a	randomly	chosen	trajectory.	The	rate	at	which	we	generate	new
Ball	actors	is	defined	by	the	delay	variable	ballCounter.	Once	we	create	a	Ball	actor,	we
rotate	the	turret	based	on	its	x	velocity.	By	doing	this,	we	create	the	illusion	that	the
turret	is	aiming	and	then	firing	Ball	Actor.	Last,	we	place	the	newly	created	Ball	actor
into	the	scenario	using	the	addObject()	method.

The	addCupcakeCount()	method	is	called	by	the	actor	representing	the	player	(Bob)	every
time	the	player	collides	with	Cupcake.	In	this	method,	we	increase	score	and	then	call
generateNewCupcake()	to	add	a	new	Cupcake	actor	to	the	scenario.	The
generateNewCupcake()	method	is	very	similar	to	generateFountains(),	except	for	the
lack	of	a	delay	variable,	and	it	randomly	places	Cupcake	on	one	of	the	bricks	instead	of	a
Fountain	actor.	In	Chapter	1,	Let’s	Dive	Right	in…,	we	demonstrated	how	to	create	a
game	score	using	the	Counter	class,	a	class	you	can	import	into	your	scenario.	Please	refer
to	that	chapter	for	more	details.

In	all	of	our	previous	scenarios,	we	used	a	prepare()	method	to	add	actors	to	the
scenario.	The	major	difference	between	this	prepare()	method	and	the	previous	ones,	is
that	we	use	the	addObjectNudge()	method	instead	of	addObject()	to	place	our	platforms.
The	addObjectNudge()	method	simply	adds	a	little	randomness	to	the	placement	of	the



platforms,	so	that	every	new	game	is	a	little	different.	The	random	variation	in	the
platforms	will	cause	the	Ball	actors	to	have	different	bounce	patterns	and	require	the
player	to	jump	and	move	a	bit	more	carefully.	In	the	call	to	addObjectNudge(),	you	will
notice	that	we	used	the	numbers	85	and	62.	These	are	simply	numbers	that	spread	the
platforms	out	appropriately,	and	they	were	discovered	through	trial	and	error.

I	created	a	blue	gradient	background	to	use	for	the	image	of	CupcakeWorld.	Feel	free	to
use	this	from	the	sample	code	you	can	download,	create	your	own	background	image,	or
use	one	of	the	background	images	provided	that	come	with	Greenfoot.



Enemies
In	Cupcake	Counter,	all	of	the	actors	that	can	end	the	game	if	collided	with	are	subclasses
of	the	Enemy	class.	Using	inheritance	is	a	great	way	to	share	code	and	reduce	redundancy
for	a	group	of	similar	actors.	However,	we	often	will	create	class	hierarchies	in	Greenfoot
solely	for	polymorphism.	Polymorphism	refers	to	the	ability	of	a	class	in	an	object-
orientated	language	to	take	on	many	forms.	We	are	going	to	use	it,	so	that	our	player	actor
only	has	to	check	for	collision	with	an	Enemy	class	and	not	every	specific	type	of	Enemy,
such	as	Ball	or	RedBall.	Also,	by	coding	this	way,	we	are	making	it	very	easy	to	add	code
for	additional	enemies,	and	if	we	find	that	our	enemies	have	redundant	code,	we	can	easily
move	that	code	into	our	Enemy	class.	In	other	words,	we	are	making	our	code	extensible
and	maintainable.

Here	is	the	code	for	our	Enemy	class:

import	greenfoot.*;

public	abstract	class	Enemy	extends	Actor	{

}

The	Ball	class	extends	the	Enemy	class.	Since	Enemy	is	solely	used	for	polymorphism,	the
Ball	class	contains	all	of	the	code	necessary	to	implement	bouncing	and	an	initial
trajectory.	Here	is	the	code	for	this	class:

import	greenfoot.*;

public	class	Ball	extends	Enemy	{

		protected	int	actorHeight;

		private	int	speedX	=	0;

		

		public	Ball()	{

				actorHeight	=	getImage().getHeight();

				speedX	=	Greenfoot.getRandomNumber(8)	-	4;

				if(	speedX	==	0	)	{

						speedX	=	Greenfoot.getRandomNumber(100)	<	50	?	-1	:	1;

				}

		}

		

		public	void	act()	{

				checkOffScreen();

		}

		

		public	int	getXVelocity()	{

				return	speedX;

		}

		

		private	void	checkOffScreen()	{

				if(	getX()	<	-20	||	getX()	>	getWorld().getWidth()	+	20	)	{

						getWorld().removeObject(this);

				}	else	if(	getY()	>	getWorld().getHeight()	+	20	)	{

						getWorld().removeObject(this);

				}

		}



}

The	implementation	of	Ball	is	missing	the	code	to	handle	moving	and	bouncing.	As	we
stated	earlier,	we	will	go	over	all	the	projectile-based	code	after	providing	the	code	we	are
using	as	the	starting	point	for	this	game.	In	the	Ball	constructor,	we	randomly	choose	a
speed	in	the	x	direction	and	save	it	in	the	speedX	instance	variable.	We	have	included	one
accessory	method	to	return	the	value	of	speedX	(getXVelocity()).	Last,	we	include
checkOffScreen()	to	remove	Ball	once	it	goes	off	screen.	If	we	do	not	do	this,	we	would
have	a	form	of	memory	leak	in	our	application	because	Greenfoot	will	continue	to	allocate
resources	and	manage	any	actor	until	it	is	removed	from	the	scenario.	For	the	Ball	class,	I
choose	to	use	the	ball.png	image,	which	comes	with	the	standard	installation	of
Greenfoot.

In	this	chapter,	we	will	learn	how	to	create	a	simple	particle	effect.	Creating	an	effect	is
more	about	the	use	of	a	particle	as	opposed	to	its	implementation.	In	the	following	code,
we	create	a	generic	particle	class,	Particles,	that	we	will	extend	to	create	a	RedBall
particle.	We	have	organized	the	code	in	this	way	to	easily	accommodate	adding	particles
in	the	future.	Here	is	the	code:

import	greenfoot.*;

public	class	Particles	extends	Enemy	{

		private	int	turnRate	=	2;

		private	int	speed	=	5;

		private	int	lifeSpan	=	50;

		

		public	Particles(int	tr,	int	s,	int	l)	{

				turnRate	=	tr;

				speed	=	s;

				lifeSpan	=	l;

				setRotation(-90);

		}

		

		public	void	act()	{

				move();

				remove();

		}

		

		private	void	move()	{

				move(speed);

				turn(turnRate);

		}

		

		private	void	remove()	{

				lifeSpan--;

				if(	lifeSpan	<	0	)	{

						getWorld().removeObject(this);

				}

		}

}

Our	particles	are	implemented	to	move	up	and	slightly	turn	each	call	of	the	act()	method.
A	particle	will	move	lifeSpan	times	and	then	remove	itself.	As	you	might	have	guessed,



lifeSpan	is	another	use	of	a	delay	variable.	The	turnRate	property	can	be	either	positive
(to	turn	slightly	right)	or	negative	(to	turn	slightly	left).

We	only	have	one	subclass	of	Particles,	RedBall.	This	class	supplies	the	correct	image
for	RedBall,	supplies	the	required	input	for	the	Particles	constructor,	and	then	scales	the
image	according	to	the	parameters	scaleX	and	scaleY.	Here’s	the	implementation:

import	greenfoot.*;

public	class	RedBall	extends	Particles	{

		public	RedBall(int	tr,	int	s,	int	l,	int	scaleX,	int	scaleY)	{

				super(tr,	s,	l);

				getImage().scale(scaleX,	scaleY);

		}

}

For	RedBall,	I	used	the	Greenfoot-supplied	image	red-draught.png.



Fountains
In	this	game,	fountains	add	a	unique	challenge.	After	reaching	level	five	(see	the	World
class	CupcakeWorld),	Fountain	objects	will	be	generated	and	randomly	placed	in	the
game.	Figure	2	shows	a	fountain	in	action.	A	Fountain	object	continually	spurts	RedBall
objects	into	the	air	like	water	from	a	fountain.

Figure	2:	This	is	a	close-up	of	a	Fountain	object	in	the	game	Cupcake	Counter

Let’s	take	a	look	at	the	code	that	implements	the	Fountain	class:

import	greenfoot.*;

import	java.awt.Color;

public	class	Fountain	extends	Actor	{

		private	int	lifespan	=	75;

		private	int	startDelay	=	100;

		private	GreenfootImage	img;

		

		public	Fountain()	{

				img	=	new	GreenfootImage(20,20);

				img.setColor(Color.blue);

				img.setTransparency(100);

				img.fill();

				setImage(img);

		}

		

		public	void	act()	{

				if(	--startDelay	==	0	)	wipeView();

				if(	startDelay	<	0	)	createRedBallShower();

		}

		

		private	void	wipeView()	{

				img.clear();

		}

		

		private	void	createRedBallShower()	{

		}

}

The	constructor	for	Fountain	creates	a	new	blue,	semitransparent	square	and	sets	that	to
be	its	image.	We	start	with	a	blue	square	to	give	the	player	of	the	game	a	warning	that	a



fountain	is	about	to	erupt.	Since	fountains	are	randomly	placed	at	any	location,	it	would	be
unfair	to	just	drop	one	on	our	player	and	instantly	end	the	game.	This	is	also	why	RedBall
is	a	subclass	of	Enemy	and	Fountain	is	not.	It	is	safe	for	the	player	to	touch	the	blue
square.	The	startDelay	delay	variable	is	used	to	pause	for	a	short	amount	of	time,	then
remove	the	blue	square	(using	the	function	wipeView()),	and	then	start	the	RedBall
shower	(using	the	createRedBallShower()	function).	We	can	see	this	in	the	act()
method.	The	implementation	for	createRedBallShower()	is	given	and	explained	in	the
Particle	effects	section	to	come	ahead	in	the	chapter.



Turrets
In	the	game,	there	is	a	turret	in	the	top-middle	of	the	screen	that	shoots	purple	bouncy
balls	at	the	player.	It	is	shown	in	Figure	1.	Why	do	we	use	a	bouncy-ball	shooting	turret?
Because	this	is	our	game	and	we	can!	The	implementation	of	the	Turret	class	is	very
simple.	Most	of	the	functionality	of	rotating	the	turret	and	creating	Ball	to	shoot	is
handled	by	CupcakeWorld	in	the	generateBalls()	method	already	discussed.	The	main
purpose	of	this	class	is	to	just	draw	the	initial	image	of	the	turret,	which	consists	of	a	black
circle	for	the	base	of	the	turret	and	a	black	rectangle	to	serve	as	the	cannon.	Here	is	the
code:

import	greenfoot.*;

import	java.awt.Color;

public	class	Turret	extends	Actor	{

		private	GreenfootImage	turret;

		private	GreenfootImage	gun;

		private	GreenfootImage	img;

		

		public	Turret()	{

				turret	=	new	GreenfootImage(30,30);

				turret.setColor(Color.black);

				turret.fillOval(0,0,30,30);

				

				gun	=	new	GreenfootImage(40,40);

				gun.setColor(Color.black);

				gun.fillRect(0,0,10,35);

				

				img	=	new	GreenfootImage(60,60);

				img.drawImage(turret,	15,	15);

				img.drawImage(gun,	25,	30);

				img.rotate(0);

				

				setImage(img);

		}

}

We	previously	talked	about	the	GreenfootImage	class	and	how	to	use	some	of	its	methods
to	do	custom	drawing.	One	new	function	we	introduced	is	drawImage().	This	method
allows	you	to	draw	one	GreenfootImage	into	another.	This	is	how	you	compose	images,
and	we	used	it	to	create	our	turret	from	a	rectangle	image	and	a	circle	image.



Rewards
We	create	a	Reward	class	for	the	same	reason	we	created	an	Enemy	class.	We	are	setting
ourselves	up	to	easily	add	new	rewards	in	the	future.	(later	in	the	chapter,	we	will	assign
this	as	an	exercise).	Here	is	the	code:

import	greenfoot.*;	

public	abstract	class	Reward	extends	Actor	{

}

The	Cupcake	class	is	a	subclass	of	the	Reward	class	and	represents	the	object	on	the	screen
the	player	is	constantly	trying	to	collect.	However,	cupcakes	have	no	actions	to	perform	or
state	to	keep	track	of;	therefore,	its	implementation	is	simple:

import	greenfoot.*;

public	class	Cupcake	extends	Reward	{

}

When	creating	this	class,	I	set	its	image	to	be	muffin.png.	This	is	an	image	that	comes
with	Greenfoot.	Even	though	the	name	of	the	image	is	a	muffin,	it	still	looks	like	a
cupcake	to	me.



Jumpers
The	Jumper	class	is	a	class	that	will	allow	all	subclasses	of	it	to	jump	when	pressing	either
the	up	arrow	key	or	the	spacebar.	Most	of	the	body	of	this	class	will	be	implemented	in	the
Gravity	and	jumping	section	to	come	ahead	in	the	chapter.	At	this	point,	we	just	provide	a
placeholder	implementation:

import	greenfoot.*;

public	abstract	class	Jumper	extends	Actor

{

		protected	int	actorHeight;

		

		public	Jumper()	{

				actorHeight	=	getImage().getHeight();

		}

		

		public	void	act()	{

				handleKeyPresses();

		}

		

		protected	void	handleKeyPresses()	{

		}

}

The	next	class	we	are	going	to	present	is	the	Bob	class.	The	Bob	class	extends	the	Jumper
class	and	then	adds	functionality	to	let	the	player	move	it	left	and	right.	It	also	uses
animation	techniques	discussed	in	Chapter	2,	Animation	to	make	it	look	as	though	it	is
actually	walking.	Here	is	the	code:

import	greenfoot.*;

public	class	Bob	extends	Jumper	{

		private	int	speed	=	3;

		private	int	animationDelay	=	0;

		private	int	frame	=	0;

		private	GreenfootImage[]	leftImages;

		private	GreenfootImage[]	rightImages;

		private	int	actorWidth;

		

		private	static	final	int	DELAY	=	3;

		

		public	Bob()	{

				super();

				

				rightImages	=	new	GreenfootImage[5];

				leftImages	=	new	GreenfootImage[5];

				

				for(	int	i=0;	i<5;	i++	)	{

						rightImages[i]	=	new	GreenfootImage("images/Dawson_Sprite_Sheet_0"	+	

Integer.toString(3+i)	+	".png");

						leftImages[i]	=	new	GreenfootImage(rightImages[i]);

						leftImages[i].mirrorHorizontally();

				}



				

				actorWidth	=	getImage().getWidth();

		}

		

		public	void	act()	{

				super.act();

				checkDead();

				eatReward();

		}

		

		private	void	checkDead()	{

				Actor	enemy	=	getOneIntersectingObject(Enemy.class);

				if(	enemy	!=	null	)	{

						endGame();

				}

		}

		

		private	void	endGame()	{

				Greenfoot.stop();

		}

		

		private	void	eatReward()	{

				Cupcake	c	=	(Cupcake)	getOneIntersectingObject(Cupcake.class);

				if(	c	!=	null	)	{

						CupcakeWorld	rw	=	(CupcakeWorld)	getWorld();

						rw.removeObject(c);

						rw.addCupcakeCount(1);

				}

		}

		

		//	Called	by	superclass

		protected	void	handleKeyPresses()	{

				super.handleKeyPresses();

				

				if(	Greenfoot.isKeyDown("left")	)	{

						if(	canMoveLeft()	)	{moveLeft();}

				}

				if(	Greenfoot.isKeyDown("right")	)	{

						if(	canMoveRight()	)	{moveRight();}

				}

		}

		

		private	boolean	canMoveLeft()	{

				if(	getX()	<	5	)	return	false;

				return	true;

		}

		

		private	void	moveLeft()	{

				setLocation(getX()	-	speed,	getY());

				if(	animationDelay	%	DELAY	==	0	)	{

						animateLeft();

						animationDelay	=	0;

				}

				animationDelay++;

		}

		



		private	void	animateLeft()	{

				setImage(	leftImages[frame++]);

				frame	=	frame	%	5;

				actorWidth	=	getImage().getWidth();

		}

		

		private	boolean	canMoveRight()	{

				if(	getX()	>	getWorld().getWidth()	-	5)	return	false;

				return	true;

		}

		

		private	void	moveRight()	{

				setLocation(getX()	+	speed,	getY());

				if(	animationDelay	%	DELAY	==	0	)	{

						animateRight();

						animationDelay	=	0;

				}

				animationDelay++;

		}

		

		private	void	animateRight()	{

				setImage(	rightImages[frame++]);

				frame	=	frame	%	5;

				actorWidth	=	getImage().getWidth();

		}

}

Like	CupcakeWorld,	this	class	is	substantial.	We	will	discuss	each	method	it	contains
sequentially.	First,	the	constructor’s	main	duty	is	to	set	up	the	images	for	the	walking
animation.	This	type	of	animation	was	discussed	in	Chapter	2,	Animation	in	the	Hurting
the	avatar	section	and	again	in	Chapter	3,	Collision	Detection	in	the	Detecting	a	collision
with	multiple	objects	section.	The	images	came	from	www.wikia.com	and	were	supplied,
in	the	form	of	a	sprite	sheet,	by	the	user	Mecha	Mario.	A	direct	link	to	the	sprite	sheet	is
http://smbz.wikia.com/wiki/File:Dawson_Sprite_Sheet.PNG.	Note	that	I	manually	copied
and	pasted	the	images	I	used	from	this	sprite	sheet	using	my	favorite	image	editor.

Note
Free	Internet	resources

Unless	you	are	also	an	artist	or	a	musician	in	addition	to	being	a	programmer,	you	are
going	to	be	hard	pressed	to	create	all	of	the	assets	you	need	for	your	Greenfoot	scenario.	If
you	look	at	the	credits	for	AAA	video	games,	you	will	see	that	the	number	of	artists	and
musicians	actually	equal	or	even	outnumber	the	programmers.

Luckily,	the	Internet	comes	to	the	rescue.	There	are	a	number	of	websites	that	supply
legally	free	assets	you	can	use.	For	example,	the	website	I	used	to	get	the	images	for	the
Bob	class	supplies	free	content	under	the	Creative	Commons	Attribution-Share	Alike
License	3.0	(Unported)	(CC-BY-SA)	license.	It	is	very	important	that	you	check	the
licensing	used	for	any	asset	you	download	off	the	Internet	and	follow	those	user
agreements	carefully.	In	addition,	make	sure	that	you	fully	credit	the	source	of	your	assets.
For	games,	you	should	include	a	Credits	screen	to	cite	all	the	sources	for	the	assets	you

http://www.wikia.com
http://smbz.wikia.com/wiki/File:Dawson_Sprite_Sheet.PNG


used.

The	following	are	some	good	sites	for	free,	online	assets:

www.wikia.com
newgrounds.com
http://incompetech.com
opengameart.org
untamed.wild-refuge.net/rpgxp.php

Next,	we	have	the	act()	method.	It	first	calls	the	act()	method	of	its	superclass.	It	needs
to	do	this	so	that	we	get	the	jumping	functionality	that	is	supplied	by	the	Jumper	class.
Then,	we	call	checkDead()	and	eatReward().	The	checkDead()method	ends	the	game	if
this	instance	of	the	Bob	class	touches	an	enemy,	and	eatReward()	adds	one	to	our	score,
by	calling	the	CupcakeWorld	method	addCupcakeCount(),	every	time	it	touches	an
instance	of	the	Cupcake	class.

The	rest	of	the	class	implements	moving	left	and	right.	The	main	method	for	this	is
handleKeyPresses().	Like	in	act(),	the	first	thing	we	do,	is	call	handleKeyPresses()
contained	in	the	Jumper	superclass.	This	runs	the	code	in	Jumper	that	handles	the	spacebar
and	up	arrow	key	presses.	The	key	to	handling	key	presses	is	the	Greenfoot	method
isKeyDown()	(see	the	following	information	box).	We	use	this	method	to	check	if	the	left
arrow	or	right	arrow	keys	are	presently	being	pressed.	If	so,	we	check	whether	or	not	the
actor	can	move	left	or	right	using	the	methods	canMoveLeft()	and	canMoveRight(),
respectively.	If	the	actor	can	move,	we	then	call	either	moveLeft()	or	moveRight().

Note
Handling	key	presses	in	Greenfoot

In	the	preface	of	the	book,	we	explained	that	we	assumed	that	you	have	some	experience
with	Greenfoot	and	have,	minimally,	completed	the	tutorials	located	on	the	page:
http://www.greenfoot.org/doc

The	second	tutorial	explains	how	to	control	actors	with	the	keyboard.	To	refresh	your
memory,	we	are	going	to	present	some	information	on	the	keyboard	control	here.

The	primary	method	we	use	in	implementing	keyboard	control	is	isKeyDown().	This
method	provides	a	simple	way	to	check	whether	a	certain	key	is	being	pressed.	Here	is	an
excerpt	from	Greenfoot’s	documentation:

public	static	boolean	isKeyDown(java.lang.String	keyName)

Check	whether	a	given	key	is	currently	pressed	down.

Parameters:

keyName:This	is	the	name	of	the	key	to	check.

This	returns	:	true	if	the	key	is	down.

Using	isKeyDown()	is	easy.	The	ease	of	capturing	and	using	input	is	one	of	

the	major	strengths	of	Greenfoot.	Here	is	example	code	that	will	pause	the	

execution	of	the	game	if	the	"p"	key	is	pressed:

http://www.wikia.com
http://newgrounds.com
http://incompetech.com
http://opengameart.org
http://untamed.wild-refuge.net/rpgxp.php
http://www.greenfoot.org/doc


if(	Greenfoot.isKeyDown("p")	{

		Greenfoot.stop();

}

Next,	we	will	discuss	canMoveLeft(),	moveLeft(),	and	animateLeft().	The
canMoveRight(),	moveRight(),	and	animateRight()methods	mirror	their	functionality
and	will	not	be	discussed.	The	sole	purpose	of	canMoveLeft()	is	to	prevent	the	actor	from
walking	off	the	left-hand	side	of	the	screen.	The	moveLeft()	method	moves	the	actor
using	setLocation()	and	then	animates	the	actor	to	look	as	though	it	is	moving	to	the
left-hand	side.	It	uses	a	delay	variable	to	make	the	walking	speed	look	natural	(not	too
fast).	The	animateLeft()	method	sequentially	displays	the	walking-left	images.	This	is
the	same	animation	strategy	we	saw	in	Chapter	2,	Animation.



Platforms
The	game	contains	several	platforms	that	the	player	can	jump	or	stand	on.	The	platforms
perform	no	actions	and	only	serve	as	placeholders	for	images.	We	use	inheritance	to
simplify	collision	detection.	Here	is	the	implementation	of	Platform:

import	greenfoot.*;	

public	class	Platform	extends	Actor	{

}

Here’s	the	implementation	of	BrickWall:

import	greenfoot.*;	

public	class	BrickWall	extends	Platform	{

}

Here’s	the	implementation	of	Brick:

import	greenfoot.*;	

public	class	Brick	extends	Platform	{

}



Test	it	out
You	should	now	be	able	to	compile	and	test	Cupcake	Counter.	Make	sure	you	handle	any
typos	or	other	errors	you	introduced	while	inputting	the	code.	For	now,	you	can	only	move
left	and	right.	Check	out	Bob	walking.	Pretty	cool!	Everything	else	depends	on	some	of	the
code	we	left	out	of	the	preceding	implementations.	We	will	fill	out	that	missing	code	next.
Let’s	launch	some	actors.



Your	assignment
Consider	one	of	the	locations	we	left	out	of	the	previous	code.	Try	to	supply	the	code
yourself.	How	would	you	start?	My	suggestion	would	be	to	start	with	pencil	and	paper.
Draw	some	figures	and	imagine	the	steps	that	you	would	need	to	perform	to	implement
the	functionality.	Translate	these	steps	to	Java	code	and	try	them	out.	Doing	this	will	help
you	better	understand	and	process	the	upcoming	solutions,	even	if	your	solution	was
incorrect.





Launching	actors
We	are	going	to	take	the	preceding	incomplete	implementation	and	turn	it	into	a	game	by
adding	jumping,	bouncing,	a	particle	effect,	and	bullets	fired	from	a	turret.



Gravity	and	jumping
Presently,	our	player	character	is	stuck	at	the	bottom	of	the	screen.	We	are	going	to	fill	in
the	missing	code	in	the	Jumper	class	and	the	Bob	class	to	enable	our	character	to	jump	and
finally	have	a	way	to	reach	the	cupcake	reward	at	the	top	of	the	screen.	Jumping	is
applying	a	force	to	move	an	object	upwards.	We	are	also	going	to	need	a	downwards	force
operating	on	the	object,	in	order	for	it	to	fall	back	down.	As	in	real	life,	we	are	going	to
call	this	force	gravity.	The	changes	to	the	Jumper	class	are	so	extensive	that	we	are	going
to	first	look	at	the	complete	implementation	and	then	discuss	it	afterwards.	Here’s	the
code:

import	greenfoot.*;

public	abstract	class	Jumper	extends	Actor

{

		protected	int	actorHeight;

		private	int	fallSpeed	=	0;

		private	boolean	jumping	=	false;

		

		//	Class	Constants

		protected	static	final	int	GRAVITY	=	1;

		protected	static	final	int	JUMPSTRENGTH	=	12;

		

		public	Jumper()	{

				actorHeight	=	getImage().getHeight();

		}

		

		public	void	act()	{

				handleKeyPresses();

				standOrFall();

		}

		

		protected	void	handleKeyPresses()	{

				if(	(Greenfoot.isKeyDown("space")	||

				Greenfoot.isKeyDown("up"))	&&	!jumping)	{

						jump();

				}

		}

		

		private	void	jump()	{

				fallSpeed	=	-JUMPSTRENGTH;

				jumping	=	true;

				fall();

		}

		

		private	void	standOrFall()	{

				if(	inAir()	)	{

						checkHead();

						fall();

						checkLanding();

				}	else	{

						fallSpeed	=	0;

						jumping	=	false;



				}

		}

		

		private	void	checkHead()	{

				int	actorHead	=	-actorHeight/2;

				int	step	=	0;

				while(	fallSpeed	<	0	&&	step	>	fallSpeed

				&&	getOneObjectAtOffset(0,	actorHead	+	step,

				Platform.class)	==	null	)	{

						step--;

				}

				if(	fallSpeed	<	0	)	{

						fallSpeed	=	step;

				}

		}

		

		private	void	checkLanding()	{

				int	actorFeet	=	actorHeight/2;

				int	step	=	0;

				while(	fallSpeed	>	0	&&	step	<	fallSpeed

				&&	getOneObjectAtOffset(0,	actorFeet	+	step,

				Platform.class)	==	null	)	{

						step++;

				}

				if(	fallSpeed	>	0	)	{

						fallSpeed	=	step;

				}

		}

		

		private	boolean	inAir()	{

				Actor	platform	=	getOneObjectAtOffset(0,

				getImage().getHeight()/2,	Platform.class);

				return	platform	==	null;

		}

		

		private	void	fall()	{

				setLocation(getX(),	getY()	+	fallSpeed);

				fallSpeed	=	fallSpeed	+	GRAVITY;

		}

}

Please	note	that	we	have	added	two	new	instance	variables	(fallSpeed	and	jumping)	and
two	static	constants	(GRAVITY	and	JUMPSTRENGTH).	These	new	variables	will	be	used
throughout	our	code.	In	our	act()	method,	we	added	the	standOrFall()	method.	This
method	is	responsible	for	applying	gravity	and	detecting	collisions	(both	for	the	head	and
feet	of	the	actor).	Before	looking	at	that	method	further,	let’s	look	at	the	completed
implementation	of	handleKeyPresses().	In	this	method,	we	detect	whether	the	space	bar
or	up	arrow	key	was	pressed	and	call	jump()	if	it	was.	You	will	notice	that	the	if
statement	also	contains	a	check	to	see	whether	the	Boolean	variable	jumping	is	false.	We
need	this	check	to	prevent	double	jumping	(jumping	again	while	in	the	middle	of	a	jump).
The	jump()	method	changes	fallSpeed	to	a	negative	value.	This	applies	a	force	in	the	up
direction	on	the	actor.	We	set	jumping	to	true	(as	we	are	now	in	a	jumping	state)	and	then
call	fall().	The	fall()	method	applies	gravity	to	an	actor.	In	this	method,	we	can	see



how	a	negative	value	of	fallSpeed	will	propel	the	actor	upwards.

The	value	of	fallSpeed	has	GRAVITY	added	to	it	until	it	becomes	positive.	This	will	create
a	parabola-like	motion,	as	shown	in	Figure	3.

Figure	3:	This	is	the	implementation	of	falling

Let’s	look	at	the	implementation	of	standOrFall().	The	first	thing	we	need	to	check	is
whether	or	not	we	are	presently	standing	on	a	Platform	object.	We	use	the	method
inAir()	to	do	this	check.	This	method	uses	getOneObjectAtOffset()	(see	Chapter	3,
Collision	Detection)	to	check	whether	the	bottom	of	the	actor	is	touching	a	Platform
object	and	returns	false	if	it	is.	In	standOrFall(),	we	do	three	things	if	we	have
determined	that	we	are	in	the	air.	We	check	to	see	whether	the	top	or	bottom	of	the	actor	is
colliding	with	Platform	and	call	the	fall()	method	if	it	is.	The	methods	checkHead()
and	checkLanding()	are	similar.	They	are	both	used	in	border-based	collision	detection,
as	discussed	in	Chapter	3,	Collision	Detection,	to	detect	at	exactly	which	pixel	location	the
collision	occurred.	They	then	change	the	value	of	fallSpeed,	so	that	the	actor	stops	at	the
point	of	collision.	If	we	detect	that	we	are	not	in	the	air	in	standOrFall(),	then	we	are
standing	on	a	platform	and	can	set	fallSpeed	to	0	(not	falling)	and	jumping	to	false	(not
jumping).



Bouncing
Bouncing	actors	look	great	and	really	add	a	nice	dimension	to	any	game.	In	the	mind	of
the	player,	they	propel	your	game	from	a	flat	arrangement	of	pixels	to	a	rich	world	in
which	objects	obey	the	natural	laws	of	physics.	In	Cupcake	Counter,	the	balls	shot	from
the	turret	bounce.	Bouncing	is	implemented	in	the	Ball	class.	First,	add	the	following
instance	variables	to	your	existing	Ball	class:

private	int	fallSpeed	=	0;

protected	static	final	int	GRAVITY	=	1;	

Next,	we	need	to	add	code	to	the	act()	method	that	will	cause	an	instance	of	the	class	to
fall	or	bounce	if	it	hits	an	object.	Change	your	act()	method	to	the	following:

public	void	act()	{

		fallOrBounce();

		checkOffScreen();

}

The	fallOrBounce()	method	is	going	to	be	complex,	but	we	are	going	to	use	functional
decomposition	(break	it	up	into	smaller	methods)	to	manage	the	complexity	and	make	our
code	more	readable.	Here	is	its	implementation:

private	void	fallOrBounce()	{

		if(	fallSpeed	<=	0)	{

				checkHead();

		}	else	{

				checkLanding();

		}

}

We	have	reduced	the	implementation	of	fallOrBounce()	to	checking	whether	we	are
about	to	hit	our	head	or	checking	whether	we	are	about	to	land	on	a	platform.	We	choose
between	the	two	checks	based	on	the	value	of	fallSpeed.	If	fallSpeed	is	negative,	then
we	are	moving	upwards	and	there	is	no	need	to	check	for	landing	at	this	point.	Here	is	the
implementation	of	checkHead():

private	void	fallOrBounce()	{

		if(	fallSpeed	<=	0)	{

				checkHead();

		}	else	{

				checkLanding();

		}

}

private	void	checkHead()	{

		int	actorHead	=	-actorHeight/2;

		int	step	=	0;

		int	oldFallSpeed;

		while(	fallSpeed	<	0	&&	step	>	fallSpeed	&&

		getOneObjectAtOffset(	0,	actorHead	+	step,

		Platform.class)	==	null	)	{

				step--;

		}



		if(	step	>	fallSpeed	)	{

				if(	fallSpeed	<	0	)	{

						handleBounce(step);

				}

		}	else	{

				fall(speedX);

		}

}

The	checkHead()	method	uses	border-based	collision	detection	(discussed	in	Chapter	3,
Collision	Detection)	to	detect	exactly	when	the	top	of	the	object	touches	a	platform.	If
step	ends	up	being	greater	than	fallSpeed,	then	no	collision	occurred	and	we	can
continue	letting	gravity	affect	our	trajectory	by	calling	fall().	If	step	is	less	than
fallSpeed,	then	we	hit	our	head	on	a	platform	and	we	need	to	handle	bouncing	off	this
platform	by	calling	handleBounce().	Here	is	the	implementation	of	handleBounce().

private	void	handleBounce(int	step)	{

		int	oldFallSpeed	=	fallSpeed;

		fallSpeed	=	step;	

		fall(0);

		oldFallSpeed	=	(int)(oldFallSpeed	*	0.7);

		fallSpeed	=	step	-	oldFallSpeed;

		fall(0);

		fallSpeed	=	-oldFallSpeed;

}

This	method	handles	a	bounce	by	breaking	it	up	into	two	main	phases.	The	first	phase
handles	the	motion	between	the	actor	and	the	platform.	The	second	phase	handles
travelling	from	the	platform	to	the	end	location.	The	phases	are	shown	in	Figure	4.

Figure	4:	This	shows	the	two	main	phases	in	handling	a	bounce.	Phase	1	is	the	motion
leading	up	to	the	impact	and	Phase	2	is	the	motion	after	impact

In	the	first	phase,	we	move	the	ball	to	the	point	of	collision	by	setting	fallSpeed	to	step
and	calling	fall(0).	We	will	look	at	the	implementation	of	fall()	soon.	For	now,	it	is
enough	to	know	that	fall(0)	calls	setLocation()	to	move	the	ball	and	updates
fallSpeed	by	applying	the	affects	of	gravity.	In	the	second	phase	of	handleBounce(),	we
multiply	by	0.7	in	order	to	simulate	the	loss	of	energy	that	occurs	in	an	impact.	There	is
nothing	magical	or	scientific	about	0.7.	It	just	looked	right	when	tested.	We	then	move	the
remaining	distance	of	our	inertia	(step	–	oldFallSpeed)	by	calling	fall(0)	again.	The



bounce	has	changed	our	falling	direction,	so	the	last	thing	we	do	is	update	fallSpeed	to
reflect	this	change.

Since	we	just	used	the	fall()	method,	let	us	look	at	that	next:

private	void	fall(int	dx)	{

		setLocation(getX()	+	dx,	getY()	+	fallSpeed);

		fallSpeed	=	fallSpeed	+	GRAVITY;

}

As	mentioned	earlier,	fall()	moves	the	actor	using	setLocation()	according	to	its	speed
in	the	x	direction	and	how	fast	it	is	falling.	The	instance	variable	fallSpeed	is	updated	to
account	for	the	slowing	(or	accelerating)	effects	of	gravity.

The	only	method	left	to	complete	the	implementation	of	the	Ball	class	is
checkLanding().	Here	it	is:

private	void	checkLanding()	{

		int	actorFeet	=	actorHeight/2;

		int	step	=	0;

		int	oldFallSpeed;

		while(	fallSpeed	>	0	&&	step	<	fallSpeed	&&

		getOneObjectAtOffset(0,	actorFeet	+	step,

		Platform.class)	==	null	)	{

				step++;

		}

		if(	step	<	fallSpeed	)	{

				if(	fallSpeed	>	0	)	{

						handleBounce(step);

				}

		}	else	{

				fall(speedX);

		}

}

The	implementation	of	checkLanding()	exactly	mirrors	the	implementation	of
checkHead()	except	that	it	handles	moving	downwards	instead	of	moving	upwards.

Bouncing	is	a	great	effect	and	can	be	applied	to	a	wide	variety	of	actors.	You	could
combine	the	implementation	of	bouncing	with	the	implementation	of	jumping	we
discussed	in	the	previous	section	and	make	a	bouncing,	jumping	hero	for	your	game.



Particle	effects
Particle	effects	work	by	creating	a	bunch	of	small	actors	to	make	an	animation.	Previously,
you	learned	to	do	animations	mainly	by	rapid	image	swapping.	You	could	imagine
creating	a	water	fountain	by	creating	4-6	images	of	a	fountain	shooting	upwards	and
switching	between	those	images.	Instead	of	doing	that,	we	will	create	a	fountain	using	a
particle	effect.	Conveniently,	you	already	have	all	the	information	you	need	to	create
particle	effects.	Particles	are	simply	small	actors	that	you	assign	a	pattern	of	motion	to.
You	then	create	a	lot	of	them	to	provide	the	desired	effect.	We	will	do	this	to	complete	our
implementation	of	the	Fountain	class.	The	only	part	of	the	implementation	we	left	out
was	the	code	for	the	createRedBallShower()	method.	Here	is	that	missing	code:

private	void	createRedBallShower()	{

		lifespan--;

		if(	lifespan	<	0)	{

				getWorld().removeObject(this);

		}	else	{

				int	tr	=	Greenfoot.getRandomNumber(30)	-	15;

				int	s	=	Greenfoot.getRandomNumber(4)	+	6;

				int	l	=	Greenfoot.getRandomNumber(15)	+	5;

				getWorld().addObject(new	RedBall(tr,	s,	l,	10,	10),	getX(),	getY());

		}

}

The	instance	variable	lifespan	is	a	delay	variable	that	we	use	to	determine	how	long	the
fountain	will	exist.	Once	lifespan	is	less	than	zero,	we	remove	this	fountain	from	the
scenario.	Otherwise,	we	create	RedBall	anew	with	a	random	lifespan	and	rate	of	turn	and
speed.	These	parameters	to	the	constructor	of	the	RedBall	class	were	discussed	in	the
Enemies	section.

Creating	RedBall	anew	for	every	call	of	the	act()	method	with	slightly	different
attributes	creates	a	really	interesting	fountain	effect,	as	shown	in	Figure	2.



Bullets	and	turrets
We	have	already	fully	implemented	bullets	and	turrets.	The	Turret	class	was	complete
and	we	finished	the	Ball	class	(our	bullet)	in	the	Bouncing	section.	What	we	will	discuss
here,	are	the	basic	steps	to	create	a	turret	and	a	bullet	and	explain	how	what	we	have
already	done	gives	you	the	information	you	need	to	create	a	machine	gun,	cannon,	tank,	or
other	type	of	turret.

First,	you	need	a	turret	with	an	image.	You	can	dynamically	create	the	image	just	as	we
did	in	the	Turret	class,	or	you	can	set	it	using	setImage().	Then,	turrets	only	need	to	be
rotated	in	the	direction	they	are	firing.	That	is	what	we	did	in	the	generateBalls()
method	in	CupcakeWorld.	Bullets	are	just	actors	that	are	rotated	in	a	certain	direction	and
then	continually	call	move()	to	move	in	that	direction.	If	you	rotate	the	turret	and	bullet	by
the	same	angle,	place	the	bullet	at	the	same	starting	location	as	the	turret,	and	let	the	bullet
move	forward,	then	it	will	appear	as	if	the	turret	fired	the	bullet.	Does	this	make	sense?
Figure	5	summarizes	this	strategy.

Figure	5:	These	are	the	steps	necessary	to	create	a	turret	firing	a	bullet



Your	assignment
Now,	compile	all	of	the	code	we	just	gave	you	and	play	Cupcake	Counter	for	a	while.	You
might	start	to	notice	why	we	started	by	having	the	platforms	have	some	randomness	to
their	placement.	If	we	didn’t,	the	player	would	quickly	adapt	to	the	falling	patterns	of	the
balls.

Your	assignment	for	this	section,	is	to	code	another	random	variation	in	the	game.	You
could	further	randomize	the	platforms,	mess	with	the	ball	speed	or	size,	or	change	the
power	of	the	player’s	jump.





Challenge
We	have	created	a	fairly	functional	game.	We	have	a	score,	cool	animations,	collision
detection,	and	levels	in	our	game.	After	playing	it,	what	would	be	the	first	thing	you
would	improve?	Let	your	friend	play	it.	What	did	he/she	think?	Try	to	come	up	with	a
change	that	improves	the	game	based	on	your	experience	playing	it.

In	addition,	we	designed	our	game	so	that	it	would	be	easy	to	add	new	rewards,	enemies,
and	platforms.	Add	one	of	each	to	the	game	and	add	your	own	twist	to	them.	For	example,
you	could	create	a	super	cupcake	that	is	worth	five	points	but	only	lasts	a	short	time.	This
will	require	the	player	to	make	some	quick,	meaningful	decisions	during	the	game.





Summary
While	we	did	not	create	a	full	physics	engine,	we	did	go	over	some	simple	techniques	to
give	actors	interesting	movement.	Our	discussion	was	focused	on	projectile-based
movement	and	included	bouncing,	jumping,	firing,	and	particle	effects.	Until	now,	we
acquired	a	number	of	creative	program	techniques	that	enable	us	to	create	a	wide	variety
of	animations,	simulations,	and	games.	However,	creating	a	fun	interactive	experience	is
not	trivial.	In	the	next	chapter,	we	are	going	to	learn	about	game	design	and	a	process	for
game	development	that	will	help	us	create	amazing	interactive	experiences.





Chapter	5.	Interactive	Application	Design
and	Theory
	 “If	you	never	did,	you	should.	These	things	are	fun	and	fun	is	good.” 	

	 —Dr.	Suess

Creating	engaging	and	immersive	experiences	in	Greenfoot	is	far	more	involving	than
compiling	a	collection	of	programming	effects	into	one	application.	In	this	chapter,	you
will	learn	how	to	engage	your	user	by	understanding	the	relationship	between	user	choice
and	outcome,	conditioning	the	user,	and	including	the	right	level	of	complexity	into	your
work.	You	will	be	shown	a	proven	iterative	development	process	that	will	help	you	put
theory	into	practice.	The	topics	that	will	be	covered	in	the	chapter	are	as	follows:

Meaningful	play

Choice,	action,	and	outcomes
Complexity
Goals

User	conditioning
Storytelling

Fictional	worlds
Narrative	descriptors

Interactive	entertainment	iterative	development	process

As	we	discuss	the	topics	of	this	chapter,	we	will	refer	to	the	Avoider	game	we	created	in
Chapter	1,	Let’s	Dive	Right	in…	and	Chapter	2,	Animation.	We	will	discuss	items	already
implemented	in	the	game	to	illustrate	interactive	design	concepts	and	demonstrate	other
concepts	by	adding	new	features.	In	this	chapter,	we	are	discussing	methods	to	engineer
fun.	That	might	sound	strange,	but	creating	fun	is	the	main	goal	of	the	designers	of	games
and	other	forms	of	interactive	entertainment.	And,	as	Dr.	Suess	so	elegantly	puts	it,	“These
things	are	fun	and	fun	is	good.”



Meaningful	play
Learning	to	create	experiences	that	are	meaningful	to	users	is	the	most	important	skill
needed	by	developers	of	interactive	applications.	It	is	the	meaning	of	the	interaction	that
drives	players	to	invest	time	and	energy	in	playing	your	application.	We	want	to	invoke
feelings	of	happiness,	anger,	pride,	relief,	caring,	astonishment,	surprise,	elation,	or
satisfaction	in	our	users.	To	do	this,	we	need	to	provide	immediate	and	long-term	feedback
to	difficult	choices	and	actions	taken	by	the	user.

Let’s	look	at	a	few	clarifying	examples	that	might	take	place	in	a	role-playing	game
(RPG).	Imagine	that	you	are	a	wizard	wondering	through	a	forest-covered	mountain	when
you	come	upon	a	cave.	Peeking	into	the	cave,	you	see	in	the	dim	light	a	sleeping	dragon
surrounded	by	treasure.	The	following	are	some	possible	interactions	that	could	take
place.	We	will	discuss	each,	and	determine	if	it	created	meaningful	play.

Scenario	1:

User	choice:	You	look	through	your	spell	book	and	decide	to	cast	the	spell	Fireball.
User	action:	You	cast	the	spell	on	the	dragon.
System	feedback/outcome:	The	fireball	hits	the	dragon.	Nothing	happens
afterwards.

What!?!??	Did	your	spell	fail?	Is	the	game	broken?	Does	the	dragon	have	an	aura	of	anti-
magic?	Did	you	actually	miss?	We	get	absolutely	no	meaning	from	this	interaction.	The
player	is	left	confused	and	disengaged.	Let’s	look	at	another	scenario.

Scenario	2:

User	choice:	You	look	through	your	spell	book	and	decide	to	cast	the	spell	Fireball.
User	action:	You	cast	the	spell	on	the	dragon.
System	feedback/outcome:	The	fireball	hits	the	dragon.	The	dragon	laughs	and	says,
“Puny	mortal.	Go	immediately,	and	I	will	let	you	live.”

The	meaning	is	perfectly	clear	here.	You	have	little	power	and	you	have	no	chance	against
a	creature	as	strong	as	a	dragon.	You	could	choose	to	talk	to	the	dragon,	but	he	has
indicated	extreme	annoyance	at	your	presence.	Are	you	going	to	press	your	luck	or	flee?
Maybe	one	day,	you’ll	grow	strong	enough	to	come	back	and	take	that	treasure	from	this
dragon.	For	now,	you	might	be	feeling	lucky,	inspired	to	be	better,	frightened,	or	frustrated
at	your	lack	of	progress.	However,	you	are	feeling	something	and	the	interaction	definitely
had	meaning.

Scenario	3:

User	choice:	You	look	through	your	spell	book	and	decide	to	cast	the	spell	Fireball.
User	action:	You	cast	the	spell	on	the	dragon.
System	feedback/outcome:	The	fireball	hits	the	dragon.	The	dragon	screams	in
agony	before	disintegrating.

Ah,	it	is	time	to	collect	your	loot.	You	marvel	at	your	supreme	power.	Perhaps	you	should
have	allowed	the	dragon	one	chance	to	flee?	Nah,	it	probably	would	not	have	done	that	for



you.	This	interaction	re-affirms	your	greatness.

The	key	to	creating	engaging	applications	is	producing	meaningful	interactions	on	a
moment-to-moment	basis	with	the	user.	If	a	choice	and	action	do	not	have	a	meaningful
outcome,	then	why	bother	your	users	with	it?	Every	interaction	in	your	interactive
applications	needs	to	be	meaningful.	This	is	what	Salen	and	Zimmerman	refer	to	as
descriptive	meaningful	play	in	their	book,	Rules	of	Play.

Another	very	important	aspect	to	your	application	is	the	long-term	outcome	of	a	user’s
action.	For	example,	in	Scenario	3,	the	player	could	be	referred	to	as	Dragon	Slayer,	later
in	the	game.	The	fine	items	purchased	with	the	loot	should	be	useful	later	in	the	game.	The
outcomes	of	actions	need	to	persist	in	the	game.	Salen	and	Zimmerman	refer	to	this	as
evaluative	meaningful	play.

Meaningful	play	is	not	only	for	games.	The	same	thought	process	should	be	used	to	design
any	application.	For	example,	if	a	user	clicks	on	an	item	on	an	e-commerce	site	that	they
are	interested	in	purchasing,	there	should	be	immediate	visual	feedback,	such	as	the
shopping	cart	icon	displaying	a	1	instead	of	a	0	or,	going	even	further,	the	sound	of	a
cheering	crowd	playing	for	a	couple	of	seconds.	If	a	user	types	in	a	word	processing
document,	the	word	processing	application	should	highlight	the	Save	icon	or	put	an
asterisk	by	the	filename	to	indicate	that	there	are	unsaved	changes.	If	a	person	is	taking	a
survey,	there	should	a	progress	meter	to	let	them	know	how	many	questions	they	have	left
to	answer.	Perhaps	you	could	offer	words	of	encouragement	every	time	the	user	completes
five	survey	questions.



Complexity
There	is	a	really	funny	game	that	demonstrates	what	a	game	plays	like	when	the	player’s
choices	are	overly	simplistic.	It	is	called	Super	PSTW	Action	RPG.	In	this	RPG,	you	only
have	one	control—the	spacebar.	For	every	given	situation,	you	simply	hit	the	spacebar.	If
you	haven’t	guessed,	the	PSTW	in	the	title	stands	for	Press	Space	To	Win.

Obviously,	this	game	is	a	joke,	but	it	is	also	an	interesting	experiment	in	game	design.
There	is	no	meaningful	play	in	the	game,	because	the	choice	and	action	a	player	has	to
take	is	trivial.	The	actions	and	outcomes	are	well	designed,	but	that	is	insufficient.	Without
complexity	of	choice,	there	is	no	meaningful	play.	We	don’t	have	to	go	to	such	an	extreme
example	to	demonstrate	this	point.	Have	you	ever	played	the	card	game	War?	If	not,	you
can	quickly	review	the	rules	here:	http://en.wikipedia.org/wiki/War_(card_game).	This
game	also	has	no	meaningful	play.	Throughout	the	game,	the	player	either	flips	a	card
over	or	places	three	cards	face	down	and	then	flips	a	card	over.	The	current	game	state
completely	informs	the	player	of	which	action	they	should	take.	There	are	no	tradeoffs	to
consider	and	no	risk	analysis	to	be	done.	It	is	all	mechanical	play.	For	most	players	older
than	10	years,	Tic-Tac-Toe	suffers	from	the	same	lack	of	meaningful	play.

For	meaningful	play	to	exist,	the	decisions	a	player	makes	should	require	sufficient	mental
effort.	A	player	must	have	several	options	available	to	them	and	each	option	should
involve	different	tradeoffs,	risks,	and	rewards.	For	example,	in	our	RPG	scenarios	above,
the	player	might	have	the	following	choices	available	to	them:	cast	Fireball,	cast
Lightning	Strike,	cast	Charm	Monster,	talk,	or	flee.	Perhaps	the	player	has	learned
previously	in	the	game,	that	charm	spells	rarely	work	on	dragons	and	that	certain	dragons
are	immune	to	either	fire	or	lightning.	The	player	could	choose	to	flee.	This	is	a	low-
reward,	low-risk	option.

When	a	player	is	making	non-trivial	decisions,	taking	action,	and	is	provided	with	clear
feedback,	then	the	game	becomes	meaningful.	When	making	decisions	in	an	interactive
application	or	game,	the	player	needs	to	know	what	the	goals	of	the	interaction	are.	Is	it	to
create	custom	pieces	of	music,	become	the	most	powerful	wizard,	or	get	the	best	deals	on
an	e-commerce	site?	Setting	up	user	goals	is	the	next	most	important	aspect	of	creating
engaging	applications.

http://en.wikipedia.org/wiki/War_(card_game)


Goals
Goals	provide	the	players	the	means	to	assess	their	decisions	in	their	moment-to-moment
and	long-term	interactions	with	your	application.	After	each	interaction,	the	user	can	ask,
“Did	my	last	choice	and	action	bring	me	closer	to	completing	my	goal?”	With	this	type	of
ongoing	assessment,	users	can	augment	and	optimize	their	decision	processes,	in	order	to
more	quickly	achieve	their	goals.	In	essence,	the	players	use	goals	as	guides	to	learning
optimal	ways	to	interact	with	your	application.

In	writing	an	interactive	application,	you	must	set	up	clear	goals	and	subgoals	for	your
users.	This	is	why	high-score	lists	are	so	popular	in	many	games.	The	simple	fact	of
having	one	provides	the	goal	of	the	game—score	as	many	points	as	possible.	As	people
play	your	game,	they	will	constantly	judge	if	their	last	course	of	action	or	long-term
actions	have	led	to	the	maximum	amount	of	points.	This	enhances	the	meaningful	play	of
the	game.

In	industry,	companies	will	often	try	and	gamify	their	applications	or	services.	For
example,	the	airline	industry	sets	up	programs	to	earn	free	flying	miles.	So,	the	customer
is	now	engaged	in	making	decisions	that	optimize	their	ability	to	gain	free	miles	to	earn	a
free	airline	flight.	It	often	makes	sense	to	establish	subgoals	to	keep	the	customer	invested
along	the	way.	If	it	takes	a	year	or	two	to	earn	enough	free	flying	miles,	then	the	consumer
could	get	discouraged.	An	airline	might	decide	to	offer	intermediate	goals,	such	as	earning
a	free	travel	mug	after	achieving	a	certain,	smaller	amount	of	miles.	Subgoals	are	very
important	to	drive	short-term	behavior,	as	are	rewards.	We	will	talk	further	about	methods
of	conditioning	users	next.





User	conditioning
In	creating	an	interactive	application	or	game,	we	want	the	user	experience	to	be	the	best	it
can	be.	In	creating	meaningful	play,	we	have	given	the	user	a	rich	set	of	options	to	choose
from,	and	their	path	through	the	game	has	many	possible	states	and	outcomes.	As	the
possible	states	and	transitions	in	the	game	increase,	it	becomes	harder	as	a	game	designer,
to	ensure	that	each	path	through	the	game	states	results	in	a	positive	interaction.	We	need
to	use	user	conditioning	to	help	guide	a	user’s	behavior	to	interact	with	our	application	in
predictable	ways.

The	effect	of	conditioning	was	clearly	demonstrated	by	Ivan	Pavlov	in	an	experiment
involving	a	dog	and	food.	In	this	experiment,	Pavlov	would	ring	a	bell	every	time	he	fed
his	dog.	Eventually,	he	could	get	the	dog	to	drool	by	just	ringing	a	bell.	The	dog	learned	to
associate	a	neutral	stimulus,	like	the	bell,	with	food.	While	it	seems	weird	to	say	we	want
to	manipulate	our	users	like	this,	it	will	help	us	to	guide	the	user	into	the	most	favorable
interactions	with	our	application.

There	are	three	methods	we	will	use	to	condition	our	users:

Positive	reinforcement:	Give	the	user	a	reward	for	doing	the	behavior	we	want.
Negative	reinforcement:	Take	away	something	negative	when	the	user	does	the
desired	behavior.
Punishment:	Take	away	something	positive	or	add	something	negative	when	the
users	exhibit	the	wrong	behavior.

We	want	to	treat	our	users	with	respect,	and	we	want	them	to	have	a	good	time;	therefore,
positive	reinforcement	should	be	the	way	we	condition	our	users	the	most.	We	want	to
give	them	rewards	for	doing	the	correct	behavior.	In	a	game,	we	might	give	them	points,
an	extra	life,	an	extra	ability,	or	access	to	a	new	part	of	the	game.	Whether	you	are
creating	a	game	or	an	interactive	application,	you	should	have	a	set	reward	schedule	for
your	users.	Some	rewards	could	be	given	frequently,	such	as	earning	points	for	disposing
of	an	enemy,	while	other	rewards	could	be	more	rare,	such	as	giving	the	character	the
ability	to	fly.

Giving	rewards	allows	us	to	tell	the	player	which	behaviors	are	favored	in	the	game.	If	we
wanted	the	user	to	get	through	an	area	as	fast	as	possible,	we	could	give	a	reward	for
doing	it	under	30	seconds.	If	we	wanted	the	user	to	explore	the	controls	and	find	fighting
move	combinations,	we	could	give	extra	points	whenever	three	fighting	combinations	are
done	in	a	row.	If	we	wanted	our	users	to	pick	flowers,	we	could	provide	a	0.001	percent
chance	to	receive	the	most	powerful	item	in	the	game	every	time	a	flower	is	picked.	If	we
wanted	a	customer	to	buy	coffee	at	a	store	more	often,	we	could	give	them	every	twelfth
drink	free.	Rewards	are	a	powerful	mechanism	to	condition	users.

Negative	reinforcement	is	less	used	but	still	a	powerful	tool	to	condition	users.	In	the	last
paragraph,	I	mentioned	that	you	could	encourage	your	player	to	move	fast	through	an	area
by	giving	them	a	reward	for	making	it	through	in	under	30	seconds.	Using	negative
reinforcement,	we	could	drive	the	same	behavior.	Imagine	that	you	are	in	very	large	room



and	the	ceiling	starts	slowly	moving	down.	You	become	aware	that	if	you	do	not	get	out
quickly,	you	will	get	squashed.	By	moving	quickly	to	the	other	side	of	the	room	and
leaving,	you	no	longer	have	this	pressure	to	move	quick.	This	is	negative	reinforcement.
Other	examples	of	negative	reinforcement	include	making	the	lighting	dark	in	an	area	and
playing	creepy	music,	in	order	to	encourage	the	player	to	get	out	of	this	area	quickly	(the
game	Bioshock	is	great	at	this),	sounding	a	siren	when	the	player	is	in	a	place	they
shouldn’t	be	in,	or	blinking	the	screen	until	your	health	gets	back	to	an	acceptable	level.

Ultimately,	punishment	is	a	necessary	component	of	game	play,	although	not	usually
included	in	the	gamification	of	a	non-game	application.	There	eventually	have	to	be	hard
consequences	for	not	meeting	game	objects.	This	could	include	subtracting	points,
subtracting	money,	losing	a	life,	and	eventually	losing	the	game.	Punishment	is	necessary
because	there	has	to	be	some	risk	associated	with	the	choices	a	player	makes,	in	order	to
achieve	meaningful	play.	Just	try	not	to	be	too	hard	on	your	users.	The	whole	point	of
making	a	game	is	to	provide	an	engaging,	recreational	activity.





Storytelling
Telling	and	appreciating	stories	has	been	engrained	into	our	culture	since	the	earliest
times.	We	present	stories	in	many	different	formats	and	mediums.	They	appear	in	oral
traditions,	the	written	word,	theatre,	cinema,	and	games.	Games	are	one	of	the	newest
forms	of	storytelling	but	perhaps	the	most	compelling	for	one	simple	reason—YOU	are
the	main	character	of	the	story.	In	traditional	methods	of	storytelling,	the	author	must
spend	sufficient	time	building	up	a	relatable	character	that	the	audience	cares	about.	In
games,	you	get	this	for	free.	You	are	the	character.



Fictional	worlds
In	games,	stories	have	an	additional	role	other	than	just	pure	entertainment.	The	story
creates	a	fictional	world	for	the	player	of	the	game	that	helps	guide	their	experience.	It
provides	context	for	the	actions	and	the	motivation	to	achieve	goals.	Why	are	we	killing
these	aliens	in	this	game?	Well,	given	that	they	just	wiped	out	all	of	South	America	and
are	heading	north,	we	know	we	need	to	stop	their	advance	soon	if	the	world	is	to	stand	a
chance	of	surviving	this	invasion.	If	a	game	takes	place	in	outer	space,	you	expect	to	have
spaceships,	lasers,	and	aliens.	There	is	a	whole	wealth	of	information	given	to	your	player
by	just	telling	them	that	the	story	takes	place	in	the	Old	West,	under	water,	or	on	a	soccer
field.

For	any	game,	you	should	have	a	rich	and	complete	story	that	covers	what	happens	in	your
game’s	fictional	world	before	the	game	is	played,	what	happens	to	it	during	the	game,	and
what	happens	afterwards—even	if	the	user	will	never	experience	the	before	and	after.
Your	fictional	world	and	story	not	only	provide	context	and	motivation	for	the	player,	but
they	also	serve	as	a	guide	to	the	game	designer.	As	you	add	and	subtract	features	from	the
game,	as	you	go	through	the	interactive	entertainment	development	process	(described	in
the	section	by	the	same	name),	you	need	to	make	sure	you	stay	true	to	both.



Narrative	descriptors
Everything	in	your	game	contributes	to	the	story	and	your	fictional	world—the	graphics
on	the	box	your	game	is	shipped	in,	the	manual,	and	the	sounds	and	images	in	your	game.
You	want	your	player	to	imagine	a	rich	and	vibrant	world	by	providing	appropriate	and
consistent	narrative	descriptors.	Luckily,	it	does	not	take	many	prompts	to	get	your	user	to
imagine	a	complex	world	due	to	the	principle	of	minimal	departure.	This	principle	states
that	people	will	use	their	knowledge	of	the	world	to	fill	in	any	missing	gaps	they	see	in	an
incomplete	image.	Take	a	few	moments	to	look	at	Figure	1.	What	do	you	imagine	lives	in
those	mountains?	Does	this	world	have	gravity?	What	else	can	you	say	about	the	world
depicted	in	this	figure?	Whatever	you	come	up	with,	you	did	so	using	the	principle	of
minimal	departure.

Figure	1:	This	is	an	example	of	the	principle	of	minimal	departure.

Now,	take	a	look	at	Figure	2.	What	has	been	added	to	the	picture?	How	does	this	change
your	perception	of	the	world?	What	if	I	would	have	added	a	caveman	instead	of	a	robot?

Figure	2:	This	shows	the	power	of	one	narrative	descriptor	to	completely	change	the
fictional	world

Just	as	in	a	movie,	everything	that	appears	in	your	game	or	interactive	application	should
perpetuate	the	story.	For	example,	if	you	create	an	interactive	history	simulation	of
medieval	times,	then	you	should	use	a	font	that	matches	the	time	period	and	not	use
Courier	New.	If	you	have	a	game	that	takes	place	during	World	War	I,	then	perhaps



instead	of	showing	a	vanilla	health	bar	for	your	player,	you	could	show	the	picture	of	a
soldier	that	looks	more	injured	as	you	take	more	damage.

Note
Disney

Disney	provides	great	stories	and	is	a	master	of	using	narrative	descriptors.	Have	you	ever
been	to	Disneyland?	I	once	had	the	privilege	to	be	given	a	tour	of	Disneyland	by	Disney
Imagineers	and	artists.	The	first	thing	that	struck	me,	is	how	every	employee	of	Disney
recites	the	same	mantra,	“Story,	story,	story”.	I	was	surprised	to	find	that	on	the	tour	my
guides	continually	pointed	out	their	use	of	narrative	descriptors.	In	the	different	lands,
they	would	show	me	how	the	concrete,	plants,	trash	cans,	and	lighting	all	contributed	to
the	story	of	the	area.	They	knew	that	one	item	out	of	place	could	confuse	or	destroy	the
fictional	worlds	that	their	customers	were	imagining.





The	interactive	entertainment	iterative
development	process
All	of	the	design	principles	we	have	discussed	thus	far	in	this	chapter	will	help	you	to
create	meaningful,	engaging	interactive	applications.	However,	they	are	not	enough.	As
you	proceed	with	designing	and	building	your	game,	you	get	to	know	the	game	deeply	and
lose	your	ability	to	be	an	unbiased	judge	of	it.	In	addition,	what	you	find	fun	and
meaningful,	could	be	confusing	to	others.	You	have	to	realize	that	if	you	have	created	a
game	with	sufficient	complexity,	you	will	not	be	able	to	predict	game	play.

The	only	way	to	give	your	application	the	best	chance	of	success,	is	to	develop	it	using	the
interactive	entertainment	iterative	development	method	shown	in	Figure	3.

Figure	3:	This	is	the	interactive	entertainment	iterative	development	process

Next,	we	will	talk	about	having	an	initial	idea	for	a	game	and	some	upfront	work	you	need
to	do	to	make	an	effective	game	pitch.	In	the	gaming	industry,	game	developers	have	to
pitch	their	game	and	convince	peers	and	management	that	this	game	is	worth	investing	in.
If	you	are	working	with	a	small	team,	you	will	still	need	to	pitch	the	game	to	developers
and	artists	that	you	want	to	recruit	to	work	on	your	project.	After	talking	about	the	upfront
work,	we	will	discuss	each	stage	of	the	iterative	design	process	in	turn.



Game	pitch	and	initial	design
So,	you	have	an	idea	and	a	desire	to	build	a	game.	What	should	you	do	next?	You	need	to
create	a	clear	and	concise	way	to	describe	your	game	to	others.	You	need	to	be	able	to
describe	the	world	you	are	creating,	the	story	behind	this	world,	the	major	goal	of	the
game,	and	a	rough	draft	of	the	game	rules.	Here	is	a	detailed	process	for	creating	this
information:

1.	 In	one	paragraph,	write	a	description	of	your	game.	Try	to	keep	it	to	five	sentences	or
less.	Be	clear,	specific,	and	concise.	As	your	game	evolves	over	time,	be	sure	to
update	this	paragraph.

2.	 Write	the	story	of	your	game,	including	what	happened	before	your	game,	what
happens	during	your	game,	and	what	happens	after	your	game.	This	will	end	up
being	a	guide	that	all	developers,	designers,	and	artists	will	consult	as	they	consider
new	features	and	assets	for	the	game.	Again,	keep	this	document	up-to-date.

3.	 In	one	sentence,	state	the	game’s	goal.	What	is	the	player	trying	to	achieve?
4.	 In	one	sentence,	state	how	one	player	will	know	if	he/she	is	better	than	another.	Is	the

best	player	the	one	with	the	most	points?	Furthest	progress?	Best	time?
5.	 Write	a	draft	of	the	rules	of	the	game.	Try	to	come	up	with	at	least	five	major	rules.

Rules	provide	a	formal	description	of	your	game.	Every	game	has	a	concise	set	of
rules.

6.	 Create	a	storyboard	of	your	game.	A	storyboard	reads	like	a	comic	book	and	depicts
the	main	storyline	and	concept	art	for	the	game.	Storyboards	are	a	major	design	tool,
used	in	both	the	gaming	and	movie	industries.

After	creating	this	information,	make	sure	to	keep	it	located	in	a	central	location	that	is
shared	among	all	team	members	and	updated	as	the	game	evolves.	When	you	are	unsure
what	feature	would	be	best	to	add	to	the	game,	or	whether	you	should	add	a	twist	to	the
story,	consult	these	documents	and	make	sure	everything	stays	consistent.



Prototype
In	this	step,	you	implement	a	few	features	to	your	game	that	you	have	already	decided
upon	in	the	last	iteration’s	Refinement	step.	If	this	is	your	first	iteration,	pick	a	few	simple
things	to	implement,	such	as	a	main	character,	movement	controls,	and	maybe	one	enemy.
This	step	only	contains	coding	and	no	design	work.	That	was	done	through	the	last
iteration.



Playtest
This	iterative	development	process	encourages	play-based	design.	In	play-based	design,
you	have	volunteers	playtest	your	game.	They	evaluate	it,	not	based	on	a	description	you
give	them,	but	on	how	the	game	actually	plays.	Early	stages	will	be	simplistic	and
evaluators	might	only	be	able	to	comment	on	whether	the	controls	feel	natural	or	how	the
navigation	feels.	As	the	game	evolves,	so	will	their	ability	to	provide	feedback.

Your	playtesting	session	should	be	well	defined	and	repeatable.	You	want	to	make	sure
every	playtester	has	the	same	experience,	so	that	you	can	reliably	compile	and	compare
their	feedback.	To	conduct	a	playtest,	you	should:

1.	 Have	a	computer	available	that	has	the	prototype	of	your	game	ready	to	play.
2.	 Provide	your	tester	with	a	short	explanation	of	the	playtesting	procedure	and	then

give	them	a	short	description	of	your	game	and	what	features	are	available	for
testing.

3.	 Allow	your	player	5–20	minutes	of	play	time,	depending	on	how	many	features	you
want	tested	during	this	iteration.	Try	not	to	interrupt	your	playtester	(even	if	you
notice	them	doing	something	very	wrong)	and	only	speak	to	them	if	they	ask	you	a
question.	Provide	short	answers,	but	do	not	elaborate.

4.	 Observe	the	body	language	of	your	tester.	Do	they	seem	bored?	Frustrated?	Engaged?
Are	they	looking	at	their	watch	or	surprised	when	you	tell	them	that	their	10	minutes
of	playing	are	up?

5.	 When	your	playtester	is	done	with	the	game,	give	them	a	short	survey.	Ask	them
questions	about	the	game’s	controls,	rules,	goals,	and	story.	Ask	them	whether	they
felt	the	challenge	of	the	game	was	balanced.	Did	they	think	they	had	sufficient
options	to	consider	on	a	moment-to-moment	basis?	Was	the	look	and	feel	of	the	game
consistent?	Did	your	choice	of	narrative	descriptors	work	well?	Were	they	ever
confused	on	what	to	do	next?	Collect	some	demographics	on	your	testers.	How	old
are	they?	Are	they	casual	or	hardcore	gamers?

6.	 Have	an	open	question-and-answer	period.	Do	they	have	any	suggestions	on	how	to
improve	the	game?	Were	there	aspects	they	did	not	enjoy?

Make	sure	to	thank	your	playtester	and	go	over	the	information	you	collected.	This	is	your
last	chance	to	get	clarification	from	the	tester.	After	doing	all	of	this,	you	are	ready	to
move	to	the	next	stage.



Evaluation
The	evaluation	stage	is	very	mechanical.	In	this	stage,	you	only	compile	the	results	you
received	from	all	of	your	playtesters.	Compile	all	of	the	results	from	the	survey.	Is	there	a
consensus	on	certain	answers?	For	example,	80	percent	of	the	playtesters	felt	the	controls
were	awkward,	or	100	percent	of	the	players	did	not	know	what	to	do	after	killing	the	first
enemy.	For	the	open	question-and-answer	session,	are	there	any	suggestions	that	multiple
testers	made?	From	the	body	language	observations,	did	a	majority	of	the	players	ask	if
they	were	done	playtesting	before	the	time	expired?



Refinement
The	real	design	work	happens	in	this	stage.	Pick	the	top	two	or	four	issues	with	the	game
identified	during	playtesting	and	write	them	down.	Now,	brainstorm	the	changes,
additions,	or	subtractions	you	could	make	to	the	game	to	address	these	issues.	Your	ideas
could	include	suggestions	playtesters	gave	you	or	not.	You	are	not	obligated	at	all	to
directly	use	the	suggestions	given	to	you	by	your	playtesters;	however,	you	should	give
them	special	consideration.	While	brainstorming,	do	not	filter	your,	or	your	teammates’
ideas.	On	a	piece	of	paper,	record	at	least	twenty	changes	you	could	make	to	your	game.

After	brainstorming	twenty	ideas,	prioritize	them	based	on	how	effectively	they	address
the	top	issues	raised	by	your	playtesters	and	also	based	on	the	scope	of	work	needed	to
implement	the	idea.	Choose	your	top	two	to	five	ideas	and	implement	them	in	the
upcoming	prototype	stage.	The	process	begins	again.



Benefits
The	interactive	entertainment	iterative	development	process	allows	you	to	incrementally
grow	your	game	in	a	way	that	is	pleasing	to	users.	By	doing	quick	iterations,	you	quickly
find	development	paths	that	should	be	abandoned	and	others	that	should	be	started.	While
it	might	seem	initially	to	be	time	consuming,	the	process	will	actually	save	you	a	lot	of
development	time	in	the	long	run	and	greatly	increase	the	chances	that	you	converge	on	a
game	that	is	truly	fun	to	play.





Avoider	Game
In	the	first	couple	of	chapters	in	this	book,	we	worked	on	Avoider	Game,	then	switched	to
a	zombie	invasion	simulation,	and	then	a	platform	game.	We	will	go	back	to	Avoider
Game	and	use	it	to	demonstrate	the	concepts	discussed	earlier	in	this	chapter.	You	can
either	start	with	your	version	of	Avoider	Game	or	download	this	version:
http://www.packtpub.com/support

http://www.packtpub.com/support


Avoider	Game	recap
Our	version	of	Avoider	Game	which	we	created	in	Chapter	1,	Let’s	Dive	Right	in…	and
Chapter	2,	Animation	is	fairly	functional.	It	has	an	introduction	screen,	a	game-over
screen,	a	moving	star	field,	interesting	actor	animations,	a	score,	power-ups,	and	power-
downs.	Figure	4	shows	a	screenshot	from	the	game.

Figure	4:	This	is	a	snapshot	of	our	version	of	Avoider	Game

In	the	next	several	sections,	we	will	augment	this	version	of	Avoider	Game.	Our	changes
will	be	based	on	the	game	design	principles	we	just	finished	studying.



High-score	list
The	first	change	we	are	going	to	make	is	to	add	a	simple	mechanism	to	record	the	highest
score.	We	will	then	display	this	score	on	the	game-over	screen,	so	that	players	can	see
where	they	stand	compared	with	each	other.	By	adding	a	high	score,	we	are	clearly
identifying	the	main	goal	of	the	game—score	the	most	points.	To	add	a	high	score,	make
the	following	changes	to	the	AvoiderGameOverWorld	class:

import	greenfoot.*;

import	java.nio.*;

import	java.nio.file.*;

import	java.io.IOException;

import	java.util.List;

public	class	AvoiderGameOverWorld	extends	World	{

		public	AvoiderGameOverWorld()	{

				super(600,	400,	1);

		}

		

		public	void	act()	{

				if(	Greenfoot.mouseClicked(this)	)	{

						AvoiderWorld	world	=	new	AvoiderWorld();

						Greenfoot.setWorld(world);

				}

		}

		

		public	void	setPlayerHighScore(String	s)	{

				Label	scoreBoardMsg	=	new	Label("Your	Score:	"	+	s,	35);

				Label	highScoreMsg	=	new	Label("Your	Best:	"	+	

recordAndReturnHighScore(s),	35);

				addObject(scoreBoardMsg,	getWidth()/2,	getHeight()*2/3);

				addObject(highScoreMsg,	getWidth()/2,	(getHeight()*2/3)+45);

		}

		

		private	String	recordAndReturnHighScore(String	s)	{

				String	hs	=	null;

				try	{

						Path	scoreFile	=	Paths.get("./scoreFile.txt");

						

						if(	Files.exists(scoreFile)	)	{

								byte[]	bytes	=	Files.readAllBytes(scoreFile);

								hs	=	new	String(bytes);

								

								if(	Integer.parseInt(s)	>	Integer.parseInt(hs)	)	{

										Files.write(scoreFile,	s.getBytes());

										hs	=	s;

								}

						}	else	{

								Files.write(scoreFile,	s.getBytes());

								hs	=	s;

						}

						

				}	catch(	IOException	e	)	{

						System.out.println("IOException");



				}

				

				return	hs;

		}

}

The	constructor	and	the	act()	method	did	not	change.	We	added	two	new	methods:
setPlayerHighScore()	and	recordAndReturnHighScore().	The	setPlayerHighScore()
method	is	public	and	will	be	called	by	AvoiderWorld	to	pass	the	current	player’s	score,	in
the	form	of	String,	to	the	game-over	screen.	Due	to	functional	decomposition,	this
method	is	fairly	simple.	It	creates	two	Label	objects	to	display	the	player’s	score	and	the
high	score	and	then	adds	these	objects	to	the	current	world,	which	is
AvoiderGameOverWorld.	The	Label	class	is	new	and	provides	a	way	to	easily	create	text-
based	images.	We	will	look	at	the	code	for	it	shortly.	First,	we	will	look	more	closely	at
the	recordAndReturnHighScore()	method,	which	contains	the	functionality	to	retrieve
and	set	the	high	score.

Tip
The	java.nio.file	package	requires	that	you	have	Java	1.7	or	later	installed.

The	recordAndReturnHighScore()	method	introduces	file	I/O.	To	make	the	high	score
persist	whether	you	have	Avoider	Game	open	or	not,	we	need	to	store	the	high	score	in	a
file.	Files	provide	persistent	storage.	We	can	use	some	very	simple	file	I/O	operations
because	we	are	only	storing	or	retrieving	a	single	String.	First,	we	make	a	call	to	the
Paths.get()	static	function.	This	provides	the	location	of	the	file.	Next,	we	check	to	see
whether	the	file	already	exists	using	the	Files.exists()	static	function.	If	the	file	does
not	exist,	we	create	and	write	to	it	the	current	player’s	score	using	Files.write().

This	function	will	create	the	file	and	write	to	it	and	then	close	the	file	before	returning.	If
the	file	does	exist,	then	we	read	its	contents	using	Files.readAllBytes()	which	will
open	the	file,	read	the	contents	of	the	file,	close	the	file,	and	then	return	the	data	it	read.
The	last	thing	we	need	to	do	in	this	method,	is	to	see	if	the	current	player’s	score	is	larger
than	the	current	high	score.	If	it	is,	we	update	the	file.	recordAndReturnHighScore()	then
returns	the	highest	score,	which	will	either	be	the	value	read	from	the	file	or	the	current
player’s	score.	Please	note	the	additional	import	statements	we	added	to	access	these	new
file	I/O	classes.

Tip
Greenfoot	provides	another	mechanism	to	store	and	maintain	high-score	lists	that	only
work	after	you	have	shared	your	game/application	on	the	Greenfoot	site.	To	learn	more
about	this,	read	the	Greenfoot	online	documentation	on	the	UserInfo	class	provided	by
Greenfoot.	You	can	access	that	documentation	at	http://www.greenfoot.org/files/javadoc/.
To	learn	more	about	the	Java	file	I/O,	look	at	the	tutorial	at
http://docs.oracle.com/javase/tutorial/essential/io/index.html.

Now,	we	can	look	at	the	code	for	the	Label	class.	The	Label	class	is	a	new	class	we	are
going	to	create	to	help	us	add	text	to	our	game.	Create	a	new	subclass	of	Actor	and	call	it
Label.	Do	not	associate	an	image	with	this	class.	We	will	also	use	this	class	later	in	this

http://www.greenfoot.org/files/javadoc/
http://docs.oracle.com/javase/tutorial/essential/io/index.html


chapter.	Here	is	the	code:

import	greenfoot.*;

import	java.awt.Color;

public	class	Label	extends	Actor

{

		GreenfootImage	msg;

		

		public	Label(String	s,	int	size)	{

				this(s,	size,	Color.white);

		}

		

		public	Label(String	s,	int	size,	Color	c)	{

				msg	=	new	GreenfootImage(s,	size,	c,	null);

				setImage(msg);

		}

}

This	class	is	simple	and	only	contains	two	constructors;	the	first	one	calls	the	second	one
with	the	default	color,	white.	In	the	second	constructor,	String,	which	is	supplied,	is
converted	into	an	image	using	GreenfootImage,	and	then	this	image	is	set	to	be	the	default
image	for	this	instance	of	Label.

The	last	change	that	we	need	to	make	to	get	all	this	working,	is	add	the	code	to
AvoiderWorld	to	pass	the	player’s	current	score	to	AvoiderGameOverWorld.	We	only	need
to	add	one	line	to	the	endGame()	method	in	AvoiderWorld.	Here	is	the	complete
implementation	of	endGame():

public	void	endGame()	{

		bkgMusic.stop();

		AvoiderGameOverWorld	go	=	new	AvoiderGameOverWorld();

		go.setPlayerHighScore(Integer.toString(scoreBoard.getScore()));

		Greenfoot.setWorld(go);

}

After	making	this	change,	compile	the	game	to	find	and	fix	any	typos	that	happened	along
the	way.	Play	it.	What’s	your	top	score?	Figure	5	demonstrates	what	your	game-over
screen	should	now	look	like.



Figure	5:	The	game-over	screen	with	the	current	and	high	score	added.



Achievement	badges
Many	games	and	gamification	strategies	use	the	notion	of	an	achievement	badge.	This	is	a
badge	you	earn	for	accomplishing	something	difficult	or	something	out	of	the	ordinary.	In
games	and	interactive	applications,	they	are	a	convenient	and	popular	technique	of	giving
players	subgoals	to	complete,	conditioning	their	behavior,	and	adding	complexity	of
choice.	We	will	add	achievement	badges	to	accomplish	all	of	those	things	in	our	version	of
Avoider	Game.

First,	we	need	to	come	up	with	a	list	of	achievements.	In	practice,	coming	up	with	the
right	mix	of	achievements	will	take	some	careful	thought,	time,	and	playtesting.	Here	is
the	list	of	achievements	I	came	up	with:

Magically	Delicious:	The	player	has	to	hit	20	clovers.

This	achievement	adds	complexity	to	the	choices	available	to	the	player	on	a
moment-to-moment	basis.	Do	they	dare	risk	collecting	another	clover	and	suffer
the	slow-down	penalty?

Turkey:	The	player	must	collect	three	rocks	in	a	row.	The	user	cannot	touch	any
other	object	during	this	time.

This	achievement	conditions	the	player	to	go	after	rocks	even	when	they	are	at
full	health.

Unbreakable:	The	player	has	to	touch	an	enemy	10	times.

This	achievement	adds	to	the	complexity	of	choices	available	to	the	user	and
serves	as	a	means	to	increase	the	challenge	during	certain	slow	parts	of	the
game.	In	the	game,	you	come	across	small	periods	of	time	where	you	are	at	full
health	and	there	is	no	immediate	danger	of	being	hit	by	an	enemy.	During	these
periods,	the	player	could	now	choose	to	take	a	few	hits	to	increase	the	number
of	Unbreakable	badges	they	get.

Master	Avoider:	The	player	finishes	a	game	before	hitting	three	cupcakes	in	total.

This	achievement	reinforces	the	behavior	that	we	want.	We	want	the	player	to
avoid	cupcakes	at	all	costs.

These	achievements	also	serve	as	potential	subgoals	for	the	user.	We	will	display	the
badges	the	player	has	earned	on	the	game-over	screen	right	next	to	the	main	goal—their
score.

The	first	issue	to	consider	when	implementing	achievement	badges	is	that,	the	data	needed
to	determine	whether	a	badge	was	earned.	In	our	case,	this	data	is	distributed	between	the
PowerItems	subclasses	and	Avatar.	Also,	the	AvoiderGameOverWorld	class	will	have	to
know	which	badges	were	earned,	so	that	they	can	be	displayed	on	the	game-over	screen.
We	would	like	to	have	a	central	location	to	collect	this	information.	Because	we	need
distributed	access	to	a	single	class,	we	are	going	to	use	the	Singleton	design	pattern.

Note



Design	patterns

As	you	become	more	experienced	in	programming,	you	are	going	to	recognize	common
patterns	of	coding	that	emerge	in	your	work.	Perhaps	in	the	next	game	you	create,	you	will
also	want	achievements	and	think	to	yourself,	“I	can	just	reuse	my	design	of	achievements
from	my	version	of	Avoider	Game.”	In	essence,	you	have	a	very	small,	personal	design
pattern	that	you	can	use	to	create	achievements	that	you	can	improve	upon	over	time.

Developers	have	created	very	useful	design	patterns	since	the	inception	of	programming,
that	apply	to	many	different	types	of	applications.	Design	patterns	provide	a	proven,	tested
method	for	coding	certain	functionality	that	you	can	easily	adapt	for	your	own	uses.

Design	patterns	are	also	very	useful	to	study.	By	examining	them,	you	can	see	how	some
of	the	best	programmers	use	abstraction	to	solve	complex,	recurring	issues.	They	also
serve	as	a	concise	language	that	developers	can	use	to	effectively	communicate	with	each
other.	It	is	far	more	convenient	to	say	that	the	BadgeCenter	class	in	Avoider	Game
implements	the	Singleton	design	pattern	rather	than	trying	to	describe	it	from	scratch.

There	are	a	lot	of	books	published	on	design	patterns,	but	the	most	famous	and	popular
one	is	Design	Patterns:	Elements	of	Reusable	Object-Oriented	Software	by	Gamma	et	al.
At	some	point	in	your	development	career,	you	should	read	it.

To	keep	track	of	player	achievements,	we	are	going	to	create	a	class	called	BadgeCenter
that	follows	the	Singleton	design	pattern.	This	new	class	will	not	be	a	subclass	of	World	or
Actor.	To	create	it,	click	on	Edit	in	the	menu	bar	and	then	choose	New	Class.	You	should
see	the	pop-up	window	shown	in	Figure	6.	Type	in	BadgeCenter	and	press	Enter.	We	are
now	ready	to	add	the	code.

Figure	6:	This	is	the	popup	window	used	to	create	a	class	that	is	not	a	subclass	of	Actor	or
World

Here	is	the	code	for	this	class:

import	java.util.ArrayList;

import	java.util.List;

public	class	BadgeCenter	//Implemented	as	a	Singleton

{

		private	int	clovers,	rocks,	enemies,	cupcakes;

		int	rockBadges;



		private	String	previous;

		private	ArrayList<Badge>	badges	=	new	ArrayList<Badge>();

		private	static	final	BadgeCenter	INSTANCE	=	new	BadgeCenter();

		

		private	BadgeCenter()	{

				clovers	=	rocks	=	enemies	=	cupcakes	=	0;

				rockBadges	=	0;

		}

		

		public	static	BadgeCenter	getInstance()	{

				return	INSTANCE;

		}

		

		public	void	hitClover()	{

				++clovers;

				previous	=	"clover";

				if(	clovers	%	20	==	0	)	{

						if(	clovers	>	80	)	{

								awardBadge("Magically	Delicious	");

						}	else	{

								awardBadge(clovers	+	"	Clovers	");

						}

				}

		}

		

		public	void	hitRock()	{

				if(	previous	!=	"rock"	)	{

						rocks	=	0;

				}

				++rocks;

				previous	=	"rock";

				if(	rocks	>	2	)	{

						rockBadges++;

						rocks	=	0;

				}

		}

		

		public	void	hitEnemy()	{

				++enemies;

				previous	=	"enemy";

				if(	enemies	%	10	==	0	)	{

						if(	enemies	>	60	)	{

								awardBadge(	"Unbreakable	"	);

						}	else	{

								awardBadge("Hit	"	+	enemies	+	"	times	");

						}

				}

		}

		

		public	void	hitCupcake()	{

				++cupcakes;	//	Check	if	under	3	when	return	badges

				previous	=	"cupcake";

		}

		

		public	List<Badge>	getBadges()	{

				if(	cupcakes	<	3	)	{



						awardBadge("Master	Avoider	");

				}

				if(	rockBadges	>	0	)	{

						awardBadge("Turkey	x	"	+	rockBadges	+	"	");

				}

				cupcakes	=	0;

				return	badges;

		}

		

		private	void	awardBadge(String	title)	{

				badges.add(new	Badge(title));

		}

		

}

Following	the	Singleton	design	pattern,	we	create	a	constructor	that	is	private	and
provide	a	static	method	called	getInstance()	to	manage	access	to	the	single	instance	of
this	class.	Since	getInstance()	is	static,	all	of	our	classes	in	our	version	of	Avoider
Game	will	have	access	to	it.

Tip
In	practice,	you	should	try	and	minimize	your	use	of	the	keyword	static.	While	it	is	very
useful	in	several	cases,	abusing	it	can	lead	to	poor	design	and	hard-to-maintain	code.

To	collect	all	the	data	we	need,	we	have	four	methods:	hitClover(),	hitRock(),
hitEnemy(),	and	hitCupcake().	These	methods	will	be	called	by	the	Clover,	Rock,
Avatar,	and	Cupcake	classes,	respectively,	to	report	collisions.	Each	method	tracks	the
number	of	hits,	sets	the	previous	variable,	and	then	determines	if	a	badge	should	be
awarded.	For	example,	hitClover()	first	increments	the	variable	clovers	and	then	sets
previous	to	Clover.	The	method	then	checks	to	see	if	we	have	just	hit	another	20	clovers.
If	so,	we	award	a	badge	using	the	awardBadge()	method.	If	we	hit	over	80	clovers,	we
issue	the	grand	prize—a	Magically	Delicious	badge.

The	awardBadge()	method	is	used	to	record	badges.	It	takes	String	that	will	be	used	as
the	title	of	the	achievement,	creates	Badge	anew,	and	then	stores	that	badge	in	an	array.
The	array	will	later	be	accessed	using	getBadges()	by	AvoiderGameOverWorld.	The
getBadges()	method	has	a	few	duties	other	than	returning	the	array	of	badges	achieved
until	now.	It	looks	at	values	maintained	by	hitCupcakes()	and	hitRock()	and	determines
whether	additional	badges	should	be	awarded.	If	you	did	not	know,	the	term,	turkey,
comes	from	bowling	and	means	you	just	got	three	strikes	in	a	row.

Here	is	the	code	we	need	to	add	to	the	constructor	of	AvoiderGameOverWorld,	in	order	to
display	the	badges	on	the	game-over	screen:

public	AvoiderGameOverWorld()	{

		super(600,	400,	1);

		

		List<Badge>	badgeList	=	BadgeCenter.getInstance().getBadges();

		int	yPos	=	130;

		while(!badgeList.isEmpty())	{

				Badge	nextBadge	=	badgeList.remove(0);



				addObject(nextBadge,	60,	yPos);

				yPos	+=	70;

		}

		

}

In	the	constructor,	we	use	BadgeCenter.getInstance()	to	get	access	to	the	single
instance	of	BadgeCenter	and	then	immediately	invoke	getBadges().	We	then	iterate	over
badgeList	(we	discussed	the	List	interface	in	Chapter	3,	Collision	Detection)	and	add
each	Badge	to	the	world.	We	use	the	variable	yPos	to	appropriately	space	out	the	badges.

Because	we	use	the	List	interface,	we	need	to	add	the	following	import	statement	to
AvoiderGameOverWorld:

import	java.util.List;

Last,	we	need	to	define	the	Badge	class.	It	is	a	simple	class	that	adds	a	text	string	onto	an
image	for	a	badge.	Figure	7	shows	the	image	I	created	for	badges.	I	tried	to	make	it	look
like	a	tombstone.

Figure	7:	This	is	the	image	associated	with	the	Badge	class.

Create	a	new	subclass	of	Actor	and	call	it	Badge.	Assign	the	new	image	you	created	for
badges	or	use	mine.	Add	this	code	to	it:

import	greenfoot.*;

import	java.awt.Color;

public	class	Badge	extends	Actor	{

		GreenfootImage	bkg;

		GreenfootImage	msg;

		

		public	Badge(String	s)	{

				bkg	=	getImage();

				msg	=	new	GreenfootImage(s,	14,	Color.white,	null);

				bkg.drawImage(msg,	10,	20);

				setImage(bkg);

		}

}

We	have	already	discussed	the	Color	and	GreenfootImage	classes	in	the	earlier	chapters.
The	constructor	uses	the	drawImage()	method	of	GreenfootImage	to	draw	one	image	on
top	of	another.	By	doing	this,	we	effectively	add	the	text.

Compile	the	code,	debug	any	mistakes,	and	try	it	out.	What	badges	did	you	earn?



Player	conditioning
I	would	like	to	provide	you	with	an	example	where	some	user	conditioning	I	added	to	the
game	had	to	be	removed	as	I	determined,	after	playtesting,	that	it	drove	the	wrong
behavior.	Initially,	I	thought	of	changing	the	game	to	provide	10	points	for	each	clover	you
hit.	This	would	help	to	increase	the	complexity	of	the	game,	as	players	would	have	to
balance	getting	more	points	against	the	slowdown	penalty	of	clovers.

However,	this	change	really	had	an	effect	on	the	player.	Because	clovers	are	so	plentiful
and	worth	10	points,	it	really	became	worthwhile	to	collect	clovers	as	a	means	of	getting
high	scores.	This	changed	the	whole	feel	of	the	game	from	one	that	encourages	avoiding
to	one	that	encourages	collecting.	Therefore,	the	change	was	removed.

In	addition,	adding	points	to	clovers	broke	some	of	the	story	elements	of	the	game.	In	the
game,	things	that	look	good	are	bad.	But,	by	having	a	good	item	provide	a	direct	benefit	to
the	player,	we	broke	our	game’s	theme.	Next,	we	will	discuss	theming	and	storytelling	in
Avoider	Game.



Storytelling
It	is	hard	to	build	a	deep,	meaningful	story	for	a	game	like	ours.	However,	the	player	will
still	try	to	make	sense	of	the	world	we	threw	them	in,	and	we	need	to	do	as	much	as	we
can	to	help	the	player	construct	a	meaningful	world.	Our	story	should	motivate	why	we
flee	from	smiley	faces	and	cupcakes	and	welcome	rocks.

Adding	a	story	screen
To	help	tell	the	story	of	our	game,	we	are	going	to	create	a	story	screen	the	player	can
choose	to	view	before	playing	the	game.	This	screen	will	provide	the	background	and
context	for	our	game,	as	well	as	set	up	its	theme.	While	we	are	at	it,	we	are	going	to	add	a
credits	screen.	Adding	comments	to	your	code	to	credit	artists	and	developers	is	a	good
start,	but	eventually	you	will	need	to	formally	recognize	these	people.	Plus,	you	can	give
the	person	who	worked	hardest	on	this	game	credit—you!

First,	we	are	going	to	add	some	buttons	to	our	introduction	screen	that,	when	clicked,	will
either	take	you	to	the	story	screen,	take	you	to	the	credits	screen,	or	start	the	game.	Here
are	the	changes	we	need	to	make	to	AvoiderGameIntroScreen:

import	greenfoot.*;	

public	class	AvoiderGameIntroScreen	extends	World	{

		Actor	startButton,	creditButton,	storyButton;

		public	AvoiderGameIntroScreen()	{		

				super(600,	400,	1);	

				startButton	=	addButton("Start	Game",	getWidth()/2,	getHeight()*2/3);

				creditButton	=	addButton("Credits	Screen",	getWidth()/2,	

(getHeight()*2/3)+40);

				storyButton	=	addButton("Story	Screen",	getWidth()/2,	

(getHeight()*2/3)+80);

		}

		public	void	act()	{

				if(	Greenfoot.mouseClicked(startButton)	)	{

						AvoiderWorld	world	=	new	AvoiderWorld();

						Greenfoot.setWorld(world);

				}	else	if(	Greenfoot.mouseClicked(creditButton)	)	{

						AvoiderGameCreditScreen	world	=	new	AvoiderGameCreditScreen();

						Greenfoot.setWorld(world);

				}	else	if(	Greenfoot.mouseClicked(storyButton)	)	{

						AvoiderGameStoryScreen	world	=	new	AvoiderGameStoryScreen();

						Greenfoot.setWorld(world);

				}

		}

		

		private	Actor	addButton(String	s,	int	x,	int	y)	{

				Actor	button	=	new	Label(s,	24);

				addObject(button,	x,	y);

				return	button;

		}

}



The	constructor	function	creates	three	buttons	using	the	addButton()	method.	In	the
act()	method,	we	simply	listen	for	mouse	clicks	on	those	buttons	and	switch	worlds
appropriately	if	we	get	one.	We	covered	all	of	this	in	Chapter	1,	Let’s	Dive	Right	in…,
except	for	the	implementation	of	addButton().

The	method	addButton()	creates	a	new	Label	and	adds	it	to	the	screen.	We	discussed	the
Label	class	earlier	in	the	chapter.

After	running	this	code,	your	introduction	screen	will	look	like	the	one	shown	in	Figure	8.

Figure	8:	This	is	the	revised	introduction	screen	to	our	version	of	Avoider	Game

Now,	we	just	need	to	make	the	story	screen	(AvoiderGameStoryScreen)	and	the	credits
screen	(AvoiderGameCreditScreen).	You	already	learned	how	to	do	this	(refer	to	Chapter
1,	Let’s	Dive	Right	in…),	and	I	will	just	show	you	what	my	screens	look	like	in	Figure	9
and	Figure	10.	Feel	free	to	use	mine	or	make	your	own.



Figure	9:	This	is	how	our	story	screen	will	look

This	is	how	the	credits	screen	looks.

Figure	10:	This	is	how	the	credits	screen	looks

Changing	the	score
Getting	points	in	the	game	is	a	good	thing;	therefore,	our	score	indicator	should	look	like	a
bad	thing.	Right	now,	it	is	neutral	and	does	not	contribute	to	the	story	or	theme	of	the
game.	Let’s	change	this	narrative	descriptor.

Presently,	we	are	using	the	imported	Counter	class.	To	get	a	customized	look	for	our
score,	we	are	going	to	need	to	create	our	own	class	and	not	rely	on	the	Counter	class.



Create	a	new	subclass	of	Actor	and	name	it	Score.	Because	points	and	badges	are	types	of
awards,	I	thought	making	them	both	tombstones	made	sense.	Figure	11	shows	the	image	I
used	for	the	new	Score	actor.	It	is	a	smaller	version	of	the	tombstone	used	for	achievement
badges	with	the	Achievement	Badge	text	replaced	with	R.I.P..

Figure	11:	This	is	the	image	for	our	new	Score	class.

Here	is	the	code	for	the	Score	class:

import	greenfoot.*;

import	java.awt.Color;

public	class	Score	extends	Actor{

		Label	msg;

		int	counter	=	0;

		

		public	Score()	{

				msg	=	new	Label("0",	24,	Color.black);

		}

		

		protected	void	addedToWorld(World	w)	{

				w.addObject(msg,	getX(),	getY()	+	5);

		}

		

		public	void	addScore(int	i)	{

				counter	=	counter	+	i;

				updateImage();

		}

		

		public	int	getScore()	{

				return	counter;

		}

		

		private	void	updateImage()	{

				getWorld().removeObject(msg);

				msg	=	new	Label(Integer.toString(counter),	24,	Color.black);

				getWorld().addObject(msg,	getX(),	getY()	+	5);

		}

			

}

This	class	stores	the	current	score	in	the	counter	integer	variable.	You	can	increase	the
score	by	calling	addScore()	and	retrieve	the	current	score	by	calling	getScore().	The
Score	class	works	by	adding	an	image	that	contains	the	current	score	over	the	default
image,	which	is	a	tombstone.	Whenever	the	score	changes,	the	counter	variable	is
incremented	and	then	updateImage()	is	called.	The	updateImage()	method	removes	the
old	object	containing	the	image	of	the	score	and	then	creates	a	new	image	based	on	the
current	value	of	counter	using	the	Label	class	(as	discussed	previously).	The



addedToWorld()	method	is	needed	to	display	the	initial	score	of	0.

We	have	made	several	changes.	Make	sure	to	compile	and	run	your	game	to	ensure	that
everything	works	properly.

Adding	sound	effects
Sound	effects	can	provide	important	and	valuable	feedback	to	players.	Also,	they	can	be
important	narrative	descriptors.	In	this	section,	we	are	going	to	add	some	sound	effects	to
both	enhance	meaningful	play	and	the	story	of	the	game.

Because	cupcakes,	clovers,	and	rocks	have	a	random,	limited	lifespan,	it	can	be	confusing
to	know	whether	you	hit	one	or	it	just	expired	right	before	touching	you.	If	you	were	at
full	health	already,	you	have	no	idea	whether	you	hit	a	rock	or	not.	If	you	do	not	move,
you	cannot	tell	whether	you	really	hit	a	cupcake	or	clover.	We	are	going	to	solve	this
ambiguity	by	playing	a	sound	whenever	you	collide	with	any	PowerItems.	This	will	also
help	players	who	are	actively	trying	to	gain	achievement	badges.

We	will	choose	sounds	appropriate	for	our	game’s	story.	If	the	player	collides	with	a
cupcake	or	clover,	then	we	will	play	the	sound	of	you	saying,	Woot!.	If	you,	the	player,
collide	with	a	rock,	then	we	will	play	the	sound	of	you	saying,	Ahhh!.	This	fits	with	the
theme	of	the	game.

You	could	play	any	sound	effect	you	find	on	the	Internet	(assuming	it	is	free	for	such	use)
or	create	your	own	using	various	audio	editing	programs.	Fortunately,	Greenfoot	comes
with	a	built-in	audio	recording	and	editing	tool.	To	access	it,	click	on	Controls	in	the	main
menu	and	then	choose	Show	Sound	Recorder.	You	should	see	the	window	shown	in
Figure	12.

Figure	12:	This	is	the	sound	recorder	tool	in	Greenfoot



Using	Greenfoot’s	sound	recorder,	record	yourself	saying	ahhh	and	save	it	as	ahhh.wav.
Then,	record	yourself	saying	woot	and	save	it	as	woot.wav.	To	make	your	recordings	as
concise	as	possible,	you	can	use	the	Trim	to	selection	button	to	eliminate	any	beginning
or	ending	silence	or	unnecessary	noises.

We	are	going	to	add	two	methods	to	the	Avatar	class	to	play	these	sounds.	Here	is	the	first
method:

public	void	sayAhhh()	{

		ahhh.play();

}

Here	is	the	second	method:

public	void	sayWoot()	{

		woot.play();

}

We	create	two	instance	variables,	woot	and	ahhh,	at	the	top	of	the	Avatar	class:

private	GreenfootSound	woot;

private	GreenfootSound	ahhh;

Initialize	them	in	the	AddedToWorld()	method.	Here	is	this	initialization	code:

woot	=	new	GreenfootSound("sounds/woot.wav");

ahhh	=	new	GreenfootSound("sounds/ahhh.wav");

We	have	now	set	up	Avatar	to	say	ahhh	or	woot!.	We	just	need	to	change	PowerItems	to
call	either	of	the	two	methods	we	just	added	to	the	Avatar	class.	In	the	Cupcake	class,
change	checkHitAvatar()	to	this:

protected	void	checkHitAvatar()	{

		Avatar	a	=	(Avatar)	getOneIntersectingObject(Avatar.class);

		if(	a	!=	null	)	{

				bc.hitCupcake();

				a.sayWoot();

				a.stun();

				getWorld().removeObject(this);

		}

}

In	the	Clover	class,	we	need	to	change	checkHitAvatar()	to	this:

protected	void	checkHitAvatar()	{

		Avatar	a	=	(Avatar)	getOneIntersectingObject(Avatar.class);

		if(	a	!=	null	)	{

				bc.hitClover();

				a.sayWoot();

				a.lagControls();

				getWorld().removeObject(this);

		}

}

In	the	Health	class,	we	need	to	change	checkHitAvatar()	to	this:

protected	void	checkHitAvatar()	{



		Avatar	a	=	(Avatar)	getOneIntersectingObject(Avatar.class);

		if(	a	!=	null	)	{

				bc.hitRock();

				a.sayAhhh();

				a.addHealth();

				getWorld().removeObject(this);

		}

}

Compile	your	game	and	play.	Enjoy	all	of	the	wooting	and	ahhhing!



Playtesting
Playtest	your	game	and	see	if	you	think	the	game	needs	any	changes.	After	playing	for	a
while,	I	decided	to	change	the	increaseLevel()	method	in	AvoiderWorld	to	this:

private	void	increaseLevel()	{

		int	score	=	scoreBoard.getScore();

		if(	score	>	nextLevel	)	{

				enemySpawnRate	+=	4;

				enemySpeed++;

				cupcakeFrequency	+=	3;

				cloverFrequency	+=	3;

				healthFrequency	+=	1;

				nextLevel	+=	50;

		}

}

I	felt	that	there	were	not	enough	enemies	on	screen	and	that	the	Health	power-ups	were
too	frequent	after	the	player	had	increased	several	levels.	To	help	with	this,	I	increased	the
rate	of	change	to	the	enemySpawnRate	variable	to	4	and	reduced	the	rate	of	increase	to	the
healthFrequency	variable	to	1.	With	these	changes,	the	game	play	felt	better.	Do	you
agree	with	my	changes?	What	changes	do	you	feel	improve	the	game?	Of	course,	the	way
to	best	determine	the	appropriate	values	for	these	variables	is	to	recruit	more	playtesters.

Tip
Refer	to	http://en.wikipedia.org/wiki/Balance_(game_design)	for	more	information	on
game	balance.

http://en.wikipedia.org/wiki/Balance_(game_design)




Challenge
We	added	some	nice	features	to	our	version	of	Avoider	Game.	Of	course,	it	seems	there
are	endless	cool	things	we	could	try	to	implement	in	order	to	improve	our	game.	As	a
programming	challenge,	let’s	try	one	more.	Change	the	game,	so	that	players	are	awarded
bonus	points	for	each	achievement	badge	they	get.	This	change	will	further	encourage	the
users	to	attempt	the	achievements.	This	also	potentially	enhances	long-term	meaningful
play.	How	many	points	are	you	going	to	assign	for	each	badge?	Will	each	badge	be	worth
the	same	amount	of	points?	How	does	this	affect	game	play?	Is	this	a	change	you	would
keep?

Let’s	spruce	up	our	introduction	screen.	Add	background	music	and	play	a	click	sound
when	the	player	clicks	on	a	menu	choice.	Providing	auditory	feedback	to	player	actions
enhances	those	interactions.





Additional	readings
A	good	portion	of	my	philosophy	of	game	design	came	from	many	years	of	teaching	game
development	and	two	key	textbooks.	The	first	textbook	is	Rules	of	Play	by	Eric
Zimmerman	and	Katie	Salen,	published	in	2003.	This	book	provides	an	in-depth	and
thorough	coverage	of	games,	game	history,	and	game	design.	The	other	book	that	heavily
influenced	me	was	Half-real	by	Jesper	Juul,	published	in	2005.	This	book	offers	a	more
concise	study	of	game	design.	If	you	have	a	passion	for	game	design,	I	highly	recommend
that	you	read	these	two	books.





Summary
Creating	meaningful	play	is	the	main	goal	for	game	designers.	In	this	chapter,	we	defined
meaningful	play	and	learned	many	game	design	techniques	for	enhancing	meaningful
play.	We	also	learned	a	process	for	creating	interactive	applications	that	will	guide	you	in
creating	engaging	applications.	As	you	read	the	rest	of	this	book,	and	eventually	create
your	own	applications,	you	should	reflect	on	this	chapter	and	apply	the	techniques
provided.

In	the	next	chapter,	you	will	learn	to	create	worlds	for	our	games	that	expand	far	beyond
the	edges	of	the	screen.





Chapter	6.	Scrolling	and	Mapped	Worlds
	 “Already	know	you	that	which	you	need.” 	

	 —Yoda

In	Greenfoot,	we	can	build	worlds	that	are	much	larger	than	the	confines	of	a	single
screen.	Through	scrolling	techniques	and	dynamic	actor	generation,	we	can	build	side-
scrolling	games	and	map	worlds	that	can	seem	endless.	When	you	combine	these	large
worlds	with	the	techniques	learned	in	the	previous	chapters,	you	will	be	able	to	create	a
truly	compelling	and	immersive	experience	for	your	audience.

The	techniques	you	will	learn	in	this	chapter	are	similar	to	the	ones	you	learned	in	Chapter
2,	Animation,	for	animation.	We	will	use	illusion.	Through	very	simple	techniques,	we	can
give	the	appearance	that	the	user	is	moving	through	an	expansive	world.	In	this	chapter,
you	will	learn	to	create	the	following	types	of	worlds:

Dynamically	generated
Mapped
Tile-based

As	you	learn	more	about	Greenfoot	and	Java	programming,	you	will	notice	repeating
patterns	and	methods	to	accomplish	specific	tasks.	While	the	content	presented	here
warrants	its	own	chapter,	it	is	really	a	careful	mixture	of	things	you	have	already	learned.



Chapter	scenario	examples
In	this	chapter,	we	are	going	to	look	at	four	different	methods	to	create	large	worlds	for
simulations,	games,	or	animations.	We	are	only	going	to	present	the	code	necessary	to
accomplish	this	and	not	elaborate	further.	You	should	combine	the	methods	learned	here
with	the	topics	presented	in	the	previous	chapters	to	develop	complete	applications.	In
addition,	we	will	use	very	simple	graphics	in	our	scenarios	and	assume	that	you	would
spend	more	time	on	art	and	story	(as	described	in	Chapter	5,	Interactive	Application
Design	and	Theory)	for	your	own	work.





Dynamically	generated	worlds
It	would	seem	creating	worlds	that	are	dynamically	generated	and	potentially	endless
would	be	the	concluding	topic	of	this	chapter,	instead	of	the	introductory	one.	On	the
contrary,	dynamically	creating	a	world	is	easy,	and	we	have	already	seen	all	the	coding
necessary	to	do	so.	In	Chapter	1,	Let’s	Dive	Right	in…,	we	dynamically	created	enemies	in
Avoider	Game	that	streamed	down	from	the	top,	and	later,	in	Chapter	2,	Animation,	we
added	a	dynamically	generated	star	field.	We	will	use	the	same	techniques	to	create	a
seemingly	endless	world.	Imagine	that	the	enemies	in	Avoider	Game	were	generated	less
frequently	and	looked	like	planets.	It	would	look	like	we	were	travelling	through	space.
Imagine	we	had	a	green	background	and	used	an	image	of	a	tree	for	our	enemies.	It	would
look	like	we	were	walking	through	a	forest.	Next,	we	will	create	a	Greenfoot	scenario	that
displays	a	user-controlled	rocket	flying	through	a	cloudy	sky.



Side-scrolling
We	are	going	to	create	the	flying	game	depicted	in	Figure	1.	In	this	game,	the	user
controls	the	rocket	and	attempts	to	avoid	the	walls.	Why	walls?	Well,	they	are	easy	to
draw	and	sufficiently	illustrate	the	concepts.	In	your	own	scenario,	you	could	spend	some
time	and	draw	alien	spaceships,	birds,	balloons,	or	anything	else	that	makes	sense	to	you.

Figure	1:	This	is	a	screenshot	of	the	Clouds	Greenfoot	scenario.

Start	by	creating	a	new	Greenfoot	scenario,	naming	it	Clouds,	and	saving	it	to	disk.	We
will	present	the	code	for	the	world	and	actors	next.

The	Rocket	class
In	this	example	scenario,	the	user	controls	a	rocket.	You	move	the	rocket	by	pressing	the
arrow	keys.	The	movement	of	the	rocket	is	restricted	to	stay	inside	the	area	of	the	screen.
If	the	rocket	hits	a	wall	(which	we	will	add	soon),	then	the	scenario	will	stop.	There	is	no
code	in	the	Rocket	class	specific	to	generating	a	dynamic	world,	and	it	is	all	code	we	saw
in	the	previous	chapters.	Create	a	new	subclass	of	Actor,	name	it	Rocket,	associate	the
image	of	a	rocket	provided	by	Greenfoot	with	it,	and	enter	the	following	code	in	its	class
file:

import	greenfoot.*;

public	class	Rocket	extends	Actor	{

		private	int	speedX	=	1;

		private	int	speedY	=	0;

		private	static	final	int	SPEED	=	2;

		private	static	final	int	BOUNDARY	=	20;

		

		public	void	act()	{

				handleKeyPresses();



				boundedMove();

				checkForCrash();

		}

		

		private	void	handleKeyPresses()	{

				handleArrowKey("down",	0,	SPEED);

				handleArrowKey("up",	0,	-SPEED);

				handleArrowKey("left",	-SPEED,	0);

				handleArrowKey("right",	SPEED,	0);

		}

		

		private	void	handleArrowKey(String	k,	int	sX,	int	sY)	{

				if(	Greenfoot.isKeyDown(k)	)	{

						speedX	=	sX;

						speedY	=	sY;

				}

		}

		

		private	void	boundedMove()	{

				int	newX	=	Math.max(BOUNDARY,	speedX+getX());

				newX	=	Math.min(getWorld().getWidth()-BOUNDARY,	newX);

				int	newY	=	Math.max(BOUNDARY,	speedY+getY());

				newY	=	Math.min(getWorld().getHeight()-BOUNDARY,	newY);

				setLocation(newX,newY);

		}

		

		private	void	checkForCrash()	{

				Actor	w	=	getOneIntersectingObject(Obstacle.class);

				if(	w	!=	null	)	{

						Greenfoot.stop();

				}

		}

}

You	should	be	very	familiar	with	the	code	to	handle	key	presses	and	moving	actors.	One
additional	concept	I	have	added	here,	is	functional	decomposition	to	remove	code
redundancy.	Notice	how	the	handleArrowKey()	method	can	handle	movement	for	all
arrow	keys.	The	code	for	checkForCrash()	simply	implements	our	standard	template	to
detect	collisions.	We	will	add	the	Obstacle	actor	soon.

In	boundedMove(),	we	have	code	that	gets	the	user	to	not	leave	the	screen.	Without	this
code,	the	user	could	go	off	the	screen	and	disappear	from	view	in	any	direction.	Using
Java’s	max()	and	min()	math	library	functions,	boundedMove()	ensures	that	the	new	x	and
y	locations	of	the	rocket	stay	within	the	confines	of	the	screen.	The	BOUNDARY	variable
defines	how	close	the	rocket	can	get	to	an	edge.	We	add	this	buffer	to	prevent	the	rocket
from	hiding	a	majority	of	its	image	off	the	sides.

The	CloudsWorld	class
The	main	responsibility	of	our	world	class	is	to	initially	place	the	rocket	on	the	screen	and
randomly	generate	clouds	and	walls.	Create	a	new	subclass	of	World,	name	it
CloudsWorld,	and	assign	a	plain	blue	image	to	it	for	the	background.	You	can	either	use
the	blue	gradient	background	we	used	in	Chapter	4,	Projectiles,	or	create	a	new	one	using



your	favorite	drawing	program.	As	with	the	Rocket	class,	most	of	the	code	for
CloudsWorld	should	be	a	review	of	previously	provided	code.	Here	is	the	code	for
CloudsWorld:

import	greenfoot.*;

public	class	CloudsWorld	extends	World	{

		

		public	CloudsWorld()	{

				super(600,	400,	1,	false);

				prepare();

		}

		

		public	void	act()	{

				generateBackgroundClouds();

				generateWalls();

		}

		

		private	void	generateBackgroundClouds()	{

				generateActor(5,	new	Cloud1());

				generateActor(4,	new	Cloud2());

				generateActor(3,	new	Cloud3());

		}

		

		private	void	generateWalls()	{

				generateActor(5,	new	Wall());

		}

		

		private	void	generateActor(int	chance,	Actor	a)	{

				if(	Greenfoot.getRandomNumber(1000)	<	chance)	{

						int	randY	=	Greenfoot.getRandomNumber(300)	+	50;

						addObject(a,	getWidth()+20,	randY);

				}

		}

		

		private	void	prepare(){

				Rocket	rocket	=	new	Rocket();

				addObject(rocket,	90,	200);

		}

}

Do	you	remember	what	the	act()	method	looked	liked	in	our	latest	version	of	Avoider
Game?	Here’s	what	it	looks	like:

//	NOTE:	DO	NOT	PUT	THIS	CODE	IN	YOUR	CLOUDSWORLD	CLASS

public	void	act()	{

		generateEnemies();

		generateStars(-1);

		generatePowerItems();

		increaseLevel();

}

Doesn’t	it	look	similar	to	the	act()	method	for	CloudsWorld?	We	are	going	to	use	the
same	technique	we	used	to	generate	enemies	in	Avoider	Game	to	generate	clouds	in	the
Clouds	application.



Let’s	start	by	looking	at	the	generateActor()	method.	This	method	takes	an	actor	(type
Actor)	and	an	integer	(type	int)	as	parameters.	The	integer	represents	the	chance	that	we
add	the	supplied	actor	to	the	world.	The	higher	the	number,	the	more	likely	that	the	actor
will	appear	on	screen.	With	this	method,	we	can	easily	implement	the
generateBackgroundClouds()	method	and	the	generateWalls()	method.	In	these
methods,	we	simply	call	generateActor(),	providing	the	chance	for	the	actor	to	appear
on	screen	as	well	as	a	new	instance	of	the	desired	actor.

Side-scrolling	actors
All	of	the	other	actors	in	our	scenario	are	going	to	be	subclasses	of	the
SideScrollingActor	class.	Create	this	by	subclassing	Actor,	but	do	not	associate	an
image	with	it.	With	the	following	code,	we	are	using	inheritance	to	provide	the	side-
scrolling	behavior	to	a	whole	set	of	actors:

import	greenfoot.*;

public	abstract	class	SideScrollingActor	extends	Actor

{

		public	int	speed	=	-1;	//	Moves	right	to	left

		private	static	final	int	BOUNDARY	=	100;

		

		public	void	act()

		{

				move(speed);

				checkOffScreen();

		}

		

		private	void	checkOffScreen()	{

				if(	getX()	<	-BOUNDARY	||	getX()	>	getWorld().getWidth()	+	BOUNDARY)	{

						getWorld().removeObject(this);

				}

		}

}

To	give	the	illusion	that	our	rocket	is	moving	from	left	to	right,	we	make	all	of	the
scrolling	actors	move	from	right	to	left.	That	is	why	the	speed	variable	is	negative.	In	the
act()	method,	we	move	the	actor	and	then	call	checkOffScreen()	to	remove	the	actor
after	it	has	moved	off	screen.	As	we	never	intend	to	use	the	SideScrollingActor	class	to
directly	instantiate	an	object,	we	make	it	abstract.	Next,	we	will	discuss	the	actors	that
are	going	to	the	SideScrollingActor	subclass.

Clouds

We	use	three	different	images	of	clouds	for	our	application,	and	we	will	make	them	travel
at	different,	random	speeds.	This	will	provide	enough	variety	to	give	a	realistic	feel	to	our
flying	rocket.	The	three	images	I	used	are	shown	in	Figure	2.	You	can	draw	your	own	or
the	ones	supplied	at	http://www.packtpub.com/support.

http://www.packtpub.com/support


Figure	2:	These	are	images	of	clouds

Create	a	cloud	actor	by	subclassing	SideScrollingActor,	naming	it	Cloud1,	and	then
assigning	one	of	your	cloud	images	to	it.	In	the	class	file	for	Cloud1,	put	the	following
code:

import	greenfoot.*;	

public	class	Cloud1	extends	SideScrollingActor	{

		private	static	final	int	SPEEDRANGE	=	3;

		public	Cloud1()	{

				speed	=	-(Greenfoot.getRandomNumber(SPEEDRANGE)	+	1);

		}

}

In	Cloud1,	we	assign	a	random	value	to	the	speed	variable	between	1	and	3.	We	inherited
the	speed	variable	from	the	SideScrollingActor	parent	class.

To	create	two	more	cloud	actors,	repeat	the	preceding	steps	once,	substituting	Cloud1	with
Cloud2	and	again	substituting	Cloud1	with	Cloud3.	For	further	variety,	you	could	change
the	SPEEDRANGE	constant	in	each	actor.	I	recommend	setting	SPEEDRANGE	to	3	(as	shown	in
Figure	2)	for	Cloud1,	2	for	Cloud2,	and	5	for	Cloud3.

Walls

The	last	thing	we	need	to	add	is	the	wall	obstacle.	While	we	only	have	one	obstacle	in	this
example,	we	are	going	to	write	code	that	would	allow	us	to	easily	add	additional	obstacles
in	the	future.	We	are	going	to	use	inheritance,	but	this	time,	we	are	using	it	to	group
related	types,	as	opposed	to	sharing	code.	In	the	Rocket	Actor	code,	we	check	for	a
collision	with	an	Obstacle	class.	We	will	now	create	this	class	by	subclassing
SideScrollingActor,	naming	the	new	subclass	Obstacle,	and	not	associating	an	image
with	it.	Here	is	the	code	for	the	Obstacle	actor:

import	greenfoot.*;

public	class	Obstacle	extends	SideScrollingActor{

}

Again,	we	are	not	using	inheritance	for	code	reuse	and,	therefore,	there	is	very	little	code
to	add.

Now,	to	create	the	Wall	actor,	we	create	a	subclass	of	Obstacle.	I	simply	created	a	dark
gray	rectangle	image	for	my	wall.	I	am	sure	you	can	come	up	with	something	better.	Here



is	the	code	for	the	Wall	class:

import	greenfoot.*;	

public	class	Wall	extends	Obstacle	{

}

Since	Obstacle	inherits	from	SideScrollingActor,	the	Wall	actor	will	have	the	same
movement	as	the	Cloud	actors.	However,	the	Rocket	class	can	now	detect	collision	with
the	Obstacle	class.	If	we	did	collision	detection	with	the	SideScrollingActor	class,	then
we	would	collide	with	clouds	too.

Try	it	out
We	have	finished	creating	the	world	and	actor	classes	for	our	Greenfoot	scenario.	Figure	3
shows	the	completed	Greenfoot	scenario.	Make	sure	your	class	hierarchy	is	exactly	the
same.

Figure	3:	This	shows	the	completed	Clouds	scenario

Compile	it	and	take	care	of	any	typos	you	created	along	the	way.	Spend	some	time
running	the	scenario	and	observing	how	the	moving	clouds	give	the	illusion	of	travelling
across	an	expansive	sky.	Even	knowing	how	it	is	done,	it	is	hard	to	imagine	that	your
rocket	is	actually	the	actor	on	screen	moving	the	least.





Mapped	worlds
There	are	definitely	times	when	you	are	going	to	want	a	specific	background	for	your
game	or	simulation.	In	these	cases,	it	is	not	sufficient	to	randomly	generate	actors	to
simulate	a	moving	background.	The	methods	we	will	explore	next	consist	of	creating	a
background	image	that	is	much	larger	than	the	dimensions	of	the	screen	and	moving	it
appropriately	to	simulate	motion.	In	addition,	we	will	learn	how	to	place	actors	in	this
larger	world.



Side-scrolling
Our	side-scrolling	example	is	a	scenario	that	allows	the	user	to	walk	through	a	mountain
forest	to	find	a	lake	at	the	end.	The	user	will	only	be	able	to	walk	left	and	right,	not	up	and
down.	Figure	4	shows	the	completed	application.

Figure	4:	This	is	a	screenshot	of	HikingWorld

To	create	this	side-scrolling	world,	we	are	going	to	need	a	large	image	to	serve	as	the
background.	For	this	example,	I	have	created	a	2400	x	400	image	shown	in	Figure	5.
Since	our	scenario	has	a	viewable	screen	size	of	600	x	400,	the	image	is	six	times	longer
than	our	screen.	Feel	free	to	create	your	own	2400	x	400	image	or	use	the	one	supplied	at
http://www.packtpub.com/support.

Figure	5:	This	is	a	background	image	for	HikingWorld	that	is	2400	pixels	long	and	400
pixels	high.	Note	that	the	image	in	this	figure	is	one-fourth	the	original	size	in	order	to	fit

on	a	page

Next,	we	will	describe	the	code	for	the	world	and	actor	classes.

http://www.packtpub.com/support


The	HikingWorld	class
The	main	responsibility	of	our	world	class,	HikingWorld,	is	to	shift	everything	in	the
world	relative	to	the	user-controlled	Hiker	class.	We	will	allow	the	user	to	move	normally
within	the	confines	of	a	screen,	but	when	a	user	tries	to	move	further	than	the	left
boundary	or	the	right	boundary	of	the	screen,	we	will	move	everything	to	the	right-hand
side	or	left-hand	side,	respectively.	Figure	6	demonstrates	what	we	will	do	if	the	user	is	at
the	right	edge	of	the	screen	and	tries	to	move	to	the	right-hand	side.

Figure	6:	If	the	player	moves	right	at	the	right	edge	of	the	screen,	we	will	shift	everything
to	the	left

Now	that	we	understand	what	the	HikingWorld	class	must	do,	let’s	take	a	look	at	the	code.
First,	subclass	World	and	name	the	new	subclass	HikingWorld.	Do	not	associate	an	image
with	this	new	class;	we	will	do	that	in	the	constructor	function.	Here	is	the	code	for	what
the	HikingWorld	class	must	do:

import	greenfoot.*;

import	java.util.List;

public	class	HikingWorld	extends	World	{

		private	int	xOffset	=	0;

		private	final	static	int	SWIDTH	=	600;

		private	final	static	int	SHEIGHT	=	400;

		private	final	static	int	WWIDTH	=	2400;

		private	GreenfootImage	bimg;

		

		public	HikingWorld()	{

				super(SWIDTH,	SHEIGHT,	1,	false);

				bimg	=	new	GreenfootImage("HikingWorldBackground.png");

				shiftWorld(0);

				prepare();

		}

		

		public	void	shiftWorld(int	dx)	{

				if(	(xOffset	+	dx)	<=	0	&&	(xOffset	+	dx)	>=	SWIDTH	-	WWIDTH)	{

						xOffset	=	xOffset	+	dx;

						shiftWorldBackground(dx);

						shiftWorldActors(dx);

				}

		}

		

		private	void	shiftWorldBackground(int	dx)	{

				GreenfootImage	bkgd	=	new	GreenfootImage(SWIDTH,	SHEIGHT);



				bkgd.drawImage(bimg,	xOffset,	0);

				setBackground(bkgd);

		}

		

		private	void	shiftWorldActors(int	dx)	{

				List<ScrollingActor>	saList	=

				getObjects(ScrollingActor.class);

				for(	ScrollingActor	a	:	saList	)	{

						a.setAbsoluteLocation(dx);

				}

		}

		

		private	void	prepare()	{

				HedgeHog	hh1	=	new	HedgeHog();

				addObject(hh1,	900,	250);

				Lemur	l	=	new	Lemur();

				addObject(l,	1200,	300);

				HedgeHog	hh2	=	new	HedgeHog();

				addObject(hh2,	1500,	250);

				Lake	lake	=	new	Lake();

				addObject(lake,	2100,	300);

				Hiker	hiker	=	new	Hiker();

				addObject(hiker,	90,	275);

		}

}

At	the	beginning	of	the	class,	we	create	three	constants	to	store	the	dimensions	of	the
screen	(SWIDTH	and	SHEIGHT)	and	the	background	image	(WWIDTH).	Since	the	image	height
and	the	screen	height	are	the	same,	we	don’t	need	a	WHEIGHT	constant.	We	also	declare	the
xOffset	instance	variable.	We	use	this	variable	to	keep	track	of	how	far	the	background
image	and	actors	are	currently	shifted.	Last,	we	create	an	instance	variable,	bimg,	to	point
to	the	background	image.

In	the	constructor,	we	load	our	background	image	and	call	shiftWorld()	with	an	offset	of
0	to	put	everything	at	its	starting	location.	We	use	the	prepare()	method	in	a	standard
way—to	place	our	initial	actors.	One	thing	to	notice	is	that	we	use	y	positions	larger	than
the	screen	size.	So,	some	of	our	actors	will	be	created,	but	placed	off	screen.	Eventually,
they	will	be	shifted	to	be	on	screen	and	viewable	by	the	user.	The	real	work	to	make	this
world	large	is	done	in	shiftWorld().

Notice	the	first	if	statement	in	the	shiftWorld()	method.	This	if	statement	prevents	us
from	shifting	the	background	image	to	the	point	where	we	would	see	the	blank	white
space	behind	it.

If	we	are	not	at	the	edges	of	the	background	image,	then	we	record	the	new	offset	by
adding	the	current	shift	(dx)	to	the	current	offset	(xOffset).	Then,	we	proceed	to	shift	the
background	image	using	the	shiftWorldBackground()	method	and	all	actors	in	the	world
using	shiftWorldActors().	The	shiftWorldBackground()	method	is	fairly	simple.	We
start	by	creating	a	new	image	the	size	of	the	screen.	We	then	draw	our	background	image
into	it,	offset	by	xOffset	(which	has	just	had	dx	added	to	it),	and	then	set	this	new	image
to	be	the	background	image.



The	shiftWorldActors()	method	may	have	few	lines,	but	it	does	a	lot	of	work.	There	is	a
World	method	called	getObjects()provided	to	us	that	will	return	all	of	the	actors	in	the
world	of	the	supplied	class.	For	us,	we	call	getObjects(ScrollingActor.class)	to	get
all	objects	that	should	be	shifted.	The	class	the	user	controls,	Hiker,	is	not	a	subclass	of
ScrollingActor;	therefore,	it	will	not	be	shifted	in	this	method.	We	then	iterate	through
the	returned	Java	List	and	call	setAbsoluteLocation()	on	each	instance	of
ScrollingActor.	We	will	look	at	the	implementation	of	the	ScrollingActor	class	and
setAbsoluteLocation()	soon.

The	majority	of	the	work	for	creating	a	side-scrolling	world	is	done	in	HikingWorld.	Make
sure	you	understand	this	code	before	moving	on.	The	rest	of	the	code	for	the	remaining
actors	in	this	scenario	is	pretty	straightforward.

The	Hiker	class
We	will	have	one	instance	of	the	Hiker	class	that	the	user	will	control.	In	this	scenario,	we
are	only	going	to	let	the	user	move	left	and	right.	This	amount	of	control	is	sufficient	to
demonstrate	a	side-scrolling	scenario.	The	code	for	this	class	is	almost	identical	to	the
code	for	the	Rocket	actor	in	the	Clouds	scenario	we	created	at	the	beginning	of	this
chapter.	First,	look	at	the	code,	and	then	we	will	discuss	the	differences:

import	greenfoot.*;

public	class	Hiker	extends	Actor

{

		private	int	speedX	=	1;

		private	static	final	int	SPEED	=	2;

		private	static	final	int	BOUNDARY	=	40;

		

		public	void	act()	{

				handleKeyPresses();

				boundedMove();

				checkAtLake();

		}

		

		private	void	handleKeyPresses()	{

				handleArrowKey("left",	-SPEED);

				handleArrowKey("right",	SPEED);

		}

		

		private	void	handleArrowKey(String	k,	int	sX)	{

				if(	Greenfoot.isKeyDown(k)	)	{

						speedX	=	sX;

				}

		}

		

		private	void	boundedMove()	{

				if(	speedX+getX()	<=	BOUNDARY	)	{

						setLocation(BOUNDARY,	getY());

						((HikingWorld)getWorld()).shiftWorld(-speedX);

				}	else	if(	speedX+getX()	>=	getWorld().getWidth()-BOUNDARY	)	{

						setLocation(getWorld().getWidth()-BOUNDARY,	getY());

						((HikingWorld)getWorld()).shiftWorld(-speedX);



				}	else	{

						setLocation(getX()+speedX,	getY());

				}

				speedX	=	0;

		}

		

		private	void	checkAtLake()	{

				//	Do	something	cool	if	make	it	to	the	lake…

		}

}

The	main	difference	occurs	in	boundedMove().	In	the	Rocket	class	presented	earlier,	we
had	a	similar	method	that	confined	the	user	movement	to	a	rectangular	area	slightly
smaller	than	the	screen.	We	are	doing	the	same	here	for	horizontal	movement,	but	with
one	added	feature.	When	we	detect	that	the	user	is	at	the	edge	of	the	screen	(either	the	left-
hand	side	or	the	right-hand	side),	we	will	call	shiftWorld()	to	make	it	look	as	though	the
actor	is	continuing	to	move.

We	also	have	the	checkAtLake()	method	that	has	no	implementation.	It	is	an	example	of
how	you	could	have	a	goal	at	the	end	of	your	world	that	the	user	must	get	to.	In	our	case,
we	are	going	to	place	a	lake	at	the	end	of	the	hike.	We	would	use	this	method	if	we	wanted
to	do	something	once	the	user	arrived	at	the	lake.

The	ScrollingActor	class
All	of	the	actors	we	want	to	shift	will	subclass	the	ScrollingActor	class.	It	provides	both
a	convenient	way	to	group	these	actors	and	allows	us	to	define	the
setAbsoluteLocation()	method	in	one	place.	Here’s	how	it’s	done:

import	greenfoot.*;

public	class	ScrollingActor	extends	Actor	{

		public	void	setAbsoluteLocation(int	dx)	{

				setLocation(getX()+dx,	getY());

		}

}

In	the	HikingWorld	class,	we	called	setAbsoluteLocation()	on	all	the	actors	we	wanted
to	shift.	This	method	is	simply	a	wrapper	for	setLocation()	and	moves	the	actor	by	the
dx	amount.

The	code	for	the	HedgeHog,	Lemur,	and	Lake	actors	are	identical	and	very	minimal.	Those
classes	mainly	exist	to	allow	different	images	to	be	associated	with	them.	The	images	for	a
hedgehog	and	lemur	come	with	the	default	installation	of	Greenfoot.	My	lake	is	a	simple
blue	oval	created	in	a	drawing	program.	These	actors	are	placed	in	the	world	in	the
prepare()	method	of	HikingWorld.	Create	each	of	these	now	and	add	the	following	code
to	each	(make	sure	to	substitute	in	the	appropriate	class	name):

import	greenfoot.*;

public	class	HedgeHog	extends	ScrollingActor	{

}



Try	it	out
Congratulations!	You	have	created	a	side-scrolling,	mapped	world.	Compile	it	and	try	it
out.	For	an	extra	challenge,	implement	the	checkAtLake()	method	found	in	the	Hiker
class	to	reward	the	hiker	for	reaching	their	destination.	You	can	also	download	a
completed	version	of	the	scenario	at	http://www.packtpub.com/support.

http://www.packtpub.com/support


2D	scrolling
Creating	an	application	that	allows	a	user	to	explore	a	large	map	in	both	the	x	(left	and
right)	and	y	(up	and	down)	directions	is	an	easy	extension	of	the	side-scrolling	world	we
just	created.	The	code	will	be	exactly	the	same	except	we	will	also	handle	the	case	for	up
and	down	movement.	We	also	need	an	image	that	is	both	longer	and	wider	than	the	screen
size	of	our	scenario.	The	image	I	created	is	1200	x	1200	pixels	and	shown	in	Figure	7.
You	can	create	your	own	or	download	the	image	from	Figure	7	at
http://www.packtpub.com/support.	The	picture	is	meant	to	represent	a	top-down	view	of	a
terrain	with	trees.

Figure	7:	A	background	image	for	HikingWorld2D	that	is	1200	pixels	long	and	1200
pixels	high.	Note	that	the	image	shown	in	this	figure	has	been	scaled	down	to	fit	on	the

page.

Create	a	new	scenario	and	name	it	HikingWorld2D.	As	this	code	is	very	similar	to	the
HikingWorld	scenario	we	just	implemented	in	the	previous	section,	we	will	only	highlight
the	code	necessary	to	handle	up	and	down	movement.

The	HikingWorld2D	class
Subclass	World	and	name	the	new	class	HikingWorld2D,	but	do	not	associate	an	image
with	it.	We	will	add	the	image	shown	in	Figure	7	(or	one	like	it	that	you	create)	in	the

http://www.packtpub.com/support


constructor	function	of	this	class.	Here	is	the	code	to	accomplish	all	this:

import	greenfoot.*;

import	java.util.List;

public	class	HikingWorld	extends	World	{

		private	int	xOffset	=	0;

		private	int	yOffset	=	0;

		private	final	static	int	SWIDTH	=	600;

		private	final	static	int	SHEIGHT	=	400;

		private	final	static	int	WWIDTH	=	1200;

		private	final	static	int	WHEIGHT	=	1200;

		private	GreenfootImage	bimg;

		public	HikingWorld()	{		

				super(SWIDTH,	SHEIGHT,	1,	false);	

				bimg	=	new	GreenfootImage("HikingWorldBackground2D.png");

				shiftWorld(0,0);				

				prepare();

		}

		public	void	shiftWorld(int	dx,	int	dy)	{

				if(	(xOffset	+	dx)	<=	0	&&	(xOffset	+	dx)	>=	SWIDTH	-	WWIDTH)	{

						xOffset	=	xOffset	+	dx;

						shiftWorldBackground(dx,	0);

						shiftWorldActors(dx,	0);

				}

				if(	(yOffset	+	dy)	<=	0	&&	(yOffset	+	dy)	>=	SHEIGHT	-	WHEIGHT)	{

						yOffset	=	yOffset	+	dy;

						shiftWorldBackground(0,	dy);

						shiftWorldActors(0,	dy);

				}

		}

		

		private	void	shiftWorldBackground(int	dx,	int	dy)	{

						GreenfootImage	bkgd	=	new	GreenfootImage(SWIDTH,	SHEIGHT);

						bkgd.drawImage(bimg,	xOffset,	yOffset);

						setBackground(bkgd);

		}

		

		private	void	shiftWorldActors(int	dx,	int	dy)	{

				List<ScrollingActor>	saList	=	getObjects(ScrollingActor.class);

				for(	ScrollingActor	a	:	saList	)	{

						a.setAbsoluteLocation(dx,	dy);

				}

		}

		private	void	prepare()	{

				HedgeHog	hh1	=	new	HedgeHog();

				addObject(hh1,	600,	600);

				Lemur	l	=	new	Lemur();

				addObject(l,	300,	900);

				HedgeHog	hh2	=	new	HedgeHog();

				addObject(hh2,	900,	300);

				Lake	lake	=	new	Lake();

				addObject(lake,	900,	1100);



				Hiker	hiker	=	new	Hiker();

				addObject(hiker,	90,	275);

		}

}

First,	we	get	WWIDTH	and	WHEIGHT	to	be	the	dimensions	of	the	background	image.
Previously,	we	did	not	need	WHEIGHT	as	it	was	the	same	as	SHEIGHT.	The	main	difference
between	this	class	and	the	HikingWorld	class	in	HikingWorld,	is	that	we	add	an	extra
parameter	(dy)	to	shiftWorld(),	shiftWorldBackground(),	and	shiftWorldActors()
that	provides	the	change	in	the	y	direction.	The	use	of	the	new	dy	parameter	mirrors	the
use	of	the	dx	parameter.	We	end	up	shifting	the	background	image	and	other	actors	by
both	dx	and	dy.

The	Hiker	class
Create	a	new	subclass	of	Actor,	name	it	Hiker,	and	associate	one	of	the	default	people
images	provided	by	Greenfoot.	Here	is	the	code	for	this	new	class:

import	greenfoot.*;

public	class	Hiker	extends	Actor	{

		private	int	speedX	=	1;

		private	int	speedY	=	1;

		private	static	final	int	SPEED	=	2;

		private	static	final	int	BOUNDARY	=	40;

		

		public	void	act()	{

				handleKeyPresses();

				boundedMove();

				checkAtLake();

		}

		

		private	void	handleKeyPresses()	{

				handleArrowKey("left",	-SPEED,	0);

				handleArrowKey("right",	SPEED,	0);

				handleArrowKey("up",	0,	-SPEED);

				handleArrowKey("down",	0,	SPEED);

		}

		

		private	void	handleArrowKey(String	k,	int	sX,	int	sY)	{

				if(	Greenfoot.isKeyDown(k)	)	{

						speedX	=	sX;

						speedY	=	sY;

				}

		}

		

		private	void	boundedMove()	{

				

				if(	speedX+getX()	<=	BOUNDARY	)	{

						setLocation(BOUNDARY,	getY());

						((HikingWorld)getWorld()).shiftWorld(-speedX,	0);

				}	else	if(	speedX+getX()	>=	getWorld().getWidth()-BOUNDARY	)	{

						setLocation(getWorld().getWidth()-BOUNDARY,	getY());

						((HikingWorld)getWorld()).shiftWorld(-speedX,	0);

				}	else	{



						setLocation(getX()+speedX,	getY());

				}

				

				if(	speedY+getY()	<=	BOUNDARY	)	{

						setLocation(getX(),	BOUNDARY);

						((HikingWorld)getWorld()).shiftWorld(0,	-speedY);

				}	else	if(	speedY+getY()	>=	getWorld().getHeight()-BOUNDARY	)	{

						setLocation(getX(),	getWorld().getHeight()-BOUNDARY);

						((HikingWorld)getWorld()).shiftWorld(0,	-speedY);

				}	else	{

						setLocation(getX(),	getY()+speedY);

				}

				speedX	=	0;

				speedY	=	0;

		}

		

		private	void	checkAtLake()	{

		}

}

This	class	has	also	been	augmented	to	handle	moving	in	the	x	and	y	directions.	In
handleKeyPresses(),	we	added	two	more	calls	to	handleArrowKey()	to	handle	the	up
and	down	arrow	keys	being	pressed.	In	boundedMove(),	we	add	checks	to	make	sure	the
actor	does	not	move	off	the	top	or	bottom	of	the	screen	and	that	it	calls	shiftWorld()	at
the	appropriate	times.

The	ScrollingActor	class
Create	a	new	subclass	of	Actor	and	name	it	ScrollingActor.	You	do	not	need	to	associate
an	image	with	it.	As	before,	this	class	simply	provides	a	wrapper	for	setLocation().
Now,	it	handles	moving	the	actor	in	the	y	direction	as	well.	Here	is	the	code:

import	greenfoot.*;

public	class	ScrollingActor	extends	Actor	{

		public	void	setAbsoluteLocation(int	dx,	int	dy)	{

				setLocation(getX()+dx,	getY()+dy);

		}

}

The	HedgeHog,	Lemur,	and	Lake	classes	are	exactly	the	same	as	they	were	in	the
HikingWorld	scenario	shown	previously.	Add	them	to	HikingWorld2D	as	well.

Try	it	out
With	just	a	few	changes,	we	have	created	a	world	worth	exploring,	and	all	it	took	were	a
few	extensions	to	our	already	completed	HikingWorld	scenario.	Now,	it	is	time	to	compile
and	try	your	scenario	out.	Handle	any	typos/errors	and	then	explore	the	map.	You	can	also
download	a	completed	version	of	the	scenario	at	http://www.packtpub.com/support.

http://www.packtpub.com/support




Tile-based	worlds
Tile-based	worlds	are	a	happy	incorporation	between	fully	dynamically	created	worlds
and	worlds	that	use	a	large	image	for	the	background.	With	large	images,	you	create	a	very
detailed	and	predictable	world,	but	it	is	very	difficult	to	change.	Dynamically	created
worlds	are	easy	to	generate	but	are	often	too	random.	Tile-based	worlds	let	you	easily
create	detailed,	predictable	worlds	in	a	way	such	that	they	are	easy	to	change	or	modify.



Actors	as	tiles
Artists	can	create	amazing	images	using	small	pieces	of	tile	or	glass.	Figure	8	shows	a
simple	tile	mosaic.	By	strategically	placing	small	pieces	of	colored	tiles,	you	can	generate
many	different	types	of	images.

Figure	8:	This	is	a	simple	mosaic,	courtesy	of	pixabay.com	at
http://pixabay.com/en/uzbekistan-mosaic-pattern-artfully-196875/

We	will	use	a	similar	technique	to	create	a	world	in	Greenfoot,	but	we	will	use	small
actors	instead	of	tiles.	Figure	9	demonstrates	how	we	will	do	this.	We	will	create	a	set	of
actors	that	will	serve	as	our	tiles.	Then,	we	will	specify	how	to	compose	these	actors	to
create	images	using	an	array	of	strings	that	uses	letters	to	code	the	type	of	actor	to	place.
For	example,	the	letter	C	corresponds	to	the	actor	displaying	a	cloud	with	a	blue
background,	and	the	letter	F	corresponds	to	the	actor	displaying	a	flower	on	a	green
background.	Figure	9	shows	a	4	x	3	matrix	of	letters	that	is	used	to	specify	the	tile	layout
that	creates	the	final	image.	In	the	matrix,	the	upper-left	corner	letter	is	an	S;	therefore,	the
upper-left	corner	of	the	image	is	solid	blue.



Figure	9:	This	shows	the	mapping	of	individual	actors	to	create	a	larger	world

Hopefully,	you	now	have	a	sense	of	how	tile-based	world	creation	will	work.	In	the
coming	snippet,	we	code	the	hiking	world	scenario	again,	but	this	time	modified	to	use
tile-based	world	creation.	Much	of	the	code	is	directly	borrowed	from	the	2D-scrolling
hiking	world	we	built	in	the	last	section.

Create	a	new	scenario	and	name	it	HikingWorldTiled.	The	world	and	actor	classes	for	this
scenario	are	described	in	the	next	section.	We	only	highlight	the	additions	pertinent	to	tile-
based	world	creation.	Figure	10	shows	a	screenshot	from	the	completed	scenario.	I
provide	this	now,	so	that	you	can	quickly	see	all	the	classes	we	will	implement	and	get	a
glimpse	of	part	of	the	image	we	will	be	creating.

Figure	10:	This	is	a	screenshot	of	the	completed	HikingWorldTiled	scenario

The	HikingWorld	class
Create	HikingWorld	by	subclassing	World.	We	are	dynamically	creating	a	background
image,	so	you	don’t	want	to	associate	an	image	with	this	class;	here	is	the	code	to
accomplish	this:

import	greenfoot.*;

import	java.util.List;

public	class	HikingWorld	extends	World	{

		private	int	xOffset	=	0;

		private	final	static	int	SWIDTH	=	600;



		private	final	static	int	SHEIGHT	=	400;

		private	final	static	int	WWIDTH	=	1200;

		private	final	static	int	TWIDTH	=	25;

		private	final	static	int	THEIGHT	=	25;

		

		private	final	static	String[]	WORLD	=	{

				"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB",

				"BWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWB",

				"BWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWB",

				"BWWWWWWUUWWUUWWUUWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWB",

				"BWWWWWWUUWWUUWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWB",

				"BWWWWWWUUUUUUWWUUWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWB",

				"BWWWWWWUUWWUUWWUUWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWB",

				"BWWWWWWUUWWUUWWUUWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWB",

				"BWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWB",

				"BWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWB",

				"BWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWB",

				"BWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWB",

				"BWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWB",

				"BWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWB",

				"BWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWB",

				"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"

		};

		

		public	HikingWorld()	{

				super(SWIDTH,	SHEIGHT,	1,	false);

				createWorldFromTiles();

				shiftWorld(0);

				prepare();

		}

		

		public	void	shiftWorld(int	dx)	{

				if(	(xOffset	+	dx)	<=	0	&&	(xOffset	+	dx)	>=	SWIDTH	-	WWIDTH)	{

						xOffset	=	xOffset+dx;

						shiftWorldActors(dx);

				}

		}

		

		private	void	shiftWorldActors(int	dx)	{

				List<ScrollingActor>	saList	=

				getObjects(ScrollingActor.class);

				for(	ScrollingActor	a	:	saList	)	{

						a.setAbsoluteLocation(dx);

				}

		}

		

		private	void	createWorldFromTiles()	{

				for(	int	i=0;	i	<	WORLD.length;	i++	)	{

						for(	int	j=0;	j	<	WWIDTH/TWIDTH;	j++	)	{

								addActorAtTileLocation(WORLD[i].charAt(j),	j,	i);

						}

				}

		}

		

		private	void	addActorAtTileLocation(char	c,	int	x,	int	y)	{

				Actor	tile	=	null;



				switch(c)	{

						case	'W':

						tile	=	new	WhiteBlock();

						break;

						case	'B':

						tile	=	new	BlackBlock();

						break;

						case	'U':

						tile	=	new	BlueBlock();

						break;

				}

				if(	tile	!=	null)		 addObject(tile,	12+x*TWIDTH,	12+y*THEIGHT);

		}

		

		private	void	prepare()	{

				Lake	lake	=	new	Lake();

				addObject(lake,	WWIDTH-300,	300);

				Hiker	hiker	=	new	Hiker();

				addObject(hiker,	90,	275);

		}

}

The	two	new	parts	of	this	class	are	the	array	of	strings,	WORLD,	declared	at	the	top	of	the
class,	and	the	createWorldFromTiles()	method,	which	uses	the	method
addActorAtTileLocation()	to	assist	in	building	the	world	from	the	existing	actors.	The
WORLD	array	specifies	where	we	are	going	to	place	each	actor	that	makes	up	part	of	the
background.	We	have	three	actors	we	will	use	for	our	background	image;	they	are
BlackBlock,	WhiteBlock,	and	BlueBlock.	These	actors	use	images	that	are	25	x	25	pixels.
This	is	a	decent	size	for	a	tile—any	smaller	and	your	WORLD	array	will	be	too	large	and
tedious	to	manage,	and	any	larger	and	you	will	lose	the	ability	to	create	detail.

The	WORLD	array	has	sixteen	strings	in	it	that	each	contain	forty-eight	characters,	thus	the
size	of	the	image	we	are	creating	is	1200	(48	x	25)	x	400	(16	x	25).	The	letter	B
corresponds	to	the	BlackBlock	actor,	the	letter	W	corresponds	to	the	WhiteBlock	actor,	and
the	letter	U	corresponds	to	the	BlueBlock	actor.	This	mapping	is	captured	in	the	switch
statement	in	the	addActorAtTileLocation()	method.	Knowing	the	mapping,	you	can
look	at	the	WORLD	array	and	see	that	the	image	will	have	a	black	border	and	white
background,	and	will	spell	the	word	Hi	in	blue.

OK,	let’s	go	through	createWorldFromTilesMethod().	This	method	iterates	through
every	character	of	every	string	in	WORLD.	For	each	character,	it	calls
addActorAtTileLocation(),	supplying	parameters	that	specify	the	character	that
indicates	which	tile	should	be	placed	as	well	as	the	location	for	that	tile.	In
addActorAtTileLocation(),	we	create	a	new	actor	based	on	the	character	passed	to	it	and
then	use	the	provided	x	and	y	values	to	place	the	new	actor	in	the	world.

The	Hiker	class
The	code	here	is	identical	to	the	code	we	looked	at	earlier	for	the	Hiker	class	in	the
dynamically	created	world.	I	reproduce	it	here	for	convenience	and	because	it	is	relatively
short:



import	greenfoot.*;

public	class	Hiker	extends	Actor	{

		private	int	speedX	=	1;

		private	static	final	int	SPEED	=	2;

		private	static	final	int	BOUNDARY	=	40;

		

		public	void	act()	{

				handleKeyPresses();

				boundedMove();

				checkAtLake();

		}

		

		private	void	handleKeyPresses()	{

				handleArrowKey("left",	-SPEED);

				handleArrowKey("right",	SPEED);

		}

		

		private	void	handleArrowKey(String	k,	int	sX)	{

				if(	Greenfoot.isKeyDown(k)	)	{

						speedX	=	sX;

				}

		}

		

		private	void	boundedMove()	{

				if(	speedX+getX()	<=	BOUNDARY	)	{

						setLocation(BOUNDARY,	getY());

						((HikingWorld)getWorld()).shiftWorld(-speedX);

				}	else	if(	speedX+getX()	>=	getWorld().getWidth()-BOUNDARY	)	{

						setLocation(getWorld().getWidth()-BOUNDARY,	getY());

						((HikingWorld)getWorld()).shiftWorld(-speedX);

				}	else	{

						setLocation(getX()+speedX,	getY());

				}

				speedX	=	0;

		}

		

		private	void	checkAtLake()	{

		}

}

The	ScrollingActor	class
This	code	is	also	identical	to	the	code	provided	for	the	first	scenario	we	created	in	this
chapter.	It	is	important	to	note	here,	that	the	actors	we	are	using	to	create	the	world	could
also	have	additional	functionality	and	not	simply	be	a	passive	background	image.	For
example,	you	could	have	a	Fire	tile	that	would	burn	the	hiker	if	it	collided	with	it.	Here’s
the	code	we	are	discussing:

import	greenfoot.*;

public	class	ScrollingActor	extends	Actor	{

		public	void	setAbsoluteLocation(int	dx)	{

				setLocation(getX()+dx,	getY());

		}



}

Tiles

The	code	for	the	BlackBlock,	BlueBlock,	and	WhiteBlock	actors	are	nearly	identical.	The
only	difference	is	the	name	of	the	class	and	the	associated	image.	Take	a	look	at	the	code
for	BlackBlock:

import	greenfoot.*;

public	class	BlackBlock	extends	ScrollingActor	{

}

It	is	important	that	the	images	for	these	actors	are	all	the	same	size,	to	make	them	easy	to
compose	into	a	larger	image.	In	our	case,	the	images	are	25	pixel	x	25	pixel	colored
squares.

The	Lake	class

The	Lake	class	is	the	same	as	in	the	first	scenario.	It	is	important	to	note	that	not	all
subclasses	of	ScrollingActor	have	to	serve	as	tiles	for	the	background	image.	The	Lake
actor	represents	our	final	destination	This	is	how	the	Lake	class	is	used:

import	greenfoot.*;

public	class	Lake	extends	ScrollingActor	{

}

You	can	just	copy	it	and	its	associated	image	from	the	previous	scenario.

Try	it	out

Compile	the	scenario	and	run	it.	It	should	feel	similar	to	the	side-scrolling	example	we
provided	after	the	Clouds	scenario,	except	now	it	is	very	easy	to	change	the	image	of	the
world.	Instead	of	Hi	being	spelled	in	the	background,	spell	your	name.	For	a	challenge,
change	the	Hiker	class	such	that	if	it	touches	a	blue	block,	the	game	ends.



Other	game	sprites
In	our	example,	the	tiles	were	very	simple.	The	real	strength	of	tile-based	world	creation
comes	from	having	a	wide	variety	of	tiles	to	choose	from	to	create	an	interesting	world.
You	can	either	create	your	own	world,	download	some	from	sites	that	charge,	such	as
http://cartoonsmartart.com,	or	download	from	100	percent	free	sites,	such	as
http://opengameart.org.	Figure	11	shows	an	example	of	a	free	tile	set	from
http://opengameart.org.

Figure	11:	This	is	a	free	tile	sheet	from	opengameart.org	provided	by	Kenny	at
http://opengameart.org/content/rpg-pack-base-set

http://cartoonsmartart.com
http://opengameart.org
http://opengameart.org




Summary
By	combining	the	techniques	of	large-world	creation	presented	in	this	chapter,	with	the
other	concepts	and	techniques	presented	in	previous	chapters,	you	are	fully	equipped	to
create	endless	forms	of	information,	entertainment,	and	immersive	experiences	using
Greenfoot.	In	the	next	chapter,	we	will	explore	making	actors	in	your	applications	behave
intelligently	to	further	enhance	user	experience.





Chapter	7.	Artificial	Intelligence
	 “Wisdom	begins	with	Wonder.” 	

	 —Socrates

We	looked	at	moving,	controlling,	detecting	collisions	between,	and	animating	Greenfoot
actors	up	to	now	in	this	book.	What	we	will	look	at	in	this	chapter,	is	giving	our	actors	a
semblance	of	intelligent	behavior.	Doing	so	will	allow	us	to	tell	better	stories	and	create
more	engaging	user	interactions.

Now,	the	field	of	Artificial	Intelligence	(AI)	is	very	complex,	and	creating	truly
intelligent	behavior	for	our	actors	is	beyond	the	scope	of	this	book.	However,	there	are
some	simple	techniques	we	can	use	to	simulate	various	levels	of	intelligent	behavior	using
probability	and	heuristics.	We	will	then	look	at	a	popular	algorithm	(used	in	many	AAA
games)	that	will	allow	an	actor	to	traverse	a	path	through	a	set	of	obstacles.	Specifically,
you	will	learn	how	to	apply	the	following	to	simulate	intelligence:

Randomness
Behavior	heuristics
A*	(pronounced	A-star)	pathfinding

Throughout	this	book,	you	have	been	acquiring	the	skills	to	create	the	wow	factor	in	your
applications,	animations,	and	games.	Adding	simple	AI	techniques	to	your	repertoire	is
going	to	elevate	your	ability	to	create	and	be	creative.	The	more	wisdom	you	have	around
Java	programming,	the	more	wonder	you	will	be	able	to	provide	to	your	audience.



The	MazeWorld	scenario
In	the	preceding	chapter,	we	learned	how	to	create	tile-based	worlds.	We	will	augment	the
Hiking	World	scenario	we	created	using	the	tile-based	method	to	create	our	new	scenario
entitled	MazeWorld.	In	this	scenario,	our	hero	will	need	to	navigate	around	obstacles	and
avoid	three	intelligent	actors,	in	order	to	reach	the	gold	at	the	end	of	the	maze.	Figure	1
contains	a	screenshot	of	the	completed	scenario.

Figure	1:	This	is	the	completed	version	of	MazeWorld

There	are	a	few	significant	differences	between	the	HikingWorld	scenario	from	the
previous	chapter	and	the	new	MazeWorld	scenario	we	are	building	in	this	chapter.	The
redundant	area	will	be	quickly	explained,	and	we	will	slow	down	and	explain	in	detail	the
changes	necessary	to	create	our	intelligent	actors.	Please	review	Chapter	6,	Scrolling	and
Mapped	Worlds,	if	needed,	for	a	full	description	of	tile-based	world	creation.



The	MazeWorld	class
Create	a	new	scenario	and	call	it	MazeWorld.	In	the	new	scenario,	create	a	subclass	of	the
World	class	entitled	MazeWorld.	Choose	no	image	as	the	image	for	this	scenario.	Here	is
the	implementation	of	the	MazeWorld	class:

import	greenfoot.*;

import	java.util.List;

import	java.util.Stack;

public	class	MazeWorld	extends	World	{

		private	int	xOffset	=	0;

		private	Hiker	hiker;

		private	final	static	int	SWIDTH	=	600;

		private	final	static	int	SHEIGHT	=	400;

		private	final	static	int	WWIDTH	=	1200;

		private	final	static	int	TWIDTH	=	25;

		private	final	static	int	THEIGHT	=	TWIDTH;

		private	final	static	int	TILEOFFSET	=	TWIDTH/2;

		private	final	static	String	validSpaces	=	"WG";

		

		private	final	static	String[]	WORLD	=	{

				"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB",

				"BWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWUWWWWB",

				"BWWWWWWWWWWWWWUUWWWWWWWWUUUUUUUWWWWWWWWWWWUWWWWB",

				"BWWWWWUUUUUWWWUUUWWWWWWWWWWWWWWWWWWWWWWWWWUWWWWB",

				"BWWWWWUUUUUWWWWWWWWWWWWWWWWWWWWWWWWWUWWWWUUUWWWB",

				"BWWWWWWWWWWWWWWWWWUUUUUWWWWWWWWUUUUUUWWWWWWWWWWB",

				"BWWWWWWWWWWWWWWWWWUUUUWWWWWWWWWUUUUUUUUWWWWWWWWB",

				"BWWWWUUUUUUUWWWUWWWWWWWWWWWWWWWUWWWWWWWWWWWWWWWB",

				"BWWWWWWWUUUWWWWUWWWWWWWWWWUWWWWUWWWWWWWWWWWWWWWB",

				"BWWWWWWWWWWWWWWWWWWWWWWWWWUWWWWWWWWWWWWWWWWWUWWB",

				"BWWWWWWWWWWWWWWWWWWWUUUUUUUWWWWWWWWWUUUUWWWWUWWB",

				"BWWWWWWWWWWWWWUUWWWWUWWWWWWWWWWWWWWWUUUUWWWWUWWB",

				"BWWWWWWWUUUUUUUUUWWWWWWWWWWWWWWWWWWWUUUUUUWWUWWB",

				"BWWWWWWWUUUUUUUUUWWWWWWWWWUUWWWWWWWWWWWWWWWWUWWB",

				"BWWWWWWWUWWWWWWWWWWWWWWWWWUUWWWWWWWWWWWWWWWWUWGB",

				"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"

		};

		public	MazeWorld()	{		

				super(SWIDTH,	SHEIGHT,	1,	false);	

				createWorldFromTiles();

				shiftWorld(0);				

				prepare();

		}

		public	void	shiftWorld(int	dx)	{

				if(	(xOffset	+	dx)	<=	0	&&	(xOffset	+	dx)	>=	SWIDTH	-	WWIDTH)	{

						xOffset	=	xOffset+dx;

						shiftWorldActors(dx);

				}

		}

		

private	void	shiftWorldActors(int	dx)	{



				List<ScrollingActor>	saList	=	getObjects(ScrollingActor.class);

				for(	ScrollingActor	a	:	saList	)	{

						a.setAbsoluteLocation(dx);

				}

		}

		

		private	void	createWorldFromTiles()	{

				for(	int	i=0;	i	<	WORLD.length;	i++	)	{

						for(	int	j=0;	j	<	WORLD[i].length();	j++	)	{

								addActorAtTileLocation(WORLD[i].charAt(j),	j,	i);

						}

				}

		}

		

		private	void	addActorAtTileLocation(char	c,	int	x,	int	y)	{

				Actor	tile	=	null;

				switch(c)	{

						case	'W':

								tile	=	new	WhiteBlock();

								break;

						case	'B':

								tile	=	new	BlackBlock();

								break;

						case	'U':

								tile	=	new	BlueBlock();

								break;

						case	'G':

								tile	=	new	GoldBlock();

								break;

				}

				if(	tile	!=	null)	addObject(tile,	TILEOFFSET+x*TWIDTH,	

TILEOFFSET+y*THEIGHT);

				

		}

	public	int	getTileWidth()	{

				return	TWIDTH;

		}

		

		public	int	getTileHeight()	{

				return	THEIGHT;

		}

		

		public	int	getTileOffset()	{

				return	TILEOFFSET;

		}

		

		public	String[]	getStringWorld()	{

				return	WORLD;

		}

		

		public	int	getXHiker()	{

				return	hiker.getX()-xOffset;

		}

		

		public	int	getYHiker()	{



				return	hiker.getY();

		}

		

		public	String	getValidSpaces()	{

				return	validSpaces;

		}

		private	void	prepare()

		{

				hiker	=	new	Hiker();

				addObject(hiker,	80,	200);

				addObject(new	Mouse(),	60,40);

				addObject(new	Spider(),	1000,40);

				addObject(new	Spider(),	120,340);

				addObject(new	Spider(),	1050,250);

				addObject(new	Snake(),	1050,250);

				addObject(new	Mouse(),	1000,200);

				addObject(new	Snake(),	400,260);

		}

}

We	first	start	by	declaring	all	of	the	instance	variables	for	this	class.	We	added	the
TILEOFFSET	constant	(used	to	record	half	of	the	value	of	the	width	of	a	tile)	and	String
validspaces	(used	to	indicate	which	tiles	our	hero	can	walk	on).	The	WORLD	array	defines
the	tile’s	type	and	placement	in	our	world.	We	augmented	the	WORLD	array	to	create	various
static	obstacles	with	the	letter	U	and	added	a	goal	destination	in	the	lower-right	corner	via
the	letter	G.	The	W	character	designates	the	walkable	background	area	and	B	designates	an
impassable	area.

The	shiftWorld,	shiftWorldActors,	and	createWorldFromTiles	methods	and	the
constructor	are	the	same	as	they	were	in	HikingWorld.	The	addActorAtTileLocation
method	simply	had	one	case	added	to	the	switch	statement	to	handle	the	creation	and
placement	of	gold	tiles.	Getting	to	the	gold	tiles	is	the	goal	of	this	scenario.

The	following	methods	were	added	to	provide	an	easy	way	to	access	information
contained	in	our	world:	getTileWidth,	getTileHeight,	getTileOffset,	getStringWorld,
getXHiker,	getYHiker,	and	getValidSpaces.	We	will	see	their	use	in	the	classes	we
define	in	this	chapter.	The	last	method	provided	in	the	implementation	of	MazeWorld	is
prepare(),	which	is,	by	default,	used	to	place	the	initial	actors	in	our	world.



The	Hiker	class
Our	Hiker	class	is	the	same	as	the	one	we	saw	in	the	previous	chapter	in	HikingWorld,
except	that	we	have	expanded	the	ability	of	this	class	to	move	up	and	down	as	well.
Moving	in	two	dimensions	was	covered	in	previous	chapters,	and	we	will	provide	a
summary	explanation	of	this	class.	Here	is	the	code:

import	greenfoot.*;

public	class	Hiker	extends	Actor

{

		private	static	final	int	SPEED	=	2;

		private	static	final	int	BOUNDARY	=	40;

		private	int	speedX	=	SPEED;

		private	int	speedY	=	SPEED;

		

		public	void	act()	{

				handleKeyPresses();

				handleCollisions();

				boundedMove();

		}

		

		private	void	handleKeyPresses()	{

				handleArrowKey("left",	-SPEED,	0);

				handleArrowKey("right",	SPEED,	0);

				handleArrowKey("up",	0,	-SPEED);

				handleArrowKey("down",	0,	SPEED);

		}

		

		private	void	handleArrowKey(String	k,	int	sX,	int	sY)	{

				if(	Greenfoot.isKeyDown(k)	)	{

						speedX	=	sX;

						speedY	=	sY;

				}

		}

		

		private	void	handleCollisions()	{

				if(	isTouching(ScrollingEnemy.class)	)	{

						Greenfoot.stop();	//	Game	Over

				}

		}

		

		private	void	boundedMove()	{

				setLocation(getX()+speedX,	getY()+speedY);

				if(	isTouching(ScrollingObstacle.class)	)	{

						setLocation(getX()-speedX,	getY()-speedY);

				}	else	if(	isTouching(GoldBlock.class)	)	{

						Greenfoot.stop();	//	Game	over…you	Win!!

				}else	if(	getX()	>	getWorld().getWidth()	-	BOUNDARY	)	{

						((MazeWorld)getWorld()).shiftWorld(-speedX);

						setLocation(getX()-speedX,	getY()-speedY);

				}	else	if(	getX()	<	BOUNDARY	)	{

						((MazeWorld)getWorld()).shiftWorld(-speedX);

						setLocation(getX()-speedX,	getY()-speedY);



				}

				speedX	=	0;

				speedY	=	0;

		}

}

The	code	for	the	Hiker	class	handles	the	left,	right,	up,	and	down	arrow	key	presses	and
ensures	that	the	actor	does	not	walk	through	obstacles	and	calls	shiftWorld()
appropriately.	It	also	checks	for	collision	with	one	of	the	ScrollingEnemy	actors	and	stops
the	game	if	there	is	a	collision.

The	code	for	handling	up	and	down	movement	mirrors	the	code	to	handle	left	and	right
movement.	The	handleKeyPresses()	and	boundedMove()methods	have	been	extended	by
simply	adding	the	cases	for	up	and	down	movement.



Scrolling	actor
The	ScrollingActor	class	is	the	same	as	it	was	in	the	previous	chapter,	and	we	reproduce
it	here	for	completeness:

import	greenfoot.*;

public	class	ScrollingActor	extends	Actor	{

		public	void	setAbsoluteLocation(int	dx)	{

				setLocation(getX()+dx,	getY());

		}

}

There	are	four	classes	that	subclass	ScrollingActor.	The	first	two	are	the
implementations	of	GoldBlock	and	WhiteBlock.	These	two	actors	are	the	parts	of	the
background	world	that	are	walkable	and	thus	do	not	need	any	special	handling.	Make	sure
when	you	create	them,	that	you	associate	an	image	of	a	gold	block	and	an	image	of	a
white	block,	respectively.	Here	is	the	code	for	both:

import	greenfoot.*;

public	class	GoldBlock	extends	ScrollingActor	{

}

import	greenfoot.*;

public	class	WhiteBlock	extends	ScrollingActor	{

}

The	other	two	subclasses	of	ScrollingActor	are	intended	to	be	subclassed	(note	that	they
do	not	have	an	image	associated	with	them)	and	help	us	group	actors	into	one	of	two
categories:	obstacles	or	enemies.	We	will	discuss	these	two	subclasses	next.

The	ScrollingObstacle	class
This	class	does	not	add	any	additional	functionality.	It	merely	serves	as	a	convenient	way
to	group	tiles	that	instances	of	the	Hiker	class	cannot	pass	through.	This	makes	it	easier	to
perform	collision	detection	in	the	Hiker	class.	Here	is	the	code:

import	greenfoot.*;

public	class	ScrollingObstacle	extends	ScrollingActor	{

}

We	only	have	two	obstacle	tiles:	BlackBlock	and	BlueBlock.	When	you	create	these,
make	sure	you	associate	the	appropriate	images	(as	we	did	in	the	previous	chapter)	with
each	other.	Here	is	the	code	for	both:

import	greenfoot.*;

public	class	BlackBlock	extends	ScrollingObstacle	{

}

import	greenfoot.*;

public	class	BlueBlock	extends	ScrollingObstacle	{



}

We	are	now	in	a	position	to	describe	the	implementation	of	the	classes	that	exhibit
intelligent	behavior.





Intelligently	behaving	actors
We	are	now	going	to	add	enemies	to	our	MazeWorld	scenario	that	implement	different
methods	of	simulating	intelligent	behavior.	The	first	method	we	will	discuss	uses
probabilistic	movement,	the	second	method	uses	simple	heuristics,	and	the	last	method
uses	the	A*	pathfinding	algorithm	to	guide	actor	movement.	Before	discussing	each
method,	we	present	the	ScrollingEnemy	class	that	implements	a	common	structure	for
intelligently	behaving	actors.



The	ScrollingEnemy	class
The	class	ScrollingEnemy	inherits	from	ScrollingActor,	so	it	will	be	placed	properly
within	a	scrolling	world.	Then,	it	sets	up	a	pattern	of	behavior	that	is	conducive	to
intelligently	moving	actors.	Modeling	actual	sentient	animals,	ScrollingEnemy	provides	a
three-phase	action-taking	process	in	its	act()	method.	First,	it	calls	a	method	that	requires
the	actor	to	sense	its	environment,	then	it	calls	a	method	to	choose	a	course	of	action
based	on	what	it	has	sensed,	and	then	it	calls	a	method	to	move	the	actor.	Please	note	that
this	class	is	abstract	and	cannot	be	instantiated	directly.

Here	is	the	code	for	ScrollingEnemy:

import	greenfoot.*;

abstract	public	class	ScrollingEnemy	extends	ScrollingActor	{

		protected	static	final	int	SPEED	=	1;

		private	static	final	int	BOUNDARY	=	40;

		protected	int	speedX	=	SPEED;

		protected	int	speedY	=	SPEED;

		

		protected	void	addedToWorld(World	w)	{

				MazeWorld	mw	=	(MazeWorld)	w;

				GreenfootImage	img	=	getImage();

				img.scale(mw.getTileWidth(),mw.getTileHeight());

				setImage(img);

		}

		

		public	void	act()	{

				sense();

				reaction();

				boundedMove();

		}

		

		protected	void	sense()	{

				//	No	smarts

		}

		

		protected	void	reaction()	{

				//	No	reaction

		}

		

		protected	void	boundedMove()	{

				setLocation(getX()+speedX,	getY()+speedY);

				if(	isTouching(ScrollingObstacle.class)	)	{

						setLocation(getX()-speedX,	getY()-speedY);

				}

		}

}

The	sense()	and	reaction()	methods	are	empty,	as	they	are	intended	to	be	overridden	by
subclasses	implementing	one	of	our	strategies	for	intelligent	movement.	The	end	result	of
these	methods	are	that	they	will	change	the	values	of	the	variables	speedX	and	speedY	to
affect	movement.	The	last	method,	boundedMove(),	is	fully	implemented	as	once	the



values	of	speedX	and	speedY	are	set,	the	movement	for	every	subclass	of	ScrollingEnemy
is	the	same.



Randomness
Algorithms	using	pure	probability	to	determine	solutions	to	problems	are	surprisingly
effective	and	not	uncommon	in	computer	science.	While	they	are	almost	never	the	best
answer,	they	make	for	good	comparisons	against	new	algorithms	developed	for	things
such	as	memory	management	or	scheduling.

For	games,	an	actor	that	moves	randomly	provides	a	unique	challenge	for	players	to	avoid
or	capture.	We	are	going	to	add	an	actor	to	our	MazeWorld	scenario	that	moves	around	the
world	randomly.

Spider
Let	us	create	a	new	actor	by	right-clicking	on	ScrollingEnemy,	choosing	New
subclass…,	entering	Spider	as	the	new	class	name,	and	then	selecting	the	image
spider.png	in	the	animals	category.	Add	the	following	code	to	this	new	class:

import	greenfoot.*;

public	class	Spider	extends	ScrollingEnemy	{

		private	final	static	int	SPEEDVARIATION	=	3;

		private	final	static	int	SPEEDCHANGECHANCE	=	20;

		

		protected	void	reaction()	{

				speedX	=	Greenfoot.getRandomNumber(1000)	<	SPEEDCHANGECHANCE	?	

Greenfoot.getRandomNumber(SPEEDVARIATION)-1	:	speedX;

				speedY	=	Greenfoot.getRandomNumber(1000)	<		SPEEDCHANGECHANCE	?	

Greenfoot.getRandomNumber(SPEEDVARIATION)-1	:	speedY;

		}

}

One	of	the	first	things	to	notice,	is	that	we	do	not	provide	an	implementation	for	the	empty
sense()	method	defined	in	ScrollingEnemy.	Since	we	are	moving	randomly,	we	do	not
need	to	do	any	sensing	of	the	environment.	The	reaction()	method	randomly	sets	both
the	speedX	and	speedY	variables	to	1,	0,	or	-1.	It	only	changes	the	values	of	those
variables	2	percent	of	the	time	so	that	movement	is	not	too	sporadic.

You	can	now	test	the	scenario.	First,	comment	out	the	additions	of	the	Mouse	and	Snake
objects	in	the	prepare()	method	in	MazeWorld,	and	then	compile	and	run	the	scenario.
Observe	the	movements	of	the	Spider	objects.	Can	you	get	around	them?	Play	with	the
values	in	the	Spider	class	and	see	how	they	affect	the	movement	of	Spider	objects.

With	a	little	code,	we	have	constructed	an	enemy	that	is	hard	to	avoid.



Behavior	heuristics
In	this	method,	we	supply	some	simple	rules	for	movement	that	provide	pretty	good
intelligence	without	complex	coding.	A	good	example	of	an	animal	in	nature	that	follows
simple	behavior	heuristics,	is	an	ant.	Ants	follow	a	few	rules	of	movement	that	provide	a
proven	method	of	finding	food	in	the	environment	and	returning	to	the	hive.

Examples	of	these	simple	heuristics	are:

If	you	hit	an	obstacle,	turn	left
Follow	the	sun
If	you	are	close	to	prey,	run	at	it
Walk	in	a	circular	path

Let	us	create	an	actor	that	will	attack	the	hiker	if	the	hiker	gets	too	close;	otherwise,	it
paces	back	and	forth.

The	Snake	class
Create	a	class	called	Snake	in	the	same	way	that	we	created	the	previous	Spider	class.	Of
course,	you	will	need	to	choose	the	image	for	a	snake,	snake2.png,	instead	of	the	spider
image.

Here	is	the	code	for	the	Snake	class:

import	greenfoot.*;

import	java.util.List;

public	class	Snake	extends	ScrollingEnemy	{

		private	static	final	int	PATHLENGTH	=	200;

		private	static	final	int	INRANGE	=	100;

		private	int	pathCounter	=	PATHLENGTH;

		private	boolean	pathing	=	false;

		private	int	rememberSpeedX	=	0;

		private	List<Hiker>	lse;

		

		public	Snake()	{

				speedX	=	rememberSpeedX	=	SPEED;

				speedY	=	0;

		}

		

		protected	void	sense()	{

				//	If	near,	move	towards	enemy

				lse	=	getObjectsInRange(INRANGE,Hiker.class);

				pathing	=	lse.isEmpty();

		}

		

		protected	void	reaction()	{

				if(	pathing	)	{

						speedX	=	rememberSpeedX;

						speedY	=	0;

						if(	--pathCounter	==	0	)	{

								pathCounter	=	PATHLENGTH;

								speedX	=	rememberSpeedX	=	-speedX;



						}

				}	else	{

						speedX	=	lse.get(0).getX()	>	getX()	?	1	:	-1;

						speedY	=	lse.get(0).getY()	>	getY()	?	1	:	-1;

				}

		}

}

The	sense()	method	for	the	Snake	actor	is	simple.	It	looks	to	see	whether	the	hiker	is
within	range	using	the	getObjectsInRange()	collision	detection	method.	If	the	hiker	is
within	range,	then	getObjectsInRange()	will	return	a	list	containing	a	reference	to	the
Hiker	object;	otherwise,	the	list	will	be	empty.	Next,	we	check	whether	the	returned	list	is
empty	by	calling	the	isEmpty()	method	and	saving	the	result	in	the	pathing	variable.	We
will	use	the	value	of	pathing	to	determine	whether	the	snake	should	move	back	and	forth
or	chase	the	hiker.

Figure	2:	This	shows	the	movement	decision	made	by	the	Snake	actors.	The	snake	moves
back	and	forth,	as	shown	by	the	arrows,	unless	the	hiker	is	within	the	green	circle.	In	that

case,	the	snake	will	move	towards	the	hiker.

In	the	reaction()	method,	we	have	the	snake	march	back	and	forth	if	pathing	is	true;
otherwise,	we	have	the	snake	chase	the	hiker.	Figure	2	shows	the	two	cases.	To	march
back	and	forth,	we	use	a	delay	variable,	pathCounter,	to	define	how	long	the	snake
marches	in	each	direction.	When	the	variable	expires	(has	a	value	of	0),	we	have	the	snake
switch	directions	and	reset	the	delay	variable.	To	chase	the	hiker,	we	simply	set	the	speedX
and	speedY	variables	using	a	simple	calculation.	If	the	hiker	is	to	the	right	of	the	snake,	we
set	speedX	to	be	1;	otherwise,	it	is	set	to	-1.	If	the	hiker	is	below	the	snake,	then	we	set
speedY	to	be	1;	otherwise,	we	set	it	to	-1.

Let’s	test	the	scenario.	Because	we	have	not	yet	implemented	the	Mouse	class,	you	will
need	to	comment	out	the	addition	of	Mouse	objects	in	the	prepare()	method	present	in	the
MazeWorld	class.	Compile	and	run	the	scenario.	Observe	the	movements	of	the	Snake
objects.	Try	getting	close	to	one.	Are	the	Spider	objects	or	Snake	objects	harder	to	avoid?



A*	pathfinding
The	A*	pathfinding	algorithm	finds	a	path	between	a	start	location	and	an	end	location
that	intelligently	avoids	obstacles.	This	algorithm	is	used	heavily	in	the	gaming	industry.
Ever	wonder	how	enemies	in	games	you	have	played	are	able	to	chase	you	while	avoiding
obstacles?	Their	movement	is	programmed	using	this	algorithm.	While	the	algorithm	is
fairly	complex	(as	we	will	soon	see),	understanding	it	is	fairly	straightforward.	Figure	3
shows	the	different	areas	considered	by	the	A*	algorithm	when	determining	a	path
between	the	mouse	actor	and	the	hiker.

Figure	3:	The	first	round	of	comparisons	is	done	on	the	areas	containing	a	red	“1”,	the
second	round	on	the	areas	containing	a	green	“2”,	the	third	round	on	the	areas	containing
a	blue	“3”,	and	the	fourth	round	on	the	areas	containing	a	purple	“4”.	The	competing
paths	are	shown	with	a	black	square	in	the	upper-right	corner.	After	round	four,	the	upper

path	continues	to	progress	until	it	reaches	the	goal	destination

Overview
Before	starting	the	algorithm,	you	need	to	divide	the	world	into	a	grid	of	uniform-sized
areas.	Each	individual	area	immediately	surrounding	an	actor	defines	a	potential	location
the	actor	could	move	to.	With	this	in	place,	we	can	start.	The	A*	algorithm	works	by
comparing	the	areas	an	actor	could	move	to	using	a	heuristic	that	approximates	the
remaining	distance	to	the	goal	location	(often	referred	to	as	the	H	value)	and	combines	that
with	the	distance	traveled	thus	far	(referred	to	as	the	G	value).	For	example,	in	Figure	3,
the	mouse	can	initially	move	to	any	of	the	squares	marked	with	a	red	1.	When	an	area
contains	an	obstacle,	it	is	not	used	in	the	comparison.	Therefore,	we	calculate	H	+	G
(referred	to	as	F)	for	the	squares	above,	below,	and	to	the	left	of	the	mouse.	The	H	value	is
approximated	by	just	counting	how	far	away	we	are	from	the	goal	destination,	ignoring
any	obstacles	in	the	way.	The	G	value	is	determined	by	counting	the	number	of	squares
back	to	the	starting	location	of	the	mouse.	Knowing	that,	we	can	calculate	the	F	value
(G+H)	for	each	of	the	walkable	squares	around	the	mouse.	For	our	example,	the	F	value	for
each	square	is	10	(H=9,	G=1).	The	algorithm	will	then	pretend	that	the	actor	has	moved	to



the	most	favorable	current	location	(the	one	with	the	lowest	F	value)	and	then	repeat	the
process.	If	there	is	a	tie	for	the	best	F	values,	the	algorithm	will	just	choose	one	at	random.
Figure	3	depicts	this	and	a	few	more	iterations	of	the	algorithm	pictorially.	Our	mouse	can
only	move	up,	down,	left,	and	right—not	diagonally.	However,	the	algorithm	works	just	as
well	for	actors	that	can	move	diagonally.

Algorithm
Given	that	we	now	have	a	base	understanding	of	the	algorithm,	we	can	state	it	a	bit	more
formally.	Here	are	the	steps:

1.	 Add	the	starting	location	to	the	open	list.
2.	 Pick	the	node	in	the	open	list	that	has	the	minimum	F	value.	Let’s	call	that	n.
3.	 Remove	n	from	the	open	list	and	add	it	to	the	closed	list.
4.	 For	every	neighbor	of	n	not	already	in	the	closed	list	and	not	containing	an	obstacle,

perform	the	following	steps:

1.	 Calculate	its	F	value,	set	its	parent	to	be	n.
2.	 Add	it	to	the	open	list	if	not	already	in	that	list.
3.	 Update	its	F	value	and	its	parent	node	if	it	is	in	the	open	list.

5.	 If	you	have	not	reached	the	destination,	go	back	to	step	2.
6.	 If	you	have	reached	the	destination	node,	then	construct	the	path	from	the	start

location	to	the	end	location	by	backtracking	through	the	parent	links.

In	our	algorithm,	these	are	the	definitions	of	G,	H,	and	F:

G:	This	is	the	number	of	locations	we	need	to	traverse	from	the	start	location	to	get	to
this	node.
H:	This	is	approximately	how	far	we	are	from	the	destination	node.	This	is	calculated
by	summing	the	absolute	value	of	the	difference	in	the	x	location	of	the	current	node
and	the	destination	node	with	the	absolute	value	of	the	difference	in	the	y	location	of
the	current	node	and	the	destination	node.	This	is	known	as	the	Manhattan	distance.
F:	This	is	the	sum	of	H	and	G.

Now,	let’s	look	at	the	implementation	of	this	algorithm	in	our	MazeWorld	scenario.

Tip
To	learn	more	about	A*	pathfinding,	refer	to	the	following	resources:

http://www.policyalmanac.org/games/aStarTutorial.htm
http://theory.stanford.edu/~amitp/GameProgramming/
http://www.raywenderlich.com/4946/introduction-to-a-pathfinding
http://en.wikipedia.org/wiki/Pathfinding

The	Mouse	class
We	are	going	to	create	a	Mouse	actor	that	will	use	A*	pathfinding	to	track	down	the	hiker.
Start	by	right-clicking	on	ScrollingEnemy,	select	New	subclass…,	then	enter	Mouse	as

http://www.policyalmanac.org/games/aStarTutorial.htm
http://theory.stanford.edu/~amitp/GameProgramming/
http://www.raywenderlich.com/4946/introduction-to-a-pathfinding
http://en.wikipedia.org/wiki/Pathfinding


the	new	class	name,	and	then	select	the	mouse.png	image	in	the	animals	category.	Open
Greenfoot’s	editor	for	this	new	class	and	enter	the	following	code:

import	greenfoot.*;

import	java.util.Stack;

public	class	Mouse	extends	ScrollingEnemy	{

		private	TiledWorldPathfinding	twp;

		private	Stack<Point>	apath;

		private	int	walkDelay	=	-1;

		private	final	static	int	WALKDELAY	=	40;

		private	int	searchDelay	=	-1;

		private	final	static	int	SEARCHDELAY	=	130;

		private	int	prevRow	=	0;

		private	int	prevCol	=	0;

		

		/*	initilization	*/

		protected	void	addedToWorld(World	w)	{

				MazeWorld	mw	=	(MazeWorld)	w;

				super.addedToWorld(w);

				twp	=	new	TiledWorldPathfinding

				(mw.getStringWorld(),mw.getValidSpaces());

				prevRow	=	getY()/mw.getTileWidth();

				prevCol	=	getX()/mw.getTileWidth();

				setLocation(prevCol*mw.getTileWidth()+mw.getTileWidth()/2,

				prevRow*mw.getTileWidth()+mw.getTileWidth()/2);

		}

		

		protected	void	sense()	{

				//	A*	pathfinding	determines	direction

				if(	--searchDelay	<	0)	{

						MazeWorld	w	=	(MazeWorld)	getWorld();

						int	hikerCol	=	w.getXHiker()/w.getTileWidth();

						int	hikerRow	=	w.getYHiker()/w.getTileWidth();

						apath	=	twp.findShortestFeasiblePath(new

						Point(prevRow,prevCol),	new	Point(hikerRow,hikerCol));

						if(	apath	!=	null	&&	!apath.isEmpty()	)	apath.pop();

						searchDelay	=	SEARCHDELAY;

				}

		}

		

		protected	void	reaction()	{

				//	Move	in	direction	chosen	by	A*	pathfinding

				if(	--walkDelay	<	0	)	{

						walkDelay	=	WALKDELAY;

						if(	apath	!=	null	&&	!apath.isEmpty()	)	{

								Point	p	=	apath.pop();

								MazeWorld	w	=	(MazeWorld)	getWorld();

								speedX	=	(p.col-prevCol)	*	w.getTileWidth();

								speedY	=	(p.row-prevRow)	*	w.getTileWidth();

								prevCol	=	p.col;

								prevRow	=	p.row;

						}

				}	else	{

						speedX	=	0;

						speedY	=	0;



				}

		}

		

}

In	the	implementation	of	the	Mouse	class,	the	sense()	method	runs	the	A*	algorithm	to
find	a	path	to	the	hiker,	and	the	reaction()	method	sets	speedX	and	speedY	to	move	the
Mouse	object	along	the	found	path.	As	the	hiker	can	move,	the	Mouse	class	will	need	to
update	its	calculated	path	periodically.

The	Mouse	class	needs	to	perform	a	one-time	initialization	of	the	A*	pathfinding	algorithm
code	in	the	addedToWorld()	method.	First,	a	call	to	the	parent’s	addedToWorld()	method
is	performed	to	ensure	any	initialization	needed	in	that	class,	for	example,	scaling	the
actor’s	image	is	not	skipped.	Next,	we	create	a	new	instance	of	the
TiledWorldPathfinding	class.	This	is	the	class	that	implements	A*	pathfinding,	and	we
will	go	over	it	in	detail	soon.	For	now,	we	can	just	assume	it	works	flawlessly.	To	create	a
new	instance	of	TiledWorldPathfinding,	we	need	to	provide	the	string	representation	of
the	world	defined	in	the	MazeWorld	class	and	the	set	of	spaces	in	this	representation	that
are	walkable,	also	defined	in	MazeWorld.	The	last	thing	this	method	accomplishes	is
making	sure	the	actor	is	aligned	to	be	at	the	center	of	a	grid	in	the	new	grid-view	of	the
world	needed	by	the	A*	algorithm.

The	sense()	method	runs	the	A*	pathfinding	algorithm.	It	is	wrapped	in	a	delay	variable
in	order	to	lower	the	rate	at	which	we	rerun	the	algorithm,	in	order	to	be	more	efficient	as
the	hiker	will	not	really	be	able	to	move	very	far	during	the	delay.	When	searchDelay	is
less	than	zero,	we	ask	our	world	for	the	location	of	the	Hiker	object	and	determine	what
row	and	column	the	hiker	is	on.	We	pass	our	location	and	the	location	of	the	hiker	to	the
findShortestFeasiblePath()	method	of	TiledWorldPathfinding.	For	convenience,	we
have	chosen	to	represent	locations	in	the	world	as	points	defined	by	the	Point	class.	We
will	look	at	the	implementation	of	Point	soon.	The	findShortestFeasiblePath()
method	then	returns	the	shortest	feasible	path	from	the	location	of	the	mouse	to	the
location	of	the	hiker.	The	path	returned	contains	our	current	location,	so	we	remove	that
from	the	path	and	then	reset	the	searchDelay	value.

In	the	reaction()	method,	we	just	move	the	Mouse	object	according	to	the	path
determined	in	the	sense()	method.	First,	we	check	to	see	whether	walkDelay	has	become
less	than	zero.	We	need	this	delay	variable	so	that	the	mouse	moves	at	a	reasonable	pace
towards	the	hiker.	Inside	the	if	statement,	we	pop	off	the	next	location	from	the	path	to
the	hiker	and	then	set	speedX	and	speedY	to	values	that	will	properly	move	the	mouse.

The	Mouse	class	actually	has	a	straightforward	implementation.	The	real	heavy	coding	is
done	in	the	TiledWorldPathfinding	class—the	class	that	implements	A*	pathfinding.

The	TiledWorldPathfinding	class	is	not	going	to	be	a	subclass	of	Actor.	It	is	a	non-
graphical	class	that	will	be	used	solely	to	encapsulate	the	implementation	of	A*
pathfinding.	To	create	this	class,	click	on	Edit	in	Greenfoot’s	main	menu	bar	and	then
select	New	class….	In	the	pop-up	window,	type	TiledWorldPathfinding.	You	will	see
the	new	class	appear	below	all	of	the	Actor	classes	in	Greenfoot’s	main	scenario	window.



Later	in	this	chapter,	you	will	create	the	Point	class	and	the	Tile	class	in	the	same	way.

Here	is	the	code:

import	java.util.PriorityQueue;

import	java.util.Queue;

import	java.util.Stack;

public	class	TiledWorldPathfinding	{

		private	String	[]world;

		private	String	validSpaces;

		private	int	worldColumns;

		private	int	worldRows;

		private	Tile[][]	tiledWorld;

		

		public	TiledWorldPathfinding(String	[]w,	String	vs)	{

				world	=	w;

				worldColumns	=	w[0].length();	//	number	of	columns

				worldRows	=	w.length;	//	number	of	rows

				tiledWorld	=	new	Tile[worldRows][worldColumns];

				validSpaces	=	vs;

				resetWorld();

		}

		

		public	void	changeWorld(	String	[]w	)	{

				world	=	w;

				resetWorld();

		}

		

		public	Stack<Point>	findShortestFeasiblePath(Point	start,	Point	end)	{

				Queue<Tile>	openList	=	new	PriorityQueue<Tile>();

				Queue<Tile>	closedList	=	new	PriorityQueue<Tile>();

				Stack<Point>	answer	=	new	Stack<Point>();

				

				//	Check	for	trivial	case

				if(	start.equals(end)	)	{

						answer.push(start);

						return	answer;

				}

				

				//	Check	that	both	start	and	end	are	walkable

				if(	!tiledWorld[start.row][start.col].isWalkable()	)	{

						return	null;

				}

				if(	!tiledWorld[end.row][end.col].isWalkable()	)	{

						return	null;

				}

				

				//	Mark	location	of	end	point

				tiledWorld[end.row][end.col].setEndNode();

				

				//	Add	starting	node	to	open	list

				openList.add(tiledWorld[start.row][start.col]);

				

				//	A*	algorithm

				runAStar(openList,	closedList,	end);



				

				//	derive	the	answer	area	from	the	marked	up	TileWorld

				if(	tiledWorld[end.row][end.col].getParent()	==	null	)	{

						resetWorld();

						return	null;

				}	else	{

						deriveWaypoints(answer,	end);

				}

				

				//	Prepare	for	next	time

				resetWorld();

				

				//	return	result

				return	answer;

		}

		

		/*	private	methods	*/

		private	void	runAStar(Queue<Tile>	openList,

		Queue<Tile>	closedList,	Point	end)	{

				boolean	done	=	false;

				Tile	t;

				

				while(	!openList.isEmpty()	&&	!done	)	{

						t	=	openList.remove();

						done	=	done	||	processNeighbor(t,	t.getUp(),	openList,	end);

						done	=	done	||	processNeighbor(t,	t.getDown(),	openList,	end);

						done	=	done	||	processNeighbor(t,	t.getLeft(),	openList,	end);

						done	=	done	||	processNeighbor(t,	t.getRight(),	openList,	end);

						t.setDone();

						closedList.add(t);

				}

		}

		

		private	boolean	processNeighbor(	Tile	parent,	Tile	node,	Queue<Tile>	

openList,	Point	end)	{

				boolean	retval	=	false;

				

				if(	node	!=	null	&&	!node.isDone()	&&	node.isWalkable())	{

						if(	node.isEndNode()	)	{	//	Are	we	done?

								node.setParent(parent);

								retval	=	true;	//	FOUND	THE	END	NODE

						}	else	{

								node.setParent(parent);

								node.setG(1	+	parent.getG());

								node.setH(calculateManhattenDistance(

								node.getPoint(),	end));

								openList.add(node);

						}

				}

				return	retval;

		}

		

		private	int	calculateManhattenDistance(Point	start,Point	end)

		{

				return	Math.abs(start.row	-	end.row)	+	Math.abs(start.col	-	end.col);

		}



		

		private	void	deriveWaypoints(Stack<Point>	a,	Point	end)	{

				Tile	tp	=	tiledWorld[end.row][end.col];

				

				while(	tp	!=	null	)	{

						a.push(tp.getPoint());

						tp	=	tp.getParent();

				}

		}

		

		private	void	resetWorld()	{

				for(	int	i	=	0;	i<worldRows;	i++	)	{

						for(int	j	=	0;	j<worldColumns;	j++)	{

								tiledWorld[i][j]	=	new	Tile();

								tiledWorld[i][j].setPoint(i,j);

						}

				}

				for(	int	i	=	0;	i<worldRows;	i++	)	{

						for(int	j	=	0;	j<worldColumns;	j++)	{

								Tile	t	=	tiledWorld[i][j];;

								if(	validSpaces.indexOf(world[i].charAt(j))	==	-1)	{

										t.setNotWalkable();

								}	else	{

										if(	i	==	0	)	{

												t.setUp(null);

										}	else	{

												t.setUp(tiledWorld[i-1][j]);

										}

										if(	i	==	worldRows-1	)	{

												t.setDown(null);

										}	else	{

												t.setDown(tiledWorld[i+1][j]);

										}

										if(	j	==	0	)	{

												t.setLeft(null);

										}	else	{

												t.setLeft(tiledWorld[i][j-1]);

										}

										if(	j	==	worldColumns-1	)	{

												t.setRight(null);

										}	else	{

												t.setRight(tiledWorld[i][j+1]);

										}

								}

						}

				}

		}

}

The	main	method	of	this	class	is	findShortestFeasiblePath().	The	other	methods	in	the
class	support	this	method,	so	let’s	first	look	at	it.	The	method
findShortestFeasiblePath()	accepts	two	locations	in	the	form	of	Point.	The	Point
class	is	very	simple.	It	simply	records	the	row	and	column	values	of	a	location.	The
findShortestFeasiblePath()method	starts	by	checking	the	simple	case	where	the	start
and	end	locations	are	the	same	using	the	equals()	method	defined	in	the	Point	class.	If



so,	we	can	return	a	path	that	just	contains	the	starting	node,	and	we	are	done.	Next,	we
check	that	both	the	starting	and	end	locations	are	walkable;	if	they	are	not,	then	we	really
can’t	run	the	algorithm	as	it	ignores	locations	that	are	not	walkable,	so	we	return	null.	We
then	set	the	end	node	as	our	destination,	add	the	start	node	to	the	open	list	(openList),	and
then	run	the	A*	algorithm.	We	will	now	look	into	the	implementation	of	runAStar().

Because	we	use	good	functional	decomposition,	the	implementation	of	runAStar()	is
fairly	concise.	We	remove	a	node	from	openList,	process	all	of	its	valid	neighbors,	set	the
node	to	done,	and	add	it	to	closedList.	As	we	are	processing	the	neighbors,	we	add	new
nodes	to	openList.	If	we	encounter	the	end	node,	we	set	done	to	true	and	break	out	of	the
loop.	This	is	a	straightforward	implementation	of	the	A*	pathfinding	algorithm	we
discussed	previously.	To	complete	our	discussion,	we	need	to	look	at	the	implementation
of	processNeighbor().

In	processNeighbor(),	we	check	for	two	things.	If	the	node	is	not	valid	(we	have	already
processed	it	or	it	is	not	walkable),	we	skip	it.	We	then	check	whether	the	node	is	our	target
destination.	If	so,	we	set	the	node	we	just	came	from	as	the	parent	and	return	true.	If	not,
we	calculate	G,	H,	and	F,	set	the	parent	node,	and	then	add	this	node	to	openList.

After	runAStar()	completes,	we	return	to	the	findShortestFeasiblePath()	method.	We
now	have	either	found	a	path	to	the	target	location	or	have	determined	that	there	is	no
feasible	path.	If	we	have	found	a	valid	path,	we	construct	a	list	of	points	stored	in	Stack
(see	the	information	box	after	the	following	two	paragraphs)	using	deriveWaypoints(),
reset	the	state	of	this	class	so	that	we	can	be	called	again,	and	return	the	answer	to	the
caller.

The	deriveWaypoints()	method	is	small.	It	derives	the	path	from	the	tiledWorld	matrix
by	following	the	parent	pointers	from	the	destination	back	to	the	start.	Along	the	way,	it
pushes	each	node	onto	a	stack.	This	is	why	we	set	parent	references	in
processNeighbor().

The	last	method	we	discuss	in	this	class	is	resetWorld().	It	has	the	responsibility	of
initializing	the	tiledWorld	matrix	and	making	sure	it	accurately	represents	the	current
state	of	the	game	(where	obstacles	are	and	where	the	destination	is).	We	run	the	A*
pathfinding	algorithm	on	tiledWorld	and	not	the	actual	screen	of	the	game.

Note
Stacks	and	priority	queues

In	programming,	you	will	use	many	different	types	of	data	structures	to	store	your	data.
We	have	already	used	arrays	and	lists	(The	List	class	was	first	used	in	Chapter	3,	Collision
Detection).	Sometimes,	we	want	the	ordering	to	occur	in	a	certain	way	when	storing	data,
as	lists	and	arrays	are	unordered.	In	the	implementation	of	A*	pathfinding,	we	use	two
new	data	structures:	a	stack	and	a	priority	queue.	A	stack	stores	data	in	the	Last-in	First-
out	(LIFO)	order,	while	a	priority	queue	stores	data	in	sorted	order.	To	learn	more	about
these	two	data	structures,	refer	to	the	following	links:

http://docs.oracle.com/javase/7/docs/api/java/util/PriorityQueue.html

http://docs.oracle.com/javase/7/docs/api/java/util/PriorityQueue.html


http://docs.oracle.com/javase/7/docs/api/java/util/Stack.html
http://www.oopweb.com/Java/Documents/ThinkCSJav/Volume/chap16.htm
http://www.tutorialspoint.com/java/java_stack_class.htm

We	have	two	classes	that	we	used	to	support	the	running	of	the	A*	pathfinding	algorithm:
Tile	and	Point.	Let’s	first	discuss	the	Tile	class.	This	class	is	used	to	represent	an	area	of
the	screen	and	is	stored	in	the	tiledWorld	matrix.	As	we	progress	through	the	pathfinding
algorithm,	we	need	to	track	information	about	each	area.	For	example,	we	need	to	store
the	G,	H,	and	F	values	for	that	area;	note	whether	it	is	the	destination	node	and	whether	it	is
walkable	and	record	parent	information.	The	class	is	set	up	to	store	that	information	and
allow	easy	access	to	it.	The	code	is	as	follows:

import	java.util.Comparator;

public	class	Tile	implements	Comparable<Tile>	{

		private	int	g	=	0,	h	=	0;

		private	Tile	up,	down,	left,	right,	parent;

		private	Point	location;

		private	boolean	walkable	=	true;

		private	boolean	done	=	false;

		private	boolean	isEndNode	=	false;

		

		public	Tile()	{

				parent	=	up	=	down	=	left	=	right	=	null;

				location	=	new	Point(0,0);

		}

		

		public	Tile(Tile	u,	Tile	d,	Tile	l,	Tile	r)	{

				up	=	u;

				down	=	d;

				left	=	l;

				right	=	r;

				parent	=	null;

				location	=	new	Point(0,0);

		}

		

		/*	state	methods	*/

		public	boolean	isWalkable()	{

				return	walkable;

		}

		

		public	void	setNotWalkable()	{

				walkable	=	false;

		}

		

		public	boolean	isDone()	{

				return	done;

		}

		

		public	void	setDone()	{

				done	=	true;

		}

		

		public	boolean	isEndNode()	{

http://docs.oracle.com/javase/7/docs/api/java/util/Stack.html
http://www.oopweb.com/Java/Documents/ThinkCSJav/Volume/chap16.htm
http://www.tutorialspoint.com/java/java_stack_class.htm


				return	isEndNode;

		}

		

		public	void	setEndNode()	{

				isEndNode	=	true;

		}

		

		/*	neighbors	*/

		public	void	setParent(Tile	t)	{

				parent	=	t;

		}

		

		public	Tile	getParent()	{

				return	parent;

		}

		

		public	void	setUp(Tile	t)	{

				up	=	t;

		}

		

		public	Tile	getUp()	{

				return	up;

		}

		

		public	void	setDown(Tile	t)	{

				down	=	t;

		}

		

		public	Tile	getDown()	{

				return	down;

		}

		

		public	void	setRight(Tile	t)	{

				right	=	t;

		}

		

		public	Tile	getRight()	{

				return	right;

		}

		

		public	void	setLeft(Tile	t)	{

				left	=	t;

		}

		

		public	Tile	getLeft()	{

				return	left;

		}

		

		/*	accessor	methods	*/

		public	void	setPoint(int	_row,	int	_col)	{

				location.row	=	_row;

				location.col	=	_col;

		}

		

		public	Point	getPoint()	{

				return	location;



		}

		

		public	void	setG(int	n)	{

				g	=	n;

		}

		

		public	int	getG()	{

				return	g;

		}

		

		public	void	setH(	int	n)	{

				h	=	n;

		}

		

		public	int	getH()	{

				return	h;

		}

		

		public	int	getF()	{

				return	g+h;

		}

		

		//	needed	for	Comparable	interface

		public	int	compareTo(Tile	t)	{

				return	getF()-t.getF();

		}

		

}

Note
Comparable	interface

In	Chapter	3,	Collision	Detection,	we	already	discussed	Java	interfaces	in	general.	The
Comparable	interface	is	an	interface	that	requires	the	implementing	class	to	provide	a
compareTo()	method.	This	method	will	then	be	used	in	classes	such	as	PriorityQueue	to
help	determine	ordering	within	the	queue.

As	mentioned	earlier,	the	Point	class	gives	us	a	convenient	way	to	refer	to	locations	in
tiledWorld.	It	concisely	tracks	the	row	and	column	position	and	also	provides	an	easy
way	to	compare	points	(see	whether	they	are	equal).	Here	is	the	code	to	accomplish	this:

public	class	Point	{

		public	int	row;

		public	int	col;

		

		public	Point()	{

				row	=	col	=	0;

		}

		

		public	Point(	int	_row,	int	_col)	{

				row	=	_row;

				col	=	_col;

		}	



		public	boolean	equals(Point	p)	{

				return	(p.row	==	row)	&&	(p.col	==	col);

		}

}

We	have	now	fully	implemented	the	Mouse	class.	That	was	quite	a	bit	of	coding!	But	now,
we	have	an	actor	that	can	effectively	chase	our	hiker.	Compile	the	scenario	and	fix	any
typos	you	made	along	the	way.	We	now	have	a	very	interesting	scenario.



Play	test
We	have	spent	a	long	time	on	this	scenario.	Time	to	play!

Uncomment	all	of	the	actors	in	the	prepare()	method,	compile	the	scenario,	and	then	try
it	out.	Can	you	reach	the	gold	square?	Which	enemy	is	hardest	to	avoid?





Summary
We	really	covered	a	lot	of	ground	in	this	chapter.	As	we	saw,	adding	intelligent	behavior	to
an	actor	can	range	from	very	simple	to	very	complex.	Quite	often,	using	randomness	or
heuristics,	or	a	combination	of	both	can	create	some	very	challenging	enemies	and	will
suffice	for	many	of	the	games/simulations	you	create.	However,	there	is	no	substitute	for
an	enemy	that	knows	how	to	track	you	down	through	the	A*	pathfinding	algorithm.	I	hope
you	find	new	and	creative	ways	to	bring	challenge,	intrigue,	and	surprise	into	the	behavior
of	your	actors.

At	this	point	in	the	book,	we	have	really	covered	a	lot	of	topics	to	help	you	create	an
interesting	and	engaging	interactive	application.	Next,	we	will	look	at	creating	user
interfaces	to	accept	more	information	from	our	user	and	to	provide	them	with	more
feedback.





Chapter	8.	User	Interfaces
	 “If	you	can	dream	it,	you	can	do	it.” 	

	 —Walt	Disney

Aside	from	user	controls	for	games	and	simulations,	you	will,	at	times,	want	your	user	to
click	buttons,	view	text,	and	select	items	from	menus.	Imagine	that	you	are	creating	a
physics	simulation	and	want	to	have	your	user	set	certain	simulation	parameters	or	that
you	have	a	store	in	your	game	where	players	can	purchase	upgrades.	Or	perhaps	you	want
to	create	a	dialogue	between	two	actors	in	your	scenario.	In	this	chapter,	we	are	going	to
explore	techniques	to	provide	various	types	of	user	interfaces	(UIs).	Specifically,	we	will
look	at	the	following	topics:

Buttons	and	labels
Menus
Heads-up	display	(HUD)

Greenfoot	provides	little	direct	support	to	create	user	interfaces.	There	are	only	a	few
classes,	such	as	Label	and	Counter,	packaged	with	Greenfoot	to	help	in	this	regard.	So,
we	will	have	to	build	our	own	support.	We	will	use	Greenfoot	Actors	and	the
GreenfootImage	class	to	create	user	interfaces	and	classes	that	will	support	the	creation	of
user	interfaces.	Luckily,	Greenfoot	allows	us	to	build	just	about	anything	we	can	dream
up,	including	user	interfaces.



UIWorld
In	this	section,	we	will	explain	how	to	write	the	following	user	interface	elements:
buttons,	textboxes,	menus,	and	heads-up	displays	(HUDs).	We	are	going	to	work	through
a	Greenfoot	scenario	(shown	in	Figure	1)	that	only	contains	user	interface	elements,	so	we
can	discuss	each	element	independently.

Some	of	the	code	we	write	will	be	general	and	able	to	be	applied	to	many	different
scenarios.	In	other	cases,	we	will	write	user	interface	code	that	will	only	need	minor
modification	to	be	used	across	scenarios.	In	the	next	section,	we	will	add	these	elements	to
the	MazeWorld	scenario	that	we	wrote	in	the	previous	chapter,	to	make	it	a	more	polished
and	playable	game.

Figure	1:	This	shows	UI	MainWorld

To	work	through	this	scenario,	start	with	a	new	Greenfoot	scenario	named	UIMainWorld,
create	a	subclass	of	World	named	UIMainWorld,	and	then	associate	a	plain	background	to
it.	The	background	I	chose	was	bluerock.jpg.	Here	is	the	code	for	UIMainWorld:

import	greenfoot.*;

import	java.awt.Color;

public	class	UIMainWorld	extends	World	{

		

		public	UIMainWorld()	{

				super(600,	400,	1);



				testActors();

		}

		

		private	void	testActors()	{

				/*			Begin	comment

				TextBox	t1	=	new	TextBox(

				"	This	is	a	question?\n	Yes,	it	is!	",

				24,	true,	Color.BLUE,	Color.YELLOW);

				addObject(t1,	150,	50);

				TextBox	t2	=	new	TextBox("This	is	one	line",

				18,	false,	Color.BLACK,	Color.WHITE);

				addObject(t2,	150,	120);

				Button	b1	=	new	Button("button-blue.png",

				"button-green.png");

				addObject(b1,	450,	50);

				Menu	m1	=	new	Menu("	Destroy	Everything?	",

				"Are	you	sure?",	18,

				Color.BLUE,	Color.WHITE

				Color.BLACK,	Color.WHITE,

				new	DestroyCommands());

				addObject(m1,	450,	120);

				Menu	m2	=	new	Menu("	File	",

				"New\nOpen\nSave\nClose\nExit",	18,

				Color.BLACK,	Color.lightGray,

				Color.WHITE,	Color.BLUE,

				new	FileCommands());

				addObject(m2,	450,	180);

				HUD	h	=	new	HUD();

				addObject(h,	300,	310);

				Label	l	=	new	Label("This	is	a	label",	18);

				addObject(l,	150,	180);

				End	Comment		*/

		}

}

For	now,	the	lines	of	code	in	the	testActors()	method	are	commented	out.	Uncomment
them	as	we	implement	the	associated	actor,	so	that	you	can	test	and	play	with	each	one	in
turn.	If	you	prefer,	you	can	download	the	complete	UI	scenario	from
http://www.packtpub.com/support.

http://www.packtpub.com/support


The	Button	class
Is	there	a	more	prolific	UI	element	than	the	humble	button?	It	is	hard	to	imagine	any
interface	that	does	not	contain	several	of	these	buttons.	Luckily	for	us,	they	are	very	easy
to	implement	in	Greenfoot.	In	your	UI	scenario,	subclass	the	Actor	class	and	call	this	new
subclass	Button.	Choose	No	Image	for	the	image	of	Button.	We	will	dynamically	add	the
images	necessary	for	this	actor.	Here	is	the	code	for	the	Actor	class:

import	greenfoot.*;

public	class	Button	extends	Actor	{

		protected	String	first;

		protected	String	second;

		

		public	Button(String	f,	String	s)	{

				first	=	f;

				second	=	s;

				setImage(f);

		}

		

		public	void	act()	{

				handleMouseClicks();

		}

		

		private	void	handleMouseClicks()	{

				if(	Greenfoot.mousePressed(this)	)	{

						setImage(second);

				}	else	if(	Greenfoot.mouseClicked(this)	)	{

						setImage(first);

						clickedAction();

				}

		}

		

		protected	void	clickedAction()	{

				//	Can	either	fill	this	in	or	have	subclasses	override.

		}

}

For	a	button,	you	need	to	have	one	image	for	the	normal	state	and	one	image	for	the
pressed	state.	The	first	and	second	instance	variables	store	the	names	of	these	images.
Their	values	are	provided	to	the	class’s	constructor	as	input	parameters.	The	constructor
sets	the	initial	image	to	the	first	image.

The	act()	method	only	contains	one	method	call	to	handle	mouse	events	for	this	actor
—handleMouseClicks().	This	method	displays	the	second	image	when	the	mouse	is
pressed	and	then	goes	back	to	displaying	the	first	image	when	the	click	completes.	In
Greenfoot,	the	Greenfoot.mousePressed()	method	returns	true	when	the	left	mouse
button	is	held	down	on	the	given	object.	The	Greenfoot.mouseClicked()	method	returns
true	when	the	left	mouse	button	is	pressed	down	and	released	on	the	given	object.	Figure
2	demonstrates	these	two	mouse	events.	When	we	detect	that	the	mouse	is	pressed,	we
simply	change	the	image	to	the	second	image.	When	the	mouse	is	released,	a	full	click	has
occurred,	and	we	do	two	things.	First,	we	set	the	image	back	to	normal,	and	then	we



perform	an	action	by	calling	the	clickedAction()	method.	This	method	is	currently
empty	and	serves	as	a	placeholder	where	you	could	put	the	code	for	your	own	custom
action.	Another	option,	would	be	to	subclass	this	class	and	override	the	clickedAction()
method	in	your	new	subclass.

Figure	2:	In	Greenfoot,	a	mouse	is	considered	clicked	when	the	left	mouse	button	is	both
pressed	and	released

The	button	was	added	to	the	screen	in	the	UIMainWorld	subclass	of	World	with	the
following	two	lines	of	code:

Button	b1	=	new	Button("button-blue.png",	"button-green.png");

addObject(b1,	450,	50);

The	button-blue.png	and	button-green.png	images	are	the	images	that	come	with	the
default	installation	of	Greenfoot	(not	available	in	version	2.2).	You	can	quickly	get	these
images	into	your	project	by	creating	temporary	actors	that	have	them	as	their	default
image	or	by	copying	them	from	the	installation	of	Greenfoot.	Uncomment	the	two	lines
shown	in	the	testActors()	method	in	UIMainWorld,	compile	your	scenario,	and	test	out
your	new	button.



The	TextBox	class
The	functionality	of	TextBox	is	very	similar	in	functionality	to	the	Label	class	that	is
supplied	with	Greenfoot.	Note	that	in	UIMainWorld,	we	added	one	instance	of	the	Label
class	to	our	scenario	for	demonstration	and	comparison	purposes.	To	add	the	Label	class
to	your	UI	scenario,	click	on	Edit	in	Greenfoot’s	main	menu	and	then	click	on	Import
Class….	Click	on	Label	on	the	left-hand	side	of	the	pop-up	window	that	appears,	read	the
documentation	on	the	Label	class	(if	you	are	interested),	and	then	click	on	the	Import
button.	We	will	implement	our	own	version	of	Label	and	call	it	TextBox.	The	Textbox
class	we	will	write	is	a	bit	more	concise	and	provides	us	with	a	reason	to	discuss	how	to
work	with	text	in	Greenfoot.

In	Figure	1,	we	can	see	two	examples	of	the	TextBox	class.	This	class	allows	us	to	display
text	on	the	screen	with	a	custom	font,	color,	background	color,	and	optional	border.	Here
is	the	code	for	TextBox:

import	greenfoot.*;

import	java.awt.Color;

public	class	TextBox	extends	Actor	{

		private	GreenfootImage	img;

		private	boolean	border	=	false;

		private	int	fontSize;

		private	Color	foreground;

		private	Color	background;

		

		public	TextBox(String	s,	int	fs,	boolean	b,

		Color	fg,	java.awt.Color	bg)	{

				super();

				fontSize	=	fs;

				foreground	=	fg;

				background	=	bg;

				img	=	new	GreenfootImage(s,	fontSize,

				foreground,	background);

				border	=	b;

				display();

		}

		

		public	void	setText(String	s)	{

				img	=	new	GreenfootImage(s,	fontSize,

				foreground,	background);

				display();

		}

		

		private	void	display()	{

				setImage(img);

				if(	border	)	{

						img.setColor(Color.BLACK);

						img.drawRect(0,	0,	img.getWidth()-1,

						img.getHeight()-1);

						setImage(img);

				}

		}



}

In	TextBox,	we	can	configure	the	foreground	color,	background	color,	font	size,	and
whether	or	not	to	draw	a	border	around	the	textbox.	In	addition	to	the	actual	text	to
display,	the	constructor	accepts	and	stores	these	values.	The	display()	method	is
responsible	for	actually	creating	our	new	textbox.	First,	it	creates	a	new	image	based	on
the	earlier	configuration	information	using	Greenfoot’s	GreenfootImage()	method.

When	you	supply	text	as	the	first	parameter	to	GreenfootImage(),	it	will	create	an	image
of	that	text.	Then,	we	can	just	use	setImage()	to	display	that	text.	The	display()	method
checks	the	border	instance	variable	and	draws	a	border	in	the	new	image	we	created,	if
needed.	We	also	supplied	a	setText()	method,	in	case	we	need	to	dynamically	change	the
text.	This	method	creates	a	new	GreenfootImage	based	on	the	new	text	and	then	uses	the
display()	method	to	properly	set	the	image	of	the	textbox	to	the	new	image	created.

To	test	our	new	TextBox	class,	uncomment	all	the	lines	in	testActors()	in	UIMainWorld
that	deal	with	adding	instances	of	TextBox,	compile	the	scenario,	and	run	it.



The	Menu	class
Menus	are	amazing	at	accepting	user	commands.	I	am	sure	you	have	had	plenty	of
experience	using	them	and	understand	their	utility.	Our	implementation	of	a	menu
involves	using	the	TextBox	class	we	just	created	and	a	new	Java	interface	named
MenuCommands	that	we	will	implement	soon.	The	TextBox	instances	display	the	text,	and
the	actions	of	the	menu	choice	are	performed	by	classes	that	implement	the	MenuCommands
interface.	We	will	explain	that	more	thoroughly	soon.

Figure	3	provides	an	overview	of	the	functionality	of	our	Menu	class.	Our	menu	initially
looks	like	TextBox,	as	shown	in	Figure	3(a).	When	the	user	clicks	on	the	menu,	a	pop-up
menu	appears	with	a	set	of	actions	the	user	can	choose	from.	The	pop-up	menu	is	shown
in	Figure	3(b).	Both	the	menu	title	and	set	of	commands	are	configurable.

Figure	3:	Initially,	menu	objects	look	like	TextBox	(see	(a)).	When	the	user	clicks	on	the
text,	a	drop-down	menu	appears,	giving	the	user	multiple	items	to	choose	from	(see	(b))

Here	is	the	code	for	Menu:

import	greenfoot.*;

import	java.awt.Color;

public	class	Menu	extends	Actor

{

		private	TextBox	titleBar;

		private	TextBox	menuItems;

		private	MenuCommands	menuCommands;

		private	int	fontSize	=	24;

		private	boolean	visible	=	false;

		private	Color	mainFG;

		private	Color	mainBG;

		private	Color	secondFG;

		private	Color	secondBG;

		int	th,	mh;		/*	title	and	menu	height	*/

		

		public	Menu(String	tb,	String	i,	int	fs,

		Color	fg1,	Color	bg1,	Color	fg2,	Color	bg2,

		MenuCommands	mc)	{

				mainFG	=	fg1;

				mainBG	=	bg1;

				secondFG	=	fg2;

				secondBG	=	bg2;



				titleBar	=	new	TextBox(tb,	fs,	true,	mainFG,	mainBG);

				menuItems	=	new	TextBox(i,	fs,	true,	secondFG,	secondBG);

				menuCommands	=	mc;

				fontSize	=	fs;

		}

		

		public	Menu()	{

				this("not	initialized",	"none",	24,

				Color.BLACK,	Color.lightGray,	Color.BLACK,

				Color.WHITE,	null);

		}

		

		protected	void	addedToWorld(World	w)	{

				w.addObject(titleBar,	getX(),	getY());

				th	=	titleBar.getImage().getHeight();

				mh	=	menuItems.getImage().getHeight();

		}

		

		public	void	act()	{

				handleMouse();

		}

		

		private	void	handleMouse()	{

				if(	Greenfoot.mouseClicked(titleBar)	)	{

						if(	!visible	)	{

								getWorld().addObject(menuItems,

								getX(),	getY()+(th+mh)/2);

						}	else	{

								getWorld().removeObject(menuItems);

						}

						visible	=	!visible;

				}

				

				if(	Greenfoot.mouseClicked(menuItems))	{

						MouseInfo	mi	=	Greenfoot.getMouseInfo();

						int	menuIndex	=

						((mi.getY()-menuItems.getY()+mh/2)-1)/fontSize;

						menuCommands.execute(menuIndex,	getWorld());

						visible	=	!visible;

						getWorld().removeObject(menuItems);

				}

		}

}

An	instance	of	Menu	is	composed	of	two	TextBox	instances	and	one	implementation	of	the
MenuCommands	interface.	The	first	TextBox	instance	represents	the	menu	title	(shown	in
Figure	3(a)),	and	the	second	TextBox	instance	represents	the	collection	of	commands
(shown	in	Figure3(b)).	The	Menu	constructor	creates	both	TextBox	instances	and	stores
the	supplied	MenuCommands	object	for	later	use.

When	Menu	is	added	to	World,	we	use	the	addedToWorld()method	to	place	the	menu	title
bar	in	the	scenario	and	collect	height	information	needed	to	properly	place	the	pop-up
window	later.

The	act()	method	calls	one	method,	handleMouse(),	that	places	the	menu	item	popup



when	the	title	text	is	clicked	on.	For	the	menu	item	popup,	the	method	handleMouse()
determines	whether	it	was	clicked	on	and	where	it	was	clicked	and	then	calls	the
appropriate	command.	The	following	code	determines	the	click	location:

((mi.getY()-menuItems.getY()+mh/2)-1)/fontSize

This	is	based	on	the	current	font	size	and	the	height	of	the	TextBox	menu	item.	Figure	4
shows	the	calculation	pictorially.

Figure	4:	To	determine	which	menu	item	was	clicked	on,	use	this	formula:	((a)-(b)+
(c))/(d).	This	formula	determines	the	distance	between	the	center	of	the	image	(b)	and	the
click	location	(a),	adjusts	the	value	so	that	it	is	relative	to	the	top	of	the	figure	by	adding
half	the	height	(c)	and	then	dividing	by	the	font	size	(d)	to	get	the	actual	index	of	the	item

Now	that	we	know	the	index	of	the	menu	item	clicked	on	by	the	user,	we	need	to	run	the
command	associated	with	it.	To	do	this,	we	simply	call	the	execute()	method	on	the
MenuCommands	object	that	was	passed	to	us	via	the	constructor.	MenuCommands	is	a	Java
interface	that	guarantees	that	any	Java	class	that	implements	this	interface	will	have	the
execute()	method.

Tip
We	first	encountered	Java	interfaces	in	Chapter	3,	Collision	Detection.	Remember	that	a
class	that	implements	a	Java	interface	is	promising	to	provide	an	implementation	of	every
method	defined	in	that	interface.	For	more	information,	review	Chapter	3,	Collision
Detection.

Here	is	the	code	for	MenuCommands:

import	greenfoot.*;

public	interface	MenuCommands	{

		public	void	execute(int	idx,	World	w);

}

As	we	can	see,	this	interface	only	defines	one	method,	execute(),	that	must	accept	an
integer	parameter	(representing	the	index	of	the	menu	item)	and	a	reference	to	the	current
World	instance.

In	our	UI	scenario,	we	provide	two	examples	of	using	the	Menu	class.	The	first	is	the	one
that	has	the	menu	title	bar	text,	Destroy	Everything?.	The	menu	that	pops	up	only	has
one	option,	Are	you	sure?.	Here	is	the	code	for	the	DestroyCommands	class,	which



implements	the	MenuCommands	interface:

import	greenfoot.*;

public	class	DestroyCommands	implements	MenuCommands	{

		public	void	execute(int	idx,	World	w)	{

				System.out.println("Boooom!!!!");

		}

}

Because	the	pop-up	menu	only	has	one	choice,	we	do	not	need	to	use	the	supplied	idx
value.	We	implement	the	execute()	method	by	simply	printing	Boooom!!!!	to	the	console
window.

The	second	Menu	class	example	mimics	the	types	of	commands	you	would	see	in	an
application	that	works	with	files.	This	example	is	shown	in	Figure	3.	Here	is	the	code	for
FileCommands,	which	implements	the	MenuCommands	interface:

import	greenfoot.*;

public	class	FileCommands	implements	MenuCommands	{

		public	void	execute(int	idx,	World	w)	{

				switch(idx)	{

						case	0:

						System.out.println("Running	New	command");

						break;

						case	1:

						System.out.println("Running	Open	command");

						break;

						case	2:

						System.out.println("Running	Save	command");

						break;

						case	3:

						System.out.println("Running	Close	command");

						break;

						case	4:

						System.out.println("Running	Exit	command");

						break;

				}

		}

}

This	code	uses	the	idx	value	to	run	one	of	several	available	options.	For	simplicity,	we
simply	print	messages	to	the	console	window	to	demonstrate	that	the	code	is	working
properly.	In	your	own	applications,	you	would	substitute	the	print	messages	with	actual
relevant	code.

In	Chapter	3,	Collision	Detection,	we	used	interfaces	because	we	needed	to	conform	to	the
Greenfoot	API.	In	this	case,	we	choose	to	use	interfaces	because	they	provided	a	clean	and
simple	way	to	provide	many	different	types	of	menu	actions	without	having	to	change	the
Menu	class.	We	have	effectively	abstracted	the	need	to	know	about	the	contents	of	the
custom	menus	and	made	our	Menu	class	applicable	to	a	wide	variety	of	uses.

Now,	uncomment	the	Menu	actors	in	the	testActors()	method	in	UIMainWorld	and	test



out	the	menus	we	created	previously.

Tip
The	Menu	class	is	fairly	complicated	as	it	involves	managing	two	TextBox	classes	and
implementing	a	MenuCommands	interface.	To	improve	your	understanding	of	it,	try	creating
your	own	menu	and	adding	it	to	the	UI	scenario	now.



Heads-up	display
Often,	you	want	to	create	a	completely	custom	UI	that	involves	various	shapes	and
graphics.	In	this	section,	we	will	learn	how	to	do	exactly	that.	The	title	of	this	section	is
heads-up	display	(HUD)	because	games	often	have	custom	interfaces	(called	HUDs)	that
provide	critical	information	and	controls	to	their	players.	However,	the	methodology
discussed	here	applies	to	any	custom	UI.	For	our	example,	we	will	create	the	custom	user
interface	element	shown	in	Figure	5.	In	our	HUD,	the	user	will	be	able	to	click	the	home,
favorite,	print,	and	cart	icons	to	perform	actions	of	our	choosing.

Figure	5:	This	shows	a	custom	user	interface	element

The	graphic	shown	in	Figure	5	was	created	in	Adobe	Illustrator.	Use	any	graphic	editor	to
create	something	that	looks	similar.	In	the	UI	scenario,	create	a	new	HUD	actor	and
associate	the	image	you	created	with	it.	In	general,	you	can	create	any	graphic	you	want	in
any	editor	you	want.	Our	method	of	creating	a	custom	interface	involves	us	overlaying
invisible	Greenfoot	actors	over	the	custom	graphic,	and	the	graphic	is	not	required	to	be
any	certain	shape	or	size.

Here	is	the	code	for	the	HUD	class	in	our	UI	scenario:

import	greenfoot.*;

public	class	HUD	extends	Actor	{

		private	TransparentRectangle	home;

		private	TransparentRectangle	favorite;

		private	TransparentRectangle	print;

		private	TransparentRectangle	cart;

		private	static	final	int	W	=	70;

		private	static	final	int	H	=	70;

		

		protected	void	addedToWorld(World	w)	{

				home	=	new	TransparentRectangle(W,H);

				w.addObject(home,

				getX()-getImage().getWidth()/2+W/2,

				getY());

				favorite	=	new	TransparentRectangle(W,H);

				w.addObject(favorite,	getX()-W+20,	getY());

				print	=	new	TransparentRectangle(W,H);

				w.addObject(print,	getX()+W-10,	getY());

				cart	=	new	TransparentRectangle(W,H);



				w.addObject(cart,

				getX()+getImage().getWidth()/2-W/2,

				getY());

		}

		

		private	class	TransparentRectangle	extends	Actor	{

				public	TransparentRectangle(int	w,	int	h)	{

						GreenfootImage	img	=	new	GreenfootImage(w,h);

						setImage(img);

				}

		}

		

		public	void	act()	{

				handleMouseClicks();

		}

		

		private	void	handleMouseClicks()	{

				if(	Greenfoot.mouseClicked(home)	)	{

						System.out.println("Clicked	Home");

				}

				if(	Greenfoot.mouseClicked(favorite)	)	{

						System.out.println("Clicked	Favorite");

				}

				if(	Greenfoot.mouseClicked(print)	)	{

						System.out.println("Clicked	Print");

				}

				if(	Greenfoot.mouseClicked(cart)	)	{

						System.out.println("Clicked	Cart");

				}

		}

}

As	illustrated	in	the	preceding	snippet,	there	is	not	a	lot	of	code	associated	with	this	class.
The	code	creates	four	new	invisible	actors	and	places	them	over	objects	we	want	the	user
to	be	able	to	click	on	in	our	custom	UI.	In	the	addedToWorld()	method,	we	create	home,
favorite,	print,	and	cart	actors	to	cover	the	home,	favorite,	print,	and	cart	icons	shown	in
Figure	5.	The	part	of	this	method	that	is	specific	to	the	graphic	shown	in	Figure	5	is	the
placement	of	the	invisible	actors.	If	you	created	a	different	graphic	than	the	one	I	have
shown,	then	you	will	need	to	determine	the	correct	locations	to	place	the	new	actors
yourself.

You	have	probably	noticed	that	the	invisible	actors	we	created	were	instances	of	an	inner
class	named	TransparentRectangle.	This	is	the	first	time	we	have	used	an	inner	class	in
this	book,	and	they	warrant	some	discussion.	At	the	simplest	level,	an	inner	class	is	just	a
class	that	was	defined	inside	another	class	and,	thus,	not	generally	accessible	to	other
classes	in	the	project.	The	following	information	box	contains	additional	information
about	inner	classes.

Note
More	about	inner	classes

In	object-oriented	design,	you	solve	a	problem	by	breaking	it	up	into	smaller	objects	and



then	carefully	constructing	how	those	objects	communicate	or	cooperate.	This	is	an
example	of	top-down	design	(discussed	in	Chapter	1,	Let’s	Dive	Right	in…)	where	we
break	a	problem	up	into	smaller	and	smaller	subproblems.	Sometimes,	a	class’s	internal
state	may	be	quite	complex	and	using	inner	classes	may	help	manage	that	internal
complexity.	In	essence,	this	is	a	form	of	hierarchical	object-oriented	design.

Another	use	of	inner	classes	is	encapsulating	classes	that	only	have	a	very	specific	use	for
only	one	class	in	the	project.	For	example,	our	HUD	class	is	the	only	class	in	our	scenario
that	uses	the	TransparentRectangle	class.	By	hiding	TransparentRectangle	within	HUD,
no	other	class	is	exposed	to	TransparentRectangle.	You	will	notice	that	in	Greenfoot,
TransparentRectangle	does	not	appear	in	the	Actor	classes…	section	of	the	main
scenario	window.

For	more	information	on	inner	classes	(and	nested	classes),	refer	to	the	article	at:
http://www.javaworld.com/article/2077411/core-java/inner-classes.html

The	last	two	methods,	act()	and	handleMouseClicks(),	follow	a	common	pattern	to
handle	mouse	clicks	on	actors,	which	we	have	seen	several	times	in	this	book	and	discuss
again	here.	As	with	the	Menu	actors	we	created	in	this	scenario,	we	print	a	message	to	the
console	when	the	user	clicks	on	one	of	the	icons.

Let	us	test	the	whole	scenario	now.	Remember	to	uncomment	the	HUD	actor	created	and
added	to	the	scenario	in	the	testActors()	method	in	UIMainWorld.	Compile	and	ensure
that	messages	are	being	sent	to	the	console	when	you	click	on	the	various	icons.

http://www.javaworld.com/article/2077411/core-java/inner-classes.html




Adding	a	UI	to	MazeWorld
Now	that	we	have	some	experience	in	creating	various	UI	elements,	we	are	going	to
enhance	the	MazeWorld	scenario	from	the	previous	chapter.	This	will	give	us	the
opportunity	to	practice	what	we	have	learned	in	a	more	realistic	context.

Specifically,	we	will	add:

A	start	screen	with	a	button	to	start	the	game	and	a	menu	the	player	can	use	to
indicate	the	difficulty	mode	of	the	game
A	game	over	screen	with	a	button	the	player	can	use	to	restart	the	game
A	HUD	the	player	can	use	to	temporarily	stun	the	enemies,	slow	them,	or	make	the
snake	enemies	say,	“sssssssss”

Start	with	the	code	for	MazeWorld	you	ended	with	in	the	previous	chapter,	or	download	it
from	http://www.packtpub.com/support.

http://www.packtpub.com/support




Adding	menus	and	buttons
In	this	section,	we	will	add	an	introduction	screen	and	game	over	screen	to	MazeWorld.	We
will	add	a	button,	textbox,	and	menu	to	the	introduction	screen	(shown	in	Figure	6)	and
just	a	button	to	the	game	over	screen	(shown	in	Figure	7).

Figure	6:	This	is	the	new	introduction	screen	we	are	adding	to	MazeWorld

This	is	how	the	game	over	screen	will	look.



Figure	7:	This	is	the	new	game	over	screen	we	are	adding	to	MazeWorld

We	created	an	introduction	screen	and	game	over	screen	in	Chapter	1,	Let’s	Dive	Right
in…	and	augmented	the	game	over	screen	in	Chapter	5,	Interactive	Application	Design
and	Theory	for	Avoider	Game,	so	the	addition	of	these	screens	to	MazeWorld	will	only	be
quickly	covered	here.

To	start	with,	we	are	going	to	create	a	new	class	that	both	screens	will	inherit	from.	Create
a	new	subclass	of	the	World	class	and	name	it,	MazeWorldScreens;	don’t	associate	an
image	with	this	class,	and	add	the	following	code	to	it:

import	greenfoot.*;

public	class	MazeWorldScreens	extends	World

{

		int	playMode	=	0;

		

		public	MazeWorldScreens()	{

				super(600,	400,	1);

		}

		

		public	void	startGame()	{

				MazeWorld	mw	=	new	MazeWorld(playMode);

				Greenfoot.setWorld(mw);

		}

		

}

Both	the	introduction	screen	and	the	game	over	screen	will	need	to	store	the	difficulty
level	the	user	selects	(in	the	playMode	instance	variable)	and	implement	a	method	to	start



the	game,	as	both	have	a	Play	MazeWorld	button	on	them.	That	commonality	is	captured
in	the	MazeWorldScreens	class.	The	startGame()	method	passes	the	mode	of	play	to	a
new	instance	of	MazeWorld	and	then	switches	the	scenario	to	that	world.

Create	the	MazeWorldIntro	and	MazeWorldGameOver	classes	as	subclasses	of
MazeWorldScreens.	Make	sure	to	create	an	image	(minus	the	UI	elements)	for	the
introduction	screen	that	looks	like	Figure	6	and	an	image	(minus	the	UI	elements)	for	the
game	over	screen	that	looks	like	Figure	7,	and	select	them	as	the	images	for	your	new
classes.	Our	images	do	not	need	to	contain	the	UI	elements	as	we	will	be	adding	them	to
these	screens	dynamically.

Once	you	have	created	these	World	classes,	you	should	see	what	is	shown	in	Figure	8	in
the	World	classes	area	of	your	main	Greenfoot	scenario	screen.

Figure	8:	This	shows	the	class	hierarchy	for	World	classes	in	MazeWorld

Here	is	the	code	you	need	to	add	to	the	MazeWorldIntro	class:

import	greenfoot.*;

import	java.awt.Color;

public	class	MazeWorldIntro	extends	MazeWorldScreens	{

		TextBox	mode;

		

		public	MazeWorldIntro()	{

				super();

				prepare();

		}

		

		public	void	setMode(String	s,	int	i)	{

				mode.setText(s);

				playMode	=	i;

		}

		

		private	void	prepare()	{

				PlayButton	pb	=	new	PlayButton(

				"playButton1.png",	"playButton2.png");

				addObject(pb,	200,	250);

				Menu	m	=	new	Menu("	Choose	game	difficulty…",

				"Easy\nMedium\nHard	",	18,

				Color.BLUE,	Color.WHITE,



				Color.BLACK,	Color.WHITE,

				new	GameDifficultyCommands());

				addObject(m,	400,	250);

				mode	=	new	TextBox("	Play	the	game	in	Easy	Mode	",

				28,	true,	Color.BLUE,	Color.WHITE);

				addObject(mode,	300,	300);

		}

		

}

The	prepare()	method	adds	the	UI	elements	to	the	introduction	screen.	For	clarity,	Figure
9	shows	a	close-up	view	of	the	specific	elements	added.	The	play	button	uses	two	images	I
created	(one	for	the	pressed	state	and	the	other	for	the	normal	state	of	the	button).	You	will
need	to	create	your	own	images	or	use	two	of	the	default	ones	provided	with	Greenfoot.
An	instance	of	the	Menu	class	is	placed	next	to	the	button.	This	menu	will	allow	the	user	to
specify	whether	they	want	to	play	in	easy,	medium,	or	hard	mode	(later,	we	will	change
the	MazeWorld	class	to	honor	these	selections).	To	complete	the	functionality	of	the	menu,
we	need	to	provide	a	class	that	implements	the	MenuCommands	interface.	In	this	case,	we
pass	a	GameDifficultyCommands	object.	Lastly,	we	add	an	instance	of	TextBox	to	display
the	current	difficulty	level	of	the	game.	The	message	changes	if	the	user	selects	a	different
difficulty	level.

Figure	9:	This	is	a	close-up	view	of	the	UI	elements	on	the	introduction	screen	in
MazeWorld.

As	with	the	UI	example	scenario,	you	will	need	to	add	the	MenuCommands	interface	to	your
scenario.	For	convenience,	I	have	replicated	the	code	for	the	MenuCommands	interface	here:

import	greenfoot.*;

public	interface	MenuCommands	{

		public	void	execute(int	idx,	World	w);

}

The	GameDifficultyCommands	class	implements	the	MenuCommands	interface	and	provides
the	appropriate	commands	for	the	menu	choices	provided	in	the	popup.	Here	is	the	code
for	GameDifficultyCommands:

import	greenfoot.*;

public	class	GameDifficultyCommands	implements	MenuCommands	{

		public	void	execute(int	idx,	World	w)	{

				MazeWorldIntro	mwi	=	(MazeWorldIntro)	w;

				switch(idx)	{



						case	0:

						mwi.setMode("	Play	the	game	in	Easy	Mode	",	idx);

						break;

						case	1:

						mwi.setMode("	Play	the	game	in	Medium	Mode	",

						idx);

						break;

						case	2:

						mwi.setMode("	Play	the	game	in	Hard	Mode	",	idx);

						break;

				}

		}

}

For	each	menu	choice,	the	execute()	method	in	the	GameDifficultyCommands	class	calls
the	setMode()	method	that	we	defined	in	the	MazeWorldIntro	class.	This	method	changes
the	message	of	TextBox	in	the	introductory	screen,	as	well	as	stores	the	difficulty	mode	for
later	use.

The	MazeWorldGameOver	class	is	simpler,	as	it	only	needs	to	add	a	play	button.	Here	is	the
code	for	the	MazeWorldGameOver	class:

import	greenfoot.*;

public	class	MazeWorldGameOver	extends	MazeWorldScreens	{

		

		public	MazeWorldGameOver(int	pm)	{

				super();

				prepare();

				playMode	=	pm;

		}

		

		private	void	prepare()	{

				PlayButton	pb	=	new	PlayButton("playButton1.png",

				"playButton2.png");

				addObject(pb,	420,	330);

		}

}

The	game	over	screen	needs	the	difficulty	level	passed	to	it	in	its	constructor	via	the	pm
parameter	variable,	so	that	it	can	pass	it	to	MazeWorld	when	the	player	hits	the	Play
MazeWorld	button	to	play	again.

Of	course,	this	will	not	work	as	we	have	not	added	the	Menu,	TextBox,	and	Button	classes
we	created	in	UIWorldScenario.	These	classes	will	be	identical	or	very	similar	to	the	ones
we	already	discussed	earlier	in	the	chapter.	We	will	look	at	the	code	here	now	and	only
discuss	the	differences.

First,	to	easily	group	the	UI	classes	together,	let’s	create	an	empty	class,	named	UI,	they	all
can	inherit	from.	This	is	a	useful	organizational	technique	in	Greenfoot	where	you	may
have	projects	with	hundreds	of	actors	in	them.	As	we	progress	through	this	section	and	the
next	section,	we	will	be	creating	the	class	hierarchy	shown	in	Figure	10.



Figure	10:	This	shows	the	class	structure	of	the	UI	elements	in	MazeWorld

Here	is	the	code	for	UI:

import	greenfoot.*;	

public	class	UI	extends	Actor	{		

}

The	code	for	TextBox,	Button,	and	Menu	are	exactly	the	same	as	they	were	in	the	UI
example	scenario	we	worked	on	at	the	beginning	of	this	chapter.	Add	them	now	to	the
MazeWorld	scenario	in	exactly	the	same	way	you	added	them	to	the	UI	scenario	except	for
one	small	change.	These	classes	will	subclass	UI	instead	of	Actor.

Last,	we	need	to	create	the	PlayButton	class.	This	class	extends	the	Button	class	(as
shown	in	Figure	9)	and	contains	the	following	code:

import	greenfoot.*;

public	class	PlayButton	extends	Button	{

		

		public	PlayButton(String	f,	String	s)	{

				super(f,s);

		}

		

		protected	void	clickedAction()	{

				MazeWorldScreens	mws	=	(MazeWorldScreens)	getWorld();

				mws.startGame();

		}

}

This	class	overrides	the	empty	clickedAction()	method	found	in	the	Button	class.	When
the	user	clicks	on	an	instance	of	PlayButton,	the	startGame()	method	is	called.	This	is
the	method	we	implemented	in	MazeWorldScreens	earlier.

We	just	added	a	ton	of	code.	We	went	through	it	fairly	quickly	as	most	of	the	code	we
added	was	explained	in	the	first	part	of	this	chapter	and	in	earlier	chapters.	We	have	a	few
more	things	to	add	to	complete	this	new	version	of	MazeWorld.	We	need	to	add	a	heads-
up	display	and	then	augment	the	MazeWorld	class	to	allow	the	game	to	be	played
according	to	the	difficulty	mode	selected	by	the	user.



Tip
You	should	always	test	your	code	as	often	as	you	can.	Sometimes,	you	will	need	to	make
small,	simple/temporary	changes	to	your	code	to	be	able	to	test	it.	For	example,	if	we
change	the	constructor	of	the	MazeWorld	class	to	accept	an	integer	parameter,	then	we	can
compile	and	run	the	code	at	this	point	in	time.





Adding	a	HUD
We	are	going	to	add	a	simple	set	of	actions	for	the	main	character	in	the	game.	Figure	11
shows	the	three	controls	we	are	adding.	If	the	user	clicks	on	the	first	icon,	then	the
enemies	will	be	temporarily	stunned.	If	the	user	clicks	on	the	second	icon,	then	the
enemies	will	move	slower	for	a	short	period	of	time.	If	the	user	clicks	on	the	last	icon,
then	the	snake	enemies	say,	“sssssssss”.	Having	the	snakes	hiss	does	not	really	help	the
player	beat	the	game.	I	just	thought	it	was	something	fun	we	could	add.

Figure	11:	This	shows	a	set	of	controls	we	are	adding	to	MazeWorld

Figure	12	is	a	close-up	view	of	the	controls	when	placed	in	the	game;	we	are	adding	them
to	the	bottom-middle	of	the	screen.

Figure	12:	This	shows	the	HUD	in	the	game

Using	your	favorite	graphics	editor,	create	something	similar	to	the	picture	shown	in
Figure	12.	I	made	my	graphic	fairly	small	so	that	it	would	be	fully	contained	in	the	bottom
black	border	of	the	game.

Once	you	have	an	appropriate	graphic,	create	the	MazeWorldHUD	class	as	a	subclass	of	UI.
Associate	the	graphic	you	just	made	with	it	and	add	the	following	code:

import	greenfoot.*;

public	class	MazeWorldHUD	extends	UI	{

		private	TransparentRectangle	stun;

		private	TransparentRectangle	slow;

		private	TransparentRectangle	talk;

		private	static	final	int	W	=	29;

		private	static	final	int	H	=	22;

		

		protected	void	addedToWorld(World	w)	{

				stun	=	new	TransparentRectangle(W,H);

				w.addObject(stun,	getX()-W,	getY());

				slow	=	new	TransparentRectangle(W,H);

				w.addObject(slow,	getX(),	getY());

				talk	=	new	TransparentRectangle(W,H);

				w.addObject(talk,	getX()+W,	getY());

				



		}

		

		private	class	TransparentRectangle	extends	Actor	{

				public	TransparentRectangle(int	w,	int	h)	{

						GreenfootImage	img	=	new	GreenfootImage(w,h);

						setImage(img);

				}

		}

		

		public	void	act()	{

				handleMouseClicks();

		}

		

		private	void	handleMouseClicks()	{

				MazeWorld	mw	=	(MazeWorld)	getWorld();

				if(	Greenfoot.mouseClicked(stun)	)	{

						mw.stunAllEnemies();

				}

				if(	Greenfoot.mouseClicked(slow)	)	{

						mw.slowAllEnemies();

				}

				if(	Greenfoot.mouseClicked(talk)	)	{

						mw.makeSnakesTalk();

				}

		}

}

The	code	differs	from	the	HUD	we	added	in	the	UI	example	scenario,	in	that	we	now	have
three	controls	instead	of	four	and	the	handleMouseClicks()	method	performs	the
appropriate	actions	for	this	scenario.	In	addedToWorlds(),	we	create	three
TransparentRectangle	objects	and	place	them	over	the	three	icons	(stun,	slow,	and	talk)
in	our	image.	In	handleMouseClicks(),	we	obtain	a	reference	to	the	current	World	object
and	call	one	of	the	following	three	methods	on	it:	stunAllEnemies(),	slowAllEnemies(),
and	makeSnakesTalk().

This	concludes	adding	a	HUD	to	MazeWorld.	Next,	we	need	to	modify	the	MazeWorld
class	to	change	the	game,	based	on	the	play	mode	selected	by	the	player	and	implement
the	stunAllEnemies(),	slowAllEnemies(),	and	makeSnakesTalk()	methods.





Implementing	game	difficulty	settings	and
HUD	controls
We	have	a	few	things	to	take	care	of	before	our	new	version	of	MazeWorld	is	ready.	First,
we	need	to	incorporate	the	difficulty	level	chosen	by	the	player	on	the	introduction	screen,
and	we	need	to	implement	the	functionality	of	the	HUD	we	added	to	the	game.	These
changes	involve	three	classes:	MazeWorld,	ScrollingEnemy,	and	Snake.

Here	is	the	code	for	MazeWorld	where	the	changes	needed	are	highlighted:

import	greenfoot.*;

import	java.util.List;

import	java.util.ListIterator;

import	java.util.Stack;

public	class	MazeWorld	extends	World	{

		private	int	xOffset	=	0;

		private	Hiker	hiker;

		private	final	static	int	SWIDTH	=	600;

		private	final	static	int	SHEIGHT	=	400;

		private	final	static	int	WWIDTH	=	1200;

		private	final	static	int	TWIDTH	=	25;

		private	final	static	int	THEIGHT	=	TWIDTH;

		private	final	static	int	TILEOFFSET	=	TWIDTH/2;

		private	final	static	String	validSpaces	=	"WG";

		private	int	playMode	=	0;

		

		private	final	static	String[]	WORLD	=	{

				"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB",

				"BWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWUWWWWB",

				"BWWWWWWWWWWWWWUUWWWWWWWWUUUUUUUWWWWWWWWWWWUWWWWB",

				"BWWWWWUUUUUWWWUUUWWWWWWWWWWWWWWWWWWWWWWWWWUWWWWB",

				"BWWWWWUUUUUWWWWWWWWWWWWWWWWWWWWWWWWWUWWWWUUUWWWB",

				"BWWWWWWWWWWWWWWWWWUUUUUWWWWWWWWUUUUUUWWWWWWWWWWB",

				"BWWWWWWWWWWWWWWWWWUUUUWWWWWWWWWUUUUUUUUWWWWWWWWB",

				"BWWWWUUUUUUUWWWUWWWWWWWWWWWWWWWUWWWWWWWWWWWWWWWB",

				"BWWWWWWWUUUWWWWUWWWWWWWWWWUWWWWUWWWWWWWWWWWWWWWB",

				"BWWWWWWWWWWWWWWWWWWWWWWWWWUWWWWWWWWWWWWWWWWWUWWB",

				"BWWWWWWWWWWWWWWWWWWWUUUUUUUWWWWWWWWWUUUUWWWWUWWB",

				"BWWWWWWWWWWWWWUUWWWWUWWWWWWWWWWWWWWWUUUUWWWWUWWB",

				"BWWWWWWWUUUUUUUUUWWWWWWWWWWWWWWWWWWWUUUUUUWWUWWB",

				"BWWWWWWWUUUUUUUUUWWWWWWWWWUUWWWWWWWWWWWWWWWWUWWB",

				"BWWWWWWWUWWWWWWWWWWWWWWWWWUUWWWWWWWWWWWWWWWWUWGB",

				"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"

		};

		

		/*	constructors	*/

		public	MazeWorld()	{

				this(0);

		}

		

		public	MazeWorld(int	pm)	{

				super(SWIDTH,	SHEIGHT,	1,	false);



				playMode	=	pm;

				createWorldFromTiles();

				shiftWorld(0);

				prepare();

		}

		

		/*	ability	methods	*/

		public	void	shiftWorld(int	dx)	{

				if(	(xOffset	+	dx)	<=	0

				&&	(xOffset	+	dx)	>=	SWIDTH	-	WWIDTH)	{

						xOffset	=	xOffset+dx;

						shiftWorldActors(dx);

				}

		}

		

		/*	accessor	methods	*/

		public	int	getTileWidth()	{

				return	TWIDTH;

		}

		

		public	int	getTileHeight()	{

				return	THEIGHT;

		}

		

		public	int	getTileOffset()	{

				return	TILEOFFSET;

		}

		

		public	String[]	getStringWorld()	{

				return	WORLD;

		}

		

		public	int	getXHiker()	{

				return	hiker.getX()-xOffset;

		}

		

		public	int	getYHiker()	{

				return	hiker.getY();

		}

		

		public	String	getValidSpaces()	{

				return	validSpaces;

		}

		

		public	void	stunAllEnemies()	{

				List<ScrollingEnemy>	le	=

				getObjects(ScrollingEnemy.class);

				ListIterator<ScrollingEnemy>	listItr	=	le.listIterator();

				while(	listItr.hasNext()	)	{

						ScrollingEnemy	se	=	listItr.next();

						se.stun();

				}

		}

		

		public	void	slowAllEnemies()	{

				List<ScrollingEnemy>	le	=



				getObjects(ScrollingEnemy.class);

				ListIterator<ScrollingEnemy>	listItr	=	le.listIterator();

				while(	listItr.hasNext()	)	{

						ScrollingEnemy	se	=	listItr.next();

						se.slow();

				}

		}

		

		public	void	makeSnakesTalk()	{

				List<Snake>	le	=	getObjects(Snake.class);

				ListIterator<Snake>	listItr	=	le.listIterator();

				while(	listItr.hasNext()	)	{

						Snake	s	=	listItr.next();

						s.talk();

				}

		}

		

		public	void	gameOver()	{

				MazeWorldGameOver	mwgo	=	new	MazeWorldGameOver(playMode);

				Greenfoot.setWorld(mwgo);

		}

		

		/*	private	methods	*/

		private	void	shiftWorldActors(int	dx)	{

				List<ScrollingActor>	saList	=

				getObjects(ScrollingActor.class);

				for(	ScrollingActor	a	:	saList	)	{

						a.setAbsoluteLocation(dx);

				}

		}

		

		private	void	createWorldFromTiles()	{

				for(	int	i=0;	i	<	WORLD.length;	i++	)	{

						for(	int	j=0;	j	<	WORLD[i].length();	j++	)	{

								addActorAtTileLocation(WORLD[i].charAt(j),	j,	i);

						}

				}

		}

		

		private	void	addActorAtTileLocation(char	c,	int	x,	int	y)	{

				Actor	tile	=	null;

				switch(c)	{

						case	'W':

						tile	=	new	WhiteBlock();

						break;

						case	'B':

						tile	=	new	BlackBlock();

						break;

						case	'U':

						tile	=	new	BlueBlock();

						break;

						case	'G':

						tile	=	new	GoldBlock();

						break;

				}

				if(	tile	!=	null)	addObject(tile,	TILEOFFSET+x*TWIDTH,



				TILEOFFSET+y*THEIGHT);

				

		}

		

		private	void	prepare()

		{

				hiker	=	new	Hiker();

				addObject(hiker,	80,	200);

				addObject(new	MazeWorldHUD(),	300,	387);

				addObject(new	Mouse(),	60,40);

				addObject(new	Spider(),	1000,40);

				addObject(new	Spider(),	120,340);

				addObject(new	Spider(),	1050,250);

				addObject(new	Snake(),	1050,250);

				addObject(new	Mouse(),	1000,200);

				addObject(new	Snake(),	400,260);

				if(	playMode	>=	1	)	{

						addObject(new	Snake(),	80,40);

						if(	playMode	==	2	)	{

								addObject(new	Mouse(),	50,350);

						}

				}

		}

}

We	are	going	to	implement	the	different	difficulty	levels	by	changing	the	number	of
enemies	you	have	to	avoid	in	the	maze.	First,	we	create	the	playMode	instance	variable	to
store	the	difficulty	level.	Next,	we	need	to	add	another	constructor	that	accepts	an	integer
parameter.	To	do	this,	we	need	to	change	the	old	constructor	that	had	no	parameters	to
have	one	and	add	one	line	of	code	that	sets	the	playMode	instance	variable	to	that
parameter—everything	else	remains	the	same.	We	can	then	add	a	new	constructor	that	has
no	parameters	and	simply	calls	the	other	constructor	method	passing	in	a	value	of	0
(which	corresponds	to	the	easy	mode).	Finally,	in	the	prepare()	method,	we	add	code	at
the	end	of	the	method	to	check	whether	to	add	more	actors	to	the	game	depending	on	the
value	of	playMode.	If	playMode	is	1,	then	we	add	an	additional	snake.	If	it	is	2,	then	we
add	an	additional	snake	and	mouse	to	the	game.

Next,	we	need	to	add	the	stunAllEnemies(),	slowAllEnemies(),	and	makeSnakesTalk()
methods	to	MazeWorld.	Each	method	uses	the	Greenfoot	World	method	getObjects()	to
get	a	list	of	all	the	objects	of	the	supplied	type.	When	ScrollingEnemy.class	is	supplied
to	getObjects(),	we	get	a	list	of	all	current	enemies.	When	Snake.class	is	passed	as	a
parameter	to	the	getObjects()	method,	we	get	a	list	of	all	the	Snake	objects	currently	in
the	scenario.	We	then	loop	through	the	list	of	objects	and	call	stun(),	slow(),	and	talk(),
respectively,	on	the	objects.

Because	all	of	the	enemies	inherit	from	ScrollingEnemy,	we	can	implement	both	stun()
and	slow()	in	that	class.

Here	is	the	code	for	ScrollingEnemy	with	the	required	changes	highlighted:

import	greenfoot.*;



abstract	public	class	ScrollingEnemy	extends	ScrollingActor	{

		protected	static	final	int	SPEED	=	1;

		private	static	final	int	BOUNDARY	=	40;

		protected	int	speedX	=	SPEED;

		protected	int	speedY	=	SPEED;

		private	int	stunTime	=	0;

		private	int	slowTime	=	0;

		private	boolean	stunned	=	false;

		private	boolean	slowed	=	false;

		

		/*	initialization	*/

		protected	void	addedToWorld(World	w)	{

				MazeWorld	mw	=	(MazeWorld)	w;

				GreenfootImage	img	=	getImage();

				img.scale(mw.getTileWidth(),mw.getTileHeight());

				setImage(img);

		}

		

		public	void	stun()	{

				if(	stunned	==	false	)	{

						stunned	=	true;

						stunTime	=	100;

				}

		}

		

		public	void	slow()	{

				if(	slowed	==	false	)	{

						slowed	=	true;

						slowTime	=	400;

				}

		}

		

		/*	ability	methods	*/

		public	void	act()	{

				if(	!stunned	)	{

						if(	slowTime	>	0	)	{

								slowed	=	(slowTime--	%	2)	==	0;

						}

						if(	!slowed	)	{

								sense();

								reaction();

								boundedMove();

						}

				}	else	{

						if(	stunTime--	<	0	)	{

								stunTime	=	0;

								stunned	=	false;

						}

				}

		}

		

		protected	void	sense()	{

				//	No	smarts

		}

		

		protected	void	reaction()	{



				//	No	reaction

		}

		

		protected	void	boundedMove()	{

				setLocation(getX()+speedX,	getY()+speedY);

				if(	isTouching(ScrollingObstacle.class)	)	{

						setLocation(getX()-speedX,	getY()-speedY);

				}

		}

}

At	the	beginning	of	the	Snake	class,	we	add	four	instance	variables.	Two	of	the	variables
store	information	about	how	long	the	enemies	are	stunned	(stunTime)	and	slowed
(slowTime)	and	the	other	two	variables	track	whether	or	not	we	are	presently	in	a	stunned
(stunned)	or	slowed	(slowed)	state.

When	a	ScrollingEnemy	object	is	stunned	by	the	player,	the	stun()	method	is	invoked	on
that	object	(as	we	saw	in	our	discussion	on	MazeWorld).	The	stun()	method	will	do
nothing	if	the	object	is	presently	stunned.	If	not,	the	method	will	set	stunned	to	true	and
set	stunTime	to	100.	These	values	are	used	in	the	act()	method	to	implement	stunning	the
object.	The	slow()	method	is	nearly	identical	to	the	stun()	method,	except	that	slowTime
is	set	to	400.	This	equates	to	the	slowing	of	an	object	lasting	longer	than	a	stun.

In	act(),	we	check	the	values	of	the	stunned	Boolean	variable	and	skip	calling	the
sense(),	reaction(),	and	boundedMove()methods	if	stunned	is	true.	The	stunTime
variable	serves	as	a	delay	variable	(covered	in	Chapter	2,	Animation).	If	we	are	not
stunned,	then	the	act()	method	proceeds	to	check	the	slowed	variable.	If	not	slowed,	we
proceed	as	normal.	The	slowTime	variable	serves	as	a	delay	variable;	however,	as	it	is
counting	down,	it	toggles	the	values	of	slowed.	This	toggling	will	constrain	the	sense(),
reaction(),	and	boundedMove()	methods	to	only	be	invoked	on	every	other	call	of	the
act()	method.	This	makes	the	enemies	move	at	half	speed	when	slowed.

Since	snakes	are	the	only	ones	that	need	to	talk,	we	put	the	implementation	of	the	talk()
method	directly	into	the	Snake	class.

Here	is	the	code	for	Snake	with	the	required	changes	highlighted:

import	greenfoot.*;

import	java.util.List;

import	java.awt.Color;

public	class	Snake	extends	ScrollingEnemy	{

		private	static	final	int	PATHLENGTH	=	200;

		private	static	final	int	INRANGE	=	100;

		private	int	pathCounter	=	PATHLENGTH;

		private	boolean	pathing	=	false;

		private	int	rememberSpeedX	=	0;

		private	List<Hiker>	lse;

		private	boolean	talking	=	false;

		private	int	talkTime	=	0;

		private	TextBox	sss;

		

		/*	constructors	*/



		public	Snake()	{

				speedX	=	rememberSpeedX	=	SPEED;

				speedY	=	0;

		}

		

		public	void	talk()	{

				if(	talking	==	false	)	{

						talking	=	true;

						talkTime	=	100;

						sss	=	new	TextBox("	sssssss	",	14,	true,

						Color.BLACK,	Color.WHITE);

						getWorld().addObject(sss,	getX()-20,	getY()-20);

				}

		}

		

		/*	ability	methods	*/

		protected	void	sense()	{

				//	If	near,	move	towards	enemy

				lse	=	getObjectsInRange(INRANGE,Hiker.class);

				pathing	=	lse.isEmpty();

		}

		

		protected	void	reaction()	{

				if(	pathing	)	{

						speedX	=	rememberSpeedX;

						speedY	=	0;

						if(	--pathCounter	==	0	)	{

								pathCounter	=	PATHLENGTH;

								speedX	=	rememberSpeedX	=	-speedX;

						}

				}	else	{

						speedX	=	lse.get(0).getX()	>	getX()	?	1	:	-1;

						speedY	=	lse.get(0).getY()	>	getY()	?	1	:	-1;

				}

				

				if(	talking	)	{

						sss.setLocation(getX()-20,	getY()-20);

						if(	talkTime--	<	0	)	{

								talking	=	false;

								talkTime	=	0;

								getWorld().removeObject(sss);

								

						}

				}

		}

}

Like	the	implementation	of	stun()	and	slow()	in	the	ScrollingEnemy	class,	we	need	a
delay	variable	(talkTime)	and	Boolean	(talking)	to	implement	the	talk()	method.	In
addition,	we	need	a	variable	to	store—TextBox	(sss)—that	will	contain	the	sssssss	text.
The	talk()	method	is	structured	in	the	same	way	as	stun()	and	slow().	However,	talk()
must	also	create	TextBox	and	add	it	to	the	world.

We	can	see	in	reaction()	that	if	the	Snake	object	is	in	a	talking	state	then	the	sss
TextBox	will	be	displayed	offset	from	the	location	of	the	object	for	a	time	specified	by	the



talkTime	instance	variable.	Once	talkTime	expires,	it	must	also	remove	the	sss	TextBox
variable	from	the	world.

Congratulations!	You	have	finished	our	new	version	of	MazeWorld.	Compile	it	and	try	it
out.	Click	the	stun,	slow,	and	talk	actions	in	the	game.	If	you	have	any	issues	or	errors	in
your	game	and	are	having	a	tough	time	solving	them,	compare	your	version	to	the
completed	version	at	http://www.packtpub.com/support.

Tip
The	MazeWorld	scenario	was	constructed	solely	to	help	demonstrate	the	concepts	covered
in	Chapter	7,	Artificial	Intelligence,	and	the	current	chapter.	Therefore,	it	is	not	actually
great	fun	to	play,	but	it	does	have	a	lot	of	potential.	Using	the	game	design	knowledge	you
acquired	in	Chapter	5,	Interactive	Application	Design	and	Theory,	try	making	changes	to
MazeWorld	that	will	enhance	its	playability.

http://www.packtpub.com/support




Summary
You	are	now	officially	a	Greenfoot	programming	ninja.	You	know	how	to	create
Greenfoot	games	and	simulations	that	contain	lively	and	intelligent	actors	with	various
methods	that	allow	user/player	interaction.	You	can	implement	keyboard/mouse	controls,
buttons,	menus,	and	customized	interfaces.

In	the	next	chapter,	we	are	going	to	add	a	gamepad	controller	support	to	our	Greenfoot
scenarios.	Gamepads	are	a	great	way	to	capture	user	inputs,	especially	for	games.





Chapter	9.	Gamepads	in	Greenfoot
	 “Only	you	can	control	your	future.” 	

	 —Dr.	Seuss

In	this	chapter,	we	will	cover	how	to	connect	and	use	gamepad	controllers	in	your
Greenfoot	scenarios.	The	set	of	controls	you	provide	to	your	user	really	has	an	impact	on
their	experience.	Imagine	playing	our	version	of	Avoider	Game,	which	we	created	in	the
first	two	chapters	of	this	book,	if	you	had	to	hit	U	to	move	up,	D	to	move	down,	L	to	move
left,	and	R	to	move	right.	In	the	same	way	that	a	bad	layout	can	frustrate	a	user,	a	good
layout	can	feel	very	natural.

Gamepads	are	designed	to	heighten	the	experience	of	playing	games.	They	provide	a
natural	and	expedient	way	for	players	to	express	their	decisions	to	the	game	without
detracting	from	game	play.	Early	in	gaming	history,	gamepads	took	the	form	of	simple
joysticks	with	a	single	button	to	fire	with.	Today,	typical	controllers	have	over	10	buttons,
analog	sticks,	analog	triggers,	and	a	digital	D-pad.	Many	controllers	often	allow	the	user
to	build	custom	macros	as	well.

In	this	chapter,	you	will	learn	how	to:

Connect	a	gamepad	to	your	Greenfoot	scenario
Listen	and	respond	to	various	gamepad	events	using	the	Greenfoot	GamePad	API
Connect	unsupported	gamepads	to	OS	X	using	controller-mapping	software

Adding	gamepad	support	to	your	scenarios	is	a	great	way	to	add	to	the	playability	of	the
games	you	create.	It	also	adds	a	feel	of	professionalism	to	your	work.	After	learning	about
connecting	gamepads,	we	will	augment	Avoider	Game,	which	we	created	in	Chapter	1,
Let’s	Dive	Right	in…,	and	Chapter	2,	Animation,	to	allow	the	user	to	choose	between
controlling	the	game	with	a	mouse	or	a	gamepad.



Gamepad	overview
There	are	many	types	of	gamepads	currently	on	the	market	for	both	PCs	and	Macs.	Some
resemble	game	controllers	made	for	popular	console	gaming	systems,	such	as	Xbox,
PlayStation,	and	Nintendo,	while	others	have	their	own	unique	design	and	capabilities.
Figure	1	shows	a	typical	gamepad.	These	gamepads	are	designed	to	put	a	lot	of	control
options	within	easy	reach.

Figure	1	identifies	several	common	groupings	of	gamepad	controls.	A	D-pad	is	a	control
often	used	to	allow	players	to	indicate	direction	(hence,	the	D	in	the	name).	It	is	fairly	flat
and	designed	for	thumb	use.	The	analog	sticks	serve	as	mini	joysticks	on	the	controller
and	allow	fast	and	accurate	positional	control.	For	example,	some	games	may	use	them	to
allow	the	player	to	look	around	a	3D	world	or	aim	a	weapon.	In	a	controller	designed	for
an	Xbox	(and	other	popular	consoles),	the	analog	sticks	can	also	be	pushed	down,
providing	two	additional	action	buttons.	The	action	buttons	provide	the	user	a	way	to
specify	an	action	in	a	game	(see	Figure	1).	These	buttons	often	control	things	such	as
jumping,	shooting,	ducking,	and	blocking.	Last,	we	have	auxiliary	buttons	that	may	be
used	to	do	things	such	as	start	a	game,	pause	a	game,	reset	a	game,	or	simply	provide	more
action	buttons.

Figure	1:	This	is	a	typical	layout	for	a	gamepad	controller

For	many	games,	a	gamepad	will	provide	the	best	interface	(and	user	experience)	for
players.	In	this	chapter,	we	will	discuss	connecting	a	controller	like	the	one	shown	in
Figure	1	to	your	Greenfoot	scenario.	You	will	be	able	to	assign	the	D-Pad,	analog	sticks,
and	action	buttons	to	user-allowed	abilities	of	your	choosing.





Windows	setup
There	are	hundreds	of	gamepads	you	can	choose	from,	to	purchase	for	your	PC	or	Mac.	In
this	section,	we	will	cover	setting	up	an	Xbox	360	controller	for	Windows.	If	you	have
purchased	a	different	controller,	make	sure	to	install	the	associated	drivers	according	to
the	instructions	provided	with	your	gamepad.	If	you	have	a	Mac	and	a	gamepad	officially
supported	by	OS	X,	then	the	instructions	here	should	work	for	you	as	well.	At	the	end	of
this	chapter,	we	will	look	at	ways	you	can	still	use	poorly	supported	gamepads	on	your
Mac.



Connecting	your	controller
Before	starting	Greenfoot,	plug	your	Xbox	360	controller	for	Windows	into	your	PC	and
allow	Microsoft	Update	time	to	search	for,	download,	and	install	the	required	drivers	for
the	gamepad.	This	should	take	5–15	minutes	depending	on	your	network	connectivity.	If
you	have	any	problems,	try	following	the	instructions	given	at	http://support.xbox.com/en-
US/xbox-on-other-devices/windows/xbox-controller-for-windows-setup.

http://support.xbox.com/en-US/xbox-on-other-devices/windows/xbox-controller-for-windows-setup


Greenfoot	gamepad	software
From	the	Greenfoot	website,	you	can	download	a	template	to	build	Greenfoot	scenarios
with	gamepad	support.	The	template	is	basically	a	blank	Greenfoot	scenario	that	contains
added	libraries	you	can	use	to	access	and	control	gamepads.	You	can	download	the
gamepad	project	template	at	http://www.greenfoot.org/doc/gamepad.

When	you	wish	to	create	a	scenario	with	gamepad	support,	you	need	to	perform	the
following	steps:

1.	 Move	the	GamePadTemplate.zip	file	downloaded	from	the	previous	URL,	to	a
directory	of	your	choice.

2.	 Unzip	GamePadTemplate.zip.
3.	 Rename	the	GamePadTemplate	folder	created	in	the	previous	step,	to	a	name	you	want

your	new	scenario	to	have.
4.	 Open	the	scenario	and	add	your	changes.

Figure	2	shows	what	your	new	Greenfoot	scenario	will	look	like	after	completing	the
preceding	steps.	As	you	can	see,	you	will	subclass	the	World	and	Actor	classes	as	you
normally	would	to	add	content	to	your	scenario.	You	are	also	provided	with	two	additional
classes,	seen	in	the	Other	classes	section,	that	you	will	use	to	connect	to	and	manage
gamepads.

Figure	2:	This	is	a	new	Greenfoot	scenario	built	from	the	gamepad	template.	The	scenario
pictured	was	renamed	to	“Fun”

http://www.greenfoot.org/doc/gamepad


We	will	discuss	the	GamePad	and	Direction	classes	in	the	next	section.





The	Greenfoot	Gamepad	API
The	Greenfoot	Gamepad	API	supports	all	of	the	controls	shown	in	Figure	1	except	that
there	are	only	two	auxiliary	buttons	at	the	top	(colored	orange).	First,	we	will	discuss	the
API	at	a	conceptual	level	and	then	look	at	the	specific	classes	that	implement	the	API.



Overview
In	theory,	receiving	user	input	from	a	gamepad	is	a	lot	like	receiving	input	from	the
keyboard.	We	are	going	to	poll	the	buttons	and	analog	sticks	on	the	gamepad	to	see
whether	they	are	presently	being	pressed.	The	analog	sticks	are	a	bit	more	complicated	as
they	have	more	states	than	being	pressed	or	not.	For	them,	you	need	to	know	both	the
direction	they	are	being	pushed	in	and	the	strength	of	the	push.

With	gamepads,	you	might	have	multiple	gamepads	connected	to	your	computer,	so	the
API	also	provides	methods	to	access	all	of	the	gamepads	and	connect	to	only	the	ones	you
specify.

As	we	saw	in	the	gamepad	template	scenario,	the	Gamepad	API	is	implemented	in	two
classes.	The	first	is	the	GamePad	class	and	the	second	is	the	Direction	class.

Note
The	static	keyword

In	Java,	you	have	a	keyword	that	you	can	use	to	change	how	variables	and	methods	are
accessed	and	how	memory	is	managed	for	them.	This	keyword	is	known	as	static.
Adding	this	keyword	to	the	declaration	of	a	class	variable	or	method	ensures	that	this
variable	or	method	is	stored	only	once	regardless	of	the	number	of	objects	of	the	class
created.	So,	for	example,	if	you	declared	a	variable	named	counter	and	assigned	it	an
initial	value	of	1,	then	all	objects	of	the	class	would	see	the	value	of	that	variable	as	1.	If
one	of	the	objects	increments	counter,	then	all	objects	created	would	now	see	the	value	of
this	variable	as	2.

When	used	on	methods,	the	methods	can	be	invoked	without	needing	an	instance	of	that
class	created.	For	example,	many	methods	contained	in	the	Greenfoot	class	are	static,
such	as	getRandomNumber()	and	setWorld().	Note	that	when	we	call	these	methods,	we
do	not	create	an	instance	of	the	class.	We	just	add	the	following	code:

int	randomNumber	=	Greenfoot.getRandomNumber(10);



The	GamePad	and	Direction	classes
The	GamePad	class	is	a	special	type	of	class	known	as	singleton.	For	a	singleton	class,	the
constructor	is	declared	as	private;	therefore,	no	code	external	to	the	class	can	create	a
new	instance	of	the	class.	All	other	attempts	to	create	a	new	object	will	fail	with	an	error
stating	that	the	constructor	has	private	access.	It	is	a	singleton	class	because	you	want	to
ensure	that	only	one	object	represents	a	gamepad	controller.

The	methods	you	will	commonly	use	from	this	class	are	getGamePad(),	isDown(),
getAxis(),	and	runConfigurePad().	The	first	thing	you	need	to	do	to	use	a	gamepad	in
your	scenario	is	call	getGamePad().	This	method	will	return	a	GamePad	object	that
represents	the	gamepad	controller	connected	to	your	computer.	Here	is	an	example	of	its
use:

GamePad	pad	=	GamePad.getGamePad();

Once	you	have	the	GamePad	object	for	your	controller,	you	can	check	whether	the	user	is
pressing	an	action	button	(shown	in	Figure	1)	by	calling	isDown().	The	isDown()method
is	used	exactly	like	the	isKeyDown()	Greenfoot	method	we	used	to	detect	keyboard	input.
To	detect	keyboard	input,	we	supply	the	name	of	the	key	we	are	interested	in.	For
gamepads,	you	specify	which	button	you	are	interested	in	using	the	GamePad.Button
enumeration,	which	provides	the	following	labels	that	correspond	to	gamepad	buttons:
ACTION_DOWN,	ACTION_LEFT,	ACTION_RIGHT,	ACTION_UP,	L1,	L2,	L3,	R1,	R2,	R3,	SELECT,	and
START.	So,	to	determine	whether	the	user	was	pressing	the	blue	action	button	shown	in
Figure	1,	you	would	use	the	following	lines	of	code:

if(	pad.isDown(GamePad.Button.ACTION_UP)	)	{

		System.out.println("The	ACTION_UP	key	is	being	pressed.");

}

Getting	user	input	from	the	analog	sticks	is	a	two-step	process.	First,	you	get	the	direction
information	from	the	analog	stick	in	the	following	way:

Direction	direction	=	getGamePad().getAxis(GamePad.Axis.LEFT	);

The	Axis	enumeration	provides	labels	you	can	use	to	specify	the	D-pad,	the	left	analog
stick,	or	the	right	analog	stick.	The	labels	are	DPAD,	LEFT,	and	RIGHT,	respectively.
Secondly,	once	you	have	a	Direction	object,	you	can	determine	the	angle	at	which	the
analog	stick	is	being	pushed	and	how	far	it	is	being	pushed.	Here	are	two	lines	of	code	that
demonstrate	how	to	extract	this	information:

int	angle	=	direction.getAngle();

float	strength	=	direction.getStrength();

The	last	method	you	will	often	use	is	the	runConfigurePad()	method.	This	method	will
present	a	GUI	interface	the	user	can	use	to	specify	how	the	controls	on	their	gamepad
should	map	to	the	labels	provided	in	the	GamePad.Button	enumeration	and	the
GamePad.Axis	enumeration.	This	is	needed	because	not	all	gamepads	have	the	same
layout.



For	more	information,	refer	to	the	official	documentation	of	this	class	at
http://www.greenfoot.org/files/gamepad/GamePad.html.

Note
Singleton	classes

Design	patterns	are	solutions	to	well-known	or	common	problems.	They	provide	a
blueprint	that	programmers	can	easily	follow.	One	of	the	most	used	design	patterns	in	Java
is	the	singleton	pattern.	You	use	this	design	pattern	when	you	want	to	ensure	that	one	and
only	one	object	of	a	class	is	instantiated.	Why	would	this	be	useful?	Well,	imagine	you
wanted	to	manage	and	share	a	resource	such	as	a	printer	or	network	connection	within
your	application.	It	is	much	simpler	and	more	efficient	to	only	allow	the	creation	of	one
object	that	represents	that	single	resource.	A	class	that	follows	the	singleton	design	pattern
enforces	this	behavior.

http://www.greenfoot.org/files/gamepad/GamePad.html




Avoider	Game	with	Gamepad
We	went	over	how	to	connect	a	gamepad	to	your	Greenfoot	scenario	and	how	to	use	the
Gamepad	API.	Now,	it	is	time	to	code.	We	are	going	to	add	gamepad	support	to	our
version	of	Avoider	Game,	which	we	finished	creating	in	Chapter	2,	Animation.	You	can
access	a	copy	of	that	scenario	at	http://www.packtpub.com/support.

We	have	two	main	changes	to	make	to	Avoider	Game.	First,	we	need	to	add	a	reference	to
a	GamePad	object	associated	with	our	controller	and	pass	that	reference	between	all	three
worlds	in	that	scenario:	AvoiderGameIntroScreen,	AvoiderWorld,	and
AvoiderGameOverWorld.	Second,	we	need	to	change	the	Avatar	class	to	be	controlled	by	a
gamepad,	if	present.	Otherwise,	we	default	to	mouse	control.

The	entire	AvoiderWorld	class	is	not	shown	in	the	following	code;	only	the	methods	that
need	changing	are	shown.	Here	are	the	changes	for	AvoiderWorld:

private	GamePad	pad;

public	AvoiderWorld(GamePad	p)	{

		super(600,	400,	1,	false);

		

		bkgMusic	=	new	GreenfootSound("sounds/UFO_T-Balt.mp3");

		//	Music	Credit:	T-Balt	at

		//	http://www.newgrounds.com/audio/listen/504436

		bkgMusic.playLoop();

		

		//	set	gamepad

		pad	=	p;

		

		setPaintOrder(Eye.class,	Avatar.class,

		Enemy.class,	PowerItems.class,

		Counter.class);

		prepare();

		generateInitialStarField();

}

First,	we	need	an	instance	variable	named	pad	to	hold	a	reference	to	our	gamepad.	Change
the	constructor	function	to	accept	a	reference	to	a	GamePad	object	and	then	use	that	value
to	initialize	our	pad	variable.	This	value	will	be	passed	to	us	from
AvoiderGameIntroScreen.	We	will	also	need	to	pass	the	value	of	pad	to
AvoiderGameOverWorld,	so	we	need	to	modify	the	endgame()	method	as	shown	in	the
following	code:

public	void	endGame()	{

		bkgMusic.stop();

		AvoiderGameOverWorld	go	=	new	AvoiderGameOverWorld(pad);

		Greenfoot.setWorld(go);

}

The	last	thing	we	need	to	change	in	AvoiderWorld	is	pass	the	pad	instance	variable	to	the
single	Avatar	object	we	create	in	this	game.	Thus,	we	need	to	change	one	line	of	code	in
the	prepare()	method,	as	follows:

http://www.packtpub.com/support


private	void	prepare()

{

		Avatar	avatar	=	new	Avatar(pad);

		addObject(avatar,	287,	232);

		scoreBoard	=	new	Counter("Score:	");

		addObject(scoreBoard,	70,	20);

}

AvoiderGameIntroScreen	has	the	responsibility	of	detecting	and	configuring	the
gamepad.	Here	are	the	changes	to	make	that	happen:

import	greenfoot.*;	

import	java.lang.IllegalArgumentException;

public	class	AvoiderGameIntroScreen	extends	World

{

		private	GamePad	pad;

		public	AvoiderGameIntroScreen()	{

				super(600,	400,	1);	

				try	{

						pad	=	GamePad.getGamePad();

						pad.runConfigurePad();

				}	catch(IllegalArgumentException	e)	{

						System.out.println(	"Exception	caught:	"	+	e.getMessage()	);

						pad	=	null;

				}

		}

		public	void	act()	{

				if(	Greenfoot.mouseClicked(this)	)	{

						AvoiderWorld	world	=	new	AvoiderWorld(pad);

						Greenfoot.setWorld(world);

				}

		}

}

First,	we	add	an	instance	variable,	pad,	to	the	class	and	then	initialize	that	variable	using
the	GamePad.getGamePad()	method	of	the	Gamepad	API.	We	have	to	surround	the	call	to
GamePad.getGamePad()	in	a	try-catch	block	because	the	getGamePad()	method	will	throw
an	exception	if	there	is	no	gamepad	plugged	into	the	computer.	The	type	of	exception
thrown	is	IllegalArgumentException,	so	that	is	what	we	have	to	catch.	You	will	notice
that	we	added	another	import	statement	at	the	top	to	define	the
IllegalArgumentException	class.	If	we	do	not	have	a	gamepad,	then	we	set	pad	to	null.
We	also	call	the	runConfigurePad()method	in	the	try	block.	This	will	bring	up	a	dialogue
box	that	will	prompt	the	user	as	to	whether	they	want	to	redefine	the	buttons	for	their
controller.	Last,	we	pass	pad	to	AvoiderWorld	in	the	act()	method.

Note
Exceptions

Java	exceptions	provide	an	organized	and	flexible	way	to	handle	runtime	errors.	They



allow	you	to	detangle	your	code	from	error	detection	code,	making	your	code	more
readable	and	maintainable.	The	main	keywords	associated	with	exception	handling	in	Java
are	throw,	try,	and	catch.	To	learn	more	about	Java	exceptions,	refer	to
http://docs.oracle.com/javase/tutorial/essential/exceptions/.

The	changes	needed	to	the	AvoiderGameOverScreen	class	are	simple.	It	only	needs	to	pass
the	reference	to	the	gamepad	it	got	from	the	prior	instance	of	AvoiderWorld	and	pass	it
back	to	a	new	instance	of	AvoiderWorld	if	the	player	clicks	on	the	screen	to	play	again.
Here	are	the	changes:

import	greenfoot.*;	

public	class	AvoiderGameOverWorld	extends	World

{

		private	GamePad	pad;

		public	AvoiderGameOverWorld(GamePad	p)	{		

				super(600,	400,	1);	

				pad	=	p;

		}

		public	void	act()	{

				if(	Greenfoot.mouseClicked(this)	)	{

						AvoiderWorld	world	=	new	AvoiderWorld(pad);

						Greenfoot.setWorld(world);

				}

		}

}

The	class	that	deals	directly	with	receiving	events	from	the	gamepad	is	the	Avatar	class.
We	need	to	modify	this	class	to	use	the	gamepad	to	accept	user	input	or	default	to	the
mouse	if	no	gamepad	is	present.

Here	are	the	changes	to	the	Avatar	class:

import	greenfoot.*;

public	class	Avatar	extends	Actor	{

		private	static	final	float	MIN_STRENGTH	=	0.5F;

		private	int	health	=	3;

		private	int	hitDelay	=	0;

		private	int	stunDelay	=	-1;

		private	int	lagDelay	=	-1;

		private	int	nextImage	=	0;

		private	Eye	leftEye;

		private	Eye	rightEye;

		private	GamePad	pad;

		private	boolean	useGamepad	=	true;

		private	int	gpStepX	=	3;

		private	int	gpStepY	=	3;

		private	int	gpLagStepX	=	1;

		private	int	gpLagStepY	=	1;

		

		public	Avatar(	GamePad	p	)	{

http://docs.oracle.com/javase/tutorial/essential/exceptions/


				pad	=	p;

				if(	pad	==	null	)	{

						useGamepad	=	false;

				}

		}

		protected	void	addedToWorld(World	w)	{

				leftEye	=	new	Eye();

				rightEye	=	new	Eye();

				w.addObject(leftEye,	getX()-10,	getY()-8);

				w.addObject(rightEye,	getX()+10,	getY()-8);

		}

		

		public	void	act()	{

				userControls();

				checkForCollisions();

		}

		

		public	void	addHealth()	{

				if(	health	<	3	)	{

						health++;

						if(	--nextImage	==	0	)	{

								setImage("skull.png");

						}	else	{

								setImage("skull"	+	nextImage	+	".png");

						}

				}

		}

		

		public	void	lagControls()	{

				lagDelay	=	150;

		}

		

		public	void	stun()	{

				stunDelay	=	50;

		}

		

		private	void	checkForCollisions()	{

				Actor	enemy	=	getOneIntersectingObject(Enemy.class);

				if(	hitDelay	==	0	&&	enemy	!=	null	)	{

						if(	health	==	0	)	{

								AvoiderWorld	world	=	(AvoiderWorld)	getWorld();

								world.endGame();

						}

						else	{

								health--;

								setImage("skull"	+	++nextImage	+	".png");

								hitDelay	=	50;

						}

				}

				if(	hitDelay	>	0	)	hitDelay--;

		}

		

		private	void	userControls()	{

				if(	stunDelay	<	0	)	{

						if(	lagDelay	>	0	)	{

								if(	useGamepad	)	{



										moveViaGamepad(true);

								}	else	{

										moveViaMouse(true);

								}

								--lagDelay;

						}	else	{

								if(	useGamepad	)	{

										moveViaGamepad(false);

								}	else	{

										moveViaMouse(false);

								}

						}

						

						leftEye.setLocation(getX()-10,	getY()-8);

						rightEye.setLocation(getX()+10,	getY()-8);

				}	else	{

						stunDelay--;

				}

		}

		

		private	void	moveViaGamepad(boolean	lag)	{

				int	stepX	=	lag	?	gpLagStepX	:	gpStepX;

				int	stepY	=	lag	?	gpLagStepY	:	gpStepY;

				

				Direction	dir	=	pad.getAxis(	GamePad.Axis.DPAD	);

				if	(	dir.getStrength()	==	0	)	{

						dir	=	pad.getAxis(	GamePad.Axis.LEFT	);

				}

				

				if	(	dir.getStrength()	>	MIN_STRENGTH	)	{

						final	int	angle	=	dir.getAngle();

						

						if	(	angle	>	315	||	angle	<=	45	)	{

								setLocation(getX()+stepX,	getY());

						}	else	if	(	angle	>	45	&&	angle	<=	135	)	{

								setLocation(getX(),	getY()+stepY);

						}	else	if	(	angle	>	135	&&	angle	<=	225	)	{

								setLocation(getX()-stepX,	getY());

						}	else	{

								setLocation(getX(),	getY()-stepY);

						}

				}

		}

		

		private	void	moveViaMouse(boolean	lag)	{

				MouseInfo	mi	=	Greenfoot.getMouseInfo();

				

				if(	mi	!=	null	)	{

						if(	lag	)	{

								int	stepX	=	(mi.getX()	-	getX())/40;

								int	stepY	=	(mi.getY()	-	getY())/40;

								setLocation(stepX	+	getX(),	stepY	+	getY());

						}	else	{

								setLocation(mi.getX(),	mi.getY());

						}

				}



		}

}

At	the	beginning	of	the	Avatar	class,	we	define	a	few	additional	variables	that	we	will
need	to	allow	instances	of	the	class	to	be	controlled	by	a	gamepad.	We	declare	pad	to	hold
a	reference	to	the	gamepad	and	some	integers	to	specify	how	fast	to	move	the	Avatar
object.	We	also	declare	the	Boolean	useGamePad	variable	that	we	will	check	later	in	class
methods.

In	the	constructor,	we	initialize	pad	and	set	useGamePad.	You	will	remember	that	we	set
pad	to	null	in	AvoiderGameIntroScreen	if	no	gamepad	was	detected.

We	have	refactored	the	userControls()	method.	Both	lag	and	stun	delays	work	the	same,
but	now	we	call	a	method	to	actually	move	the	object.	If	useGamePad	is	true	then	we	call
moveViaGamepad();	otherwise,	we	call	moveViaMouse().	The	moveViaMouse()method
contains	the	same	logic	we	had	previously	to	move	the	object.	The
moveViaGamepad()method	is	completely	new	and	contains	the	logic	to	move	the	Avatar
object	by	detecting	input	from	the	user’s	gamepad.

In	moveViaGamepad(),	we	first	set	the	speed	to	move.	If	we	are	lagging,	we	will	go	slower.
The	implementation	of	lagging	for	the	gamepad	is	a	little	different	than	the
implementation	of	lagging	using	the	mouse.	However,	the	effect	in	either	case	is	to	slow
the	user	movement.	Next,	we	check	to	see	whether	the	user	is	presently	pressing	the	D-pad
by	checking	the	strength	of	the	push.	If	it	equals	0,	then	we	assume	the	user	is	using	the
left	analog	stick.	We	then	detect	the	angle	at	which	the	user	is	pushing	the	D-pad	(or
analog	stick)	and	translate	that	angle	to	the	direction—up,	down,	left,	or	right.



Try	it	out
We	have	added	all	the	code	we	need	to	use	a	gamepad	controller	with	our	version	of
Avoider	Game.	Compile	all	the	changes	you	typed	in	previously,	fix	any	errors	you	have,
and	play	the	game.	I	really	feel	that	playing	the	game	with	a	gamepad	is	more	natural	and
satisfying.

You	will	notice	that	we	still	have	a	lot	of	unused	buttons	on	the	gamepad.	What	could	you
add	to	the	game	to	take	advantage	of	those?





OS	X	setup/workarounds
OS	X	does	not	directly	support	many	gamepads.	If	you	have	a	gamepad	that	is	not	directly
supported,	you	can	still	use	that	gamepad	to	control	your	Greenfoot	games.



Gamepad	mapper	software
There	are	several	OS	X	applications	available	that	will	map	a	gamepad	controller	to
keyboard	keys	and	mouse	actions.	For	example,	you	could	map	the	D-Pad	up,	down,	left,
and	right	actions	to	the	W,	S,	A,	and	D	keys.	Typically,	these	applications	have	better
gamepad	support	than	JInput,	which	is	at	the	heart	of	gamepad	support	in	Greenfoot	and,
therefore,	will	permit	a	wider	variety	of	controllers	to	connect	to	your	game.	Another
advantage	is	that	you	can	program	your	scenarios	without	any	thought	to	gamepad
support.	You	assume	standard	keyboard	and	mouse	controls,	and	the	gamepad	mapping
software	handles	the	rest.	Here	are	some	popular	programs	that	do	this	mapping:

Joystick	Mapper:	http://joystickmapper.com
Enjoy:	https://yukkurigames.com/enjoyable/
ControllerMate	for	Mac:	http://www.macupdate.com/app/mac/17779/controllermate

http://joystickmapper.com
https://yukkurigames.com/enjoyable/
http://www.macupdate.com/app/mac/17779/controllermate




Exporting	games	with	gamepads
There	is	one	thing	you	need	to	keep	in	mind	when	you	add	gamepad	support	to	your
Greenfoot	scenarios.	If	you	have	it,	then	your	game	will	not	be	able	to	be	played	on	the
Greenfoot	site.	This	is	due	to	the	fact	that	there	is	no	Java	support	to	connect	to	a	gamepad
via	a	web	application.	However,	you	will	still	be	able	to	export	your	scenario	as	a	desktop
application	if	you	follow	the	simple	steps	at
http://www.greenfoot.org/doc/gamepad_export.

http://www.greenfoot.org/doc/gamepad_export




Summary
The	Greenfoot	Gamepad	API	is	simple	to	set	up	and	use	and	allows	you	to	provide	a	well-
designed	control	interface	to	your	users.	By	giving	your	users	the	option	to	use	mouse,
keyboard,	or	gamepad	controls,	you	allow	them	to	interact	with	your	Greenfoot	creations
in	a	way	that	is	natural	and	comfortable	to	them.	In	previous	chapters,	you	learned	how	to
work	with	both	the	keyboard	and	mouse	and,	in	this	chapter,	you	learned	how	to	use
gamepads.





Chapter	10.	What	to	Dive	into	Next…

	

“The	best	thing	for	being	sad,”	replied	Merlin,	beginning	to	puff	and	blow,	“is	to	learn	something.	That’s	the	only
thing	that	never	fails.	You	may	grow	old	and	trembling	in	your	anatomies,	you	may	lie	awake	at	night	listening	to	the
disorder	of	your	veins,	you	may	miss	your	only	love,	you	may	see	the	world	about	you	devastated	by	evil	lunatics,	or
know	your	honour	trampled	in	the	sewers	of	baser	minds.	There	is	only	one	thing	for	it	then—to	learn.	Learn	why	the
world	wags	and	what	wags	it.	That	is	the	only	thing	which	the	mind	can	never	exhaust,	never	alienate,	never	be
tortured	by,	never	fear	or	distrust,	and	never	dream	of	regretting.	Learning	is	the	only	thing	for	you.	Look	what	a	lot
of	things	there	are	to	learn.”

	

	 —T.H.	White,	The	Once	and	Future	King

Whether	you	started	this	book	as	a	novice	programmer,	experienced	programmer,	artist,
storyteller,	or	just	a	highly	curious	individual,	I	am	sure	you	have	learned	a	lot	along	the
way.	We	have	covered	numerous	solutions	to	common	problems	encountered	in	writing
and	developing	interactive	programs.	Writing	interactive	programs	requires	not	only
technical	expertise,	but	also	a	clear	understanding	of	how	to	engage	and	entertain	users.
We	also	covered	software	design,	code	organization,	debugging,	and	an	accepted	process
for	software	development	for	an	object-oriented	language.	These	skills	will	transfer	to
future	programming	projects,	even	if	you	end	up	coding	in	a	different	programming
language.

In	this	book,	we	covered	the	following	topics:

Animation
Collision	detection
Projectiles
Interactive	application	design	and	theory
Scrolling	and	mapped	worlds
Artificial	Intelligence
User	interfaces
Gamepads

Regardless	of	your	background	when	you	started	reading	this	book,	you	now	have	an
impressive	array	of	creative	skills.	Let’s	not	waste	them!	Moving	forward,	I	would	like	to
challenge	you	to	exercise	and	improve	your	skills.	In	this	chapter,	we	will	explore	courses
of	action	to	do	just	that.



Build	something	larger
While	we	have	built	programs	of	some	size,	we	have	kept	the	scope	of	the	work	small	for
pedagogical	and	practical	reasons.	However,	you	have	the	skills	to	create	large,	complex
forms	of	entertainment.	Brainstorm	a	project	for	yourself	that	you	feel	could	keep
someone	engaged,	via	learning	or	playing,	for	over	an	hour.	Spend	a	considerable	amount
of	time	on	the	design,	story,	and	content	of	your	project.	Before	coding,	create	a
storyboard	that	will	serve	as	an	outline	of	your	project	and	as	the	initial	artifact	that	you
can	show	users	(or	players)	to	get	some	early	feedback.

Note
Storyboards

Storyboards	are	an	efficient	way	to	explore	the	design	of	a	movie,	play,	book,	or	any	form
of	interactive	entertainment.	For	games,	they	are	especially	useful.	In	simple	terms,	a
storyboard	is	very	similar	to	creating	a	comic	book	of	the	story	you	are	telling.	With
storyboards,	the	individual	panes	of	the	comic	book	are	put	on	separate	pieces	of	paper,
making	it	easy	to	rearrange	their	order	or	insert/delete	specific	scenes.

Storyboards	provide	a	medium	to	quickly	understand	the	sequence,	content,	and	flow	of	a
piece	of	work.	As	they	can	be	easily	pinned	on	a	wall	for	easy	viewing,	they	also	work
well	in	aiding	collaborations	between	writers,	programmers,	musicians,	and	artists.	Disney
was	the	first	company	to	use	them	in	their	process	(1930s)	to	create	animated	stories.

You	need	to	go	back	and	review	Chapter	5,	Interactive	Application	Design	and	Theory,
and	follow	the	ideas	and	processes	discussed	there	to	carefully	grow	your	project	in	a	way
that	will	engage	users/players.	Remember	that	a	project	like	this	requires	you	to	expand
the	project	over	time	through	user/player	feedback.

Do	you	have	any	artistic	skill	or	know	a	friend	or	two	good	at	creating	digital	art?	Enlist
their	help	and	really	give	your	project	a	polished	and	professional	look.	Pay	attention	to	all
of	the	details	and	enhance	all	aspects	of	your	project	to	improve	the	overall	experience.
Are	you	a	musician	or	know	one?	Adding	original	musical	scores	and	sound	effects	to
your	project	can	really	elevate	its	impact.





Share	your	work
Greenfoot	provides	you	with	several	ways	in	which	you	can	share	your	work	with	others.
A	music	teacher	will	often	arrange	recitals	for	his/her	students,	giving	them	true
motivation	for	improvement.	In	the	same	way,	you	should	always	plan	to	share	your	work
with	a	wider	audience.	Knowing	that	your	work	will	be	on	display	gives	you	extra
incentive	to	be	thorough	and	detailed	in	your	work.	More	importantly,	sharing	your	work
provides	the	opportunity	to	collect	valuable	feedback	from	players,	programmers,	and
game	designers.	Feedback	from	this	audience	is	crucial	to	perfecting	your	skills.



Publishing	on	Greenfoot.org
Greenfoot	allows	you	to	easily	and	immediately	share	your	Greenfoot	scenarios	online.	In
the	upper-right	corner	of	your	scenario	window,	you	will	see	the	Share…	button.	This
button	will	allow	you	to	share	your	scenario	directly	on	Greenfoot’s	online	gallery.
Through	the	gallery,	anyone	on	the	Internet	will	be	able	to	access,	play,	download,	and
make	comments	on	your	work.	The	Greenfoot	online	community	is	large	and	very
supportive	and	can	provide	you	with	a	wealth	of	feedback	and	information.	To	share	your
work,	perform	the	following	steps:

1.	 Click	on	the	Share	button.
2.	 Click	on	the	Publish	tab.
3.	 Fill	out	the	form	shown	in	Figure	1.
4.	 Click	on	Submit.

If	everything	went	well,	your	project	will	open	up	in	your	web	browser.	Make	sure	to
check	your	comments	often	and	be	prompt	in	your	replies.



Figure	1:	This	is	Greenfoot’s	scenario-sharing	window.	Note	that	you	will	need	a
Greenfoot	account	to	share	your	work	online



Desktop	application
It	is	even	easier	to	export	your	Greenfoot	scenario	as	a	desktop	application.	To	do	this,
perform	the	following	steps:

1.	 Click	on	the	Share…	button.
2.	 Click	on	the	Application	tab.
3.	 Choose	the	location	where	you	want	your	executable	created.
4.	 Click	on	Export.

You	can	now	double-click	on	the	.jar	file	created,	and	your	scenario	will	run.	Figure	2
shows	what	your	application	will	look	like	running	in	this	environment.	Note	that	you
don’t	have	the	code-editing	features	of	Greenfoot.

Figure	2:	This	is	an	example	of	a	scenario	exported	as	an	application	in	Greenfoot



Exporting	as	a	web	page
Through	the	same	sharing	mechanism	mentioned	earlier,	you	can	export	your	scenario	as	a
web	page.	You	will	only	want	to	use	this	option	if	you	have	your	own	web	space	or
hosting	service	that	allows	you	to	upload	custom	web	pages.





Explore	other	input	devices
We	spent	quite	a	while	in	Chapter	9,	Gamepads	in	Greenfoot,	covering	Gamepads	and
how	they	can	enhance	user	experience.	There	are	other,	very	interesting	devices	you	can
connect	to	your	Greenfoot	scenarios	as	well.	For	example,	you	could	connect	a	Leap
Motion	or	Microsoft	Kinect	device	to	provide	a	very	unique	and	compelling	form	of	user
interaction.	Also,	you	can	use	Greenfoot	to	control	devices	such	as	the	Finch	robot.

This	provides	a	whole	new	avenue	for	you	to	exercise	your	creative	skills.	The	following
are	the	resources	you	can	consult	to	learn	more	about	connecting	these	devices:

For	Leap	Motion,	refer	to	https://developer.leapmotion.com/getting-started
For	Microsoft	Kinect,	refer	to	http://www.greenfoot.org/doc/kinect
For	Finch	Robot,	refer	to	http://www.greenfoot.org/doc/finch

https://developer.leapmotion.com/getting-started
http://www.greenfoot.org/doc/kinect
http://www.greenfoot.org/doc/finch




Learn	more	Java
You	have	learned	much	about	Java.	Through	the	course	of	this	book,	you	have	used
variables,	methods,	classes,	objects,	inheritance,	and	polymorphism,	but	there	are	some
key	areas	of	Java	we	did	not	cover,	including	advanced	file	I/O,	networking,	threading,
and	Swing	(a	GUI	widget	toolkit).	Java	is	an	industrial-strength	language	used	for
everything	from	programming	toasters	to	providing	large,	online	financial	systems.
Knowing	Java	will	give	you	the	ability	to	create	games,	mobile	applications,	web
applications,	and	much,	much	more.	To	continue	your	Java	education,	you	should	consider
reading	the	following	resources:

The	Java	Tutorials:	http://docs.oracle.com/javase/tutorial/
Coursera:	https://www.coursera.org
Lynda:	http://lynda.com
Packt	Publishing:	https://www.packtpub.com

http://docs.oracle.com/javase/tutorial/
https://www.coursera.org
http://lynda.com
https://www.packtpub.com




Summary
In	writing	this	book,	I	have	tried	to	imagine	your	desire	to	be	creative,	your	troubles,	and
your	successes	as	you	worked	your	way	through	this	book.	I	wanted	to	provide	you	with	a
path	that	challenged	you,	yet	did	not	overburden	you	with	facts	and	information	tangential
to	the	task	at	hand.	And	now,	I	realize	I	am	going	to	miss	having	this	discussion	with	you.
I	hope	you	have	found	some	worth	in	this	book	and	that	you	are	inspired	to	create.	This	is
the	end	of	our	discussion,	but	just	the	beginning	of	your	creative	journey	with	Greenfoot.



Index
A

A*	pathfinding
about	/	Intelligently	behaving	actors,	A*	pathfinding
overview	/	Overview
algorithm	/	Algorithm
definitions,	in	algorithm	/	Algorithm
URL	/	Algorithm
Mouse	class	/	The	Mouse	class

abstract	classes
about	/	Base	class
URL	/	Base	class

access	controls,	Java
URL	/	Stop	the	music

achievement	badges,	Avoider	Game
about	/	Achievement	badges
Magically	Delicious	/	Achievement	badges
Turkey	/	Achievement	badges
Unbreakable	/	Achievement	badges
Master	Avoider	/	Achievement	badges

actors
creating,	in	ZombieInvasionWorld	/	Dynamically	creating	actors	in
ZombieInvasionWorld

actors,	as	tiles
about	/	Actors	as	tiles
HikingWorld	class	/	The	HikingWorld	class
Hiker	class	/	The	Hiker	class
ScrollingActor	class	/	The	ScrollingActor	class

actors,	Cupcake	Counter
launching	/	Bouncing
particle	effects	/	Particle	effects
turrets	/	Bullets	and	turrets
bullets	/	Bullets	and	turrets

Artificial	Intelligence	(AI)
MazeWorld	scenario	/	The	MazeWorld	scenario
intelligently	behaving	actors	/	Intelligently	behaving	actors

AS3	Avoider	Game	Tutorial
URL	/	The	Avoider	Game	tutorial

Avatar	class
modifications	/	Changes	to	the	Avatar	class

Avoider	Game
tutorial	/	The	Avoider	Game	tutorial



revisiting	/	Revisiting	Avoider	Game
about	/	Avoider	Game,	Avoider	Game
URL,	for	downloading	version	/	Avoider	Game
recap	/	Avoider	Game	recap
high-score	list	/	High-score	list
achievement	badges	/	Achievement	badges
player	conditioning	/	Player	conditioning
storytelling	/	Storytelling
playtesting	/	Playtesting
gamepad,	adding	/	Avoider	Game	with	Gamepad

AvoiderWorld	class
modifications	/	Changes	to	the	AvoiderWorld	class



B
background	music,	game

adding	/	Adding	background	music
music	code,	writing	/	Writing	the	music	code
music	code,	analysing	/	Analyzing	the	music	code
music,	stopping	/	Stop	the	music

basic	game	elements
about	/	Basic	game	elements
scenario,	creating	/	Creating	a	scenario
game,	creating	/	Making	it	a	game
playability,	enhancing	/	Enhancing	playability

behavior	heuristics
about	/	Behavior	heuristics
Snake	class	/	The	Snake	class

blank	slate	/	A	blank	slate
border-based	collision	detection	methods

about	/	Border-based	collision	detection	methods
single-object	collisions,	detecting	at	offset	/	Detecting	single-object	collisions	at
an	offset
multiple	object	collisions,	detecting	at	offset	/	Detecting	multiple-object
collisions	at	an	offset

bounding	boxes	/	Detecting	collisions
built-in	collision	detection	methods

about	/	Built-in	collision	detection	methods
getOneIntersectingObject()	method,	used	for	detecting	collision	with	single
object	/	Detecting	a	collision	with	a	single	object
isTouching()	/	isTouching()	and	removeTouching()
removeTouching()	/	isTouching()	and	removeTouching()
getIntersectingObjects()	method,	used	for	detecting	collision	with	multiple
objects	/	Detecting	a	collision	with	multiple	objects
getObjectsInRange()	method,	used	for	detecting	multiple	objects	in	range	/
Detecting	multiple	objects	in	range



C
casting	/	Switching	scenes
cell	size	/	Built-in	collision	detection	methods
class	/	Adding	background	music
CloudsWorld	class,	side	scrolling	game

about	/	The	CloudsWorld	class
collision

detecting,	with	single	object	/	Detecting	a	collision	with	a	single	object
detecting,	with	multiple	objects	/	Detecting	a	collision	with	multiple	objects

collision	detection
about	/	Detecting	collisions

color
working	with	/	The	Star	class

Color	class
URL	/	The	Star	class

Comparable	interface	/	The	Mouse	class
constructor	functions

URL	/	Adding	background	music
constructors	/	Adding	background	music
ControllerMate,	for	Mac

URL	/	Gamepad	mapper	software
Coursera

URL	/	Learn	more	Java
Cupcake	Counter

about	/	Cupcake	Counter
playing	/	How	to	play
implementing	/	Implementing	Cupcake	Counter
URL	/	Implementing	Cupcake	Counter
CupcakeWorld	class	/	The	CupcakeWorld	class
enemies	/	Enemies
fountains	/	Fountains
turrets	/	Turrets,	Rewards,	Bullets	and	turrets
jumpers	/	Jumpers
platforms	/	Platforms
testing	/	Test	it	out
assignment	/	Your	assignment,	Your	assignment
actors,	launching	/	Launching	actors
gravity	/	Gravity	and	jumping
jumping	/	Gravity	and	jumping
bouncing	/	Bouncing
particle	effects	/	Particle	effects
bullets	/	Bullets	and	turrets
challenge	/	Challenge



D
2D	scrolling,	mapped	worlds

about	/	2D	scrolling
HikingWorld2D	class	/	The	HikingWorld2D	class
Hiker	class	/	The	Hiker	class
ScrollingActor	class	/	The	ScrollingActor	class
implementing	/	Try	it	out

D-pad
about	/	Gamepad	overview

decrement	operator,	Java	/	Hurting	the	avatar
delay	variables

about	/	Delay	variables
avatar,	hurting	/	Hurting	the	avatar

design	patterns
about	/	Achievement	badges

dynamically	generated	worlds
about	/	Dynamically	generated	worlds
creating	/	Dynamically	generated	worlds
side	scrolling	game	/	Side-scrolling



E
easing	equations

using	/	Easing
power-ups	/	Power-ups	and	power-downs
power-downs	/	Power-ups	and	power-downs
base	class,	creating	for	power	items	/	Base	class

enemies,	adding
about	/	Adding	enemies
code	/	Enemy	code
army,	creating	/	Creating	an	army

enemies,	animating
about	/	Making	enemies	less	happy
assets,	finding	/	Finding	assets

Enjoy
URL	/	Gamepad	mapper	software

explosion
creating,	for	ZombieInvasion	interactive	simulation	/	Creating	an	explosion

exponential	easing	/	Exponential	easing



F
fictional	worlds

about	/	Fictional	worlds
Finch	Robot

URL	/	Explore	other	input	devices
followMouse	function

creating	/	Creating	the	followMouse	function
functional	decomposition

about	/	Calling	setImage()	based	on	Actor	location



G
game-over	screen,	adding

about	/	Adding	a	game-over	screen
scenes,	switching	/	Switching	scenes
play	again	button,	adding	/	Adding	a	“play	again”	button

game	balance
URL,	for	wiki	/	Playtesting

game	creation
about	/	Making	it	a	game
collision	detection	/	Detecting	collisions
game-over	screen,	adding	/	Adding	a	game-over	screen
introduction	screen,	adding	/	Adding	an	introduction	screen
background	music,	adding	/	Adding	background	music

game	difficulty	settings
implementing	/	Implementing	game	difficulty	settings	and	HUD	controls

gamepad	project	template
URL	/	Greenfoot	gamepad	software

gamepads
overview	/	Gamepad	overview
Windows	setup	/	Windows	setup

games,	with	gamepads
exporting	/	Exporting	games	with	gamepads

game	scoring
about	/	Game	scoring
Counter	class,	adding	/	Adding	the	Counter	class
score,	increasing	over	time	/	Increasing	the	score	over	time

garbage	collection	/	Memory	management
Greenfoot

URL	/	The	Avoider	Game	tutorial
URL,	for	documentation	/	The	Avoider	Game	tutorial,	High-score	list
about	/	High-score	list

Greenfoot	documentation
URL	/	Creating	the	followMouse	function
URL,	for	World	class	/	Unbounding	the	world

Greenfoot	Gamepad	API
about	/	The	Greenfoot	Gamepad	API
overview	/	Overview
static	keyword	/	Overview
GamePad	class	/	The	GamePad	and	Direction	classes
Direction	class	/	The	GamePad	and	Direction	classes
URL	/	The	GamePad	and	Direction	classes

GreenfootImage	class
using	/	Using	GreenfootImage



Greenfoot	program	/	Using	the	mouse	as	a	game	controller
Greenfoot	worlds	/	Built-in	collision	detection	methods



H
heads-up	displays	(HUDs)	/	UIWorld
hidden-sprite	collision	detection	methods

about	/	Hidden-sprite	collision	detection	methods
high-score	list,	Avoider	Game	/	High-score	list
Hiker	class,	MazeWorld	scenario

about	/	The	Hiker	class
HUD	controls

implementing	/	Implementing	game	difficulty	settings	and	HUD	controls



I
image	movement

about	/	Image	swapping	and	movement
image	swapping

about	/	Image	swapping	and	movement
increment	operator,	Java	/	Hurting	the	avatar
input	devices

exploring	/	Explore	other	input	devices
instanceof	operator	/	Detecting	multiple-object	collisions	at	an	offset
intelligently	behaving	actors

about	/	Intelligently	behaving	actors
ScrollingEnemy	class	/	The	ScrollingEnemy	class
randomness	/	Randomness
spider	/	Spider
behavior	heuristics	/	Behavior	heuristics
A*	pathfinding	/	A*	pathfinding

interactive	entertainment	iterative	development	process
about	/	The	interactive	entertainment	iterative	development	process
game	pitch	/	Game	pitch	and	initial	design
initial	design	/	Game	pitch	and	initial	design
prototype	/	Prototype
playtest,	conducting	/	Playtest
evaluation	stage	/	Evaluation
refinement	/	Refinement
benefits	/	Benefits

introduction	screen,	game
about	/	Adding	an	introduction	screen
initial	screen,	setting	/	Setting	the	initial	screen
play	button,	adding	/	Adding	a	“play”	button

isTouching()	method	/	isTouching()	and	removeTouching()



J
Java

URL,	for	tutorials	/	Hurting	the	avatar
about	/	Learn	more	Java

Java	exceptions
about	/	Avoider	Game	with	Gamepad
URL	/	Avoider	Game	with	Gamepad

Java	file	I/O
URL,	for	tutorials	/	High-score	list

Java	interfaces
about	/	Detecting	a	collision	with	multiple	objects
reference	link	/	Detecting	a	collision	with	multiple	objects

Java	switch	statement
URL	/	Changes	to	the	AvoiderWorld	class

Java	Tutorials
URL	/	Learn	more	Java

Joystick	Mapper
URL	/	Gamepad	mapper	software



L
Last-in	First-out	(LIFO)	order	/	The	Mouse	class
Leap	Motion

URL	/	Explore	other	input	devices
levels,	adding	to	game

about	/	Adding	levels
spawn	rates,	increasing	/	Increasing	spawn	rates	and	enemy	speed
enemy	speed,	increasing	/	Increasing	spawn	rates	and	enemy	speed
difficulty,	increasing	based	on	score	/	Increasing	difficulty	based	on	the	score
enemy	speed	increases,	implementing	/	Implementing	enemy	speed	increases

linear	easing	/	Linear	easing
List	interface,	Java

about	/	Detecting	a	collision	with	multiple	objects
Lynda

URL	/	Learn	more	Java



M
Magically	Delicious	badge	/	Achievement	badges
main	actor	framework

creating,	for	ZombieInvasion	interactive	simulation	/	Creating	our	main	actor
framework

mapped	worlds
about	/	Mapped	worlds
side-scrolling	/	Side-scrolling
2D	scrolling	/	2D	scrolling

Master	Avoider	badge	/	Achievement	badges
MazeWorld	class

about	/	The	MazeWorld	class
MazeWorld	scenario

about	/	The	MazeWorld	scenario
MazeWorld	class	/	The	MazeWorld	class
Hiker	class	/	The	Hiker	class
ScrollingActor	class	/	Scrolling	actor
ScrollingObstacle	class	/	The	ScrollingObstacle	class
UI,	adding	/	Adding	a	UI	to	MazeWorld
menus,	adding	/	Adding	menus	and	buttons
buttons,	adding	/	Adding	menus	and	buttons
HUD,	adding	/	Adding	a	HUD
game	difficulty	settings,	implementing	/	Implementing	game	difficulty	settings
and	HUD	controls
HUD	controls,	implementing	/	Implementing	game	difficulty	settings	and	HUD
controls

meaningful	play
about	/	Meaningful	play
scenarios	/	Meaningful	play
complexity	/	Complexity
goals	/	Goals

Menu	class
about	/	The	Menu	class

Microsoft	Kinect
URL	/	Explore	other	input	devices

mouse,	as	game	controller
about	/	Using	the	mouse	as	a	game	controller
followMouse	function,	creating	/	Creating	the	followMouse	function
code,	breaking	down	/	Breaking	down	the	code

multiple	object	collisions
detecting,	at	offset	/	Detecting	multiple-object	collisions	at	an	offset

multiple	objects
collision,	detecting	with	/	Detecting	a	collision	with	multiple	objects



detecting,	in	range	/	Detecting	multiple	objects	in	range



N
narrative	descriptors	/	Narrative	descriptors



O
object-oriented	programming	concepts

URL	/	What	have	we	just	done?
obstacles

creating,	for	zombie	horde	/	Creating	obstacles
OS	X	setup

gamepads,	using	/	OS	X	setup/workarounds
gamepad	mapper	software	/	Gamepad	mapper	software



P
Packt	Publishing

URL	/	Learn	more	Java
parallax

using	/	Using	parallax
playability,	enhancing	of	game

about	/	Enhancing	playability
game	scoring	/	Game	scoring
levels,	adding	/	Adding	levels

player	conditioning,	Avoider	Game
about	/	Player	conditioning

playtest,	Avoider	Game
conducting	/	Playtesting

power-downs
about	/	Power-ups	and	power-downs

power-ups
about	/	Power-ups	and	power-downs

power	items
linear	easing	/	Linear	easing
exponential	easing	/	Exponential	easing
sinusoidal	easing	/	Sinusoidal	easing

Press	Space	To	Win	(PSTW)	/	Complexity
project

brainstorming	/	Build	something	larger



R
random	actions

about	/	Random	actions
blinking	/	Blinking

removeTouching()	method	/	isTouching()	and	removeTouching()
RGBA	color	model

URL	/	The	Star	class
Rocket	class,	side	scrolling	game

about	/	The	Rocket	class



S
scenario	creation

about	/	Creating	a	scenario
world,	creating	for	game	/	Creating	our	world
character,	creating	/	Creating	our	hero,	What	have	we	just	done?
character,	adding	/	Adding	our	hero
mouse,	using	as	game	controller	/	Using	the	mouse	as	a	game	controller
enemies,	adding	/	Adding	enemies
world,	unbounding	/	Unbounding	the	world
memory	management	/	Memory	management

ScrollingActor	class,	actors	as	tiles
tiles	/	Tiles
Lake	class	/	The	Lake	class

ScrollingActor	class,	MazeWorld	scenario
about	/	Scrolling	actor

ScrollingEnemy	class
about	/	The	ScrollingEnemy	class

ScrollingObstacle	class,	MazeWorld	scenario
about	/	The	ScrollingObstacle	class

setImage()
using	/	Using	setImage()
used,	for	animating	enemies	/	Making	enemies	less	happy
calling,	based	on	Actor	location	/	Calling	setImage()	based	on	Actor	location

setLocation()
using	/	Using	setLocation()
star	field,	creating	/	Creating	a	star	field

side-scrolling,	mapped	worlds
about	/	Side-scrolling
creating	/	Side-scrolling
HikingWorld	class	/	The	HikingWorld	class
Hiker	class	/	The	Hiker	class
ScrollingActor	class	/	The	ScrollingActor	class
implementing	/	Try	it	out

SideScrollingActor	class,	side	scrolling	game
about	/	Side-scrolling	actors
clouds	/	Clouds
walls	/	Walls

side	scrolling	game
creating	/	Side-scrolling
Rocket	class,	creating	/	The	Rocket	class
CloudsWorld	class,	creating	/	The	CloudsWorld	class
SideScrollingActor	class,	creating	/	Side-scrolling	actors
implementing	/	Try	it	out



single-object	collisions
detecting,	at	offset	/	Detecting	single-object	collisions	at	an	offset

single	object
collision,	detecting	with	/	Detecting	a	collision	with	a	single	object

Singleton	design	pattern	/	Achievement	badges
sinusoidal	easing	/	Sinusoidal	easing
Star	class	/	The	Star	class
star	field

creating	/	Creating	a	star	field
blank	slate	/	A	blank	slate
Star	class	/	The	Star	class
moving	field,	creating	/	Creating	a	moving	field
parallax,	using	/	Using	parallax
GreenfootImage	class,	using	/	Using	GreenfootImage

storyboards
about	/	Build	something	larger

storytelling
about	/	Storytelling
fictional	worlds	/	Fictional	worlds
narrative	descriptors	/	Narrative	descriptors

storytelling,	Avoider	Game
about	/	Storytelling
story	screen,	adding	/	Adding	a	story	screen
score,	modifying	/	Changing	the	score
sound	effects,	adding	/	Adding	sound	effects

synchronization
about	/	Timing	and	synchronization



T
tile-based	worlds

about	/	Tile-based	worlds
actors,	as	tiles	/	Actors	as	tiles
game	sprites	/	Other	game	sprites

timing
about	/	Timing	and	synchronization

top-down	design	/	Switching	scenes
triggered	events

about	/	Triggered	events
eyes,	adding	/	Adding	eyes
hero	sight,	giving	/	Giving	our	hero	sight

Turkey	badge	/	Achievement	badges



U
UI

adding,	to	MazeWorld	/	Adding	a	UI	to	MazeWorld
UIWorld

about	/	UIWorld
Button	class	/	The	Button	class
TextBox	class	/	The	TextBox	class
Menu	class	/	The	Menu	class
heads-up	display	(HUD)	/	Heads-up	display

Unbreakable	badge	/	Achievement	badges
user	conditioning

about	/	User	conditioning
positive	reinforcement	method	/	User	conditioning
negative	reinforcement	method	/	User	conditioning
punishment	method	/	User	conditioning

user	interfaces	(UIs)
UIWorld	/	UIWorld



W
War	card	game

URL,	for	wiki	/	Complexity
work,	sharing

about	/	Share	your	work
Greenfoot.org,	publishing	on	/	Publishing	on	Greenfoot.org
desktop	application	/	Desktop	application
web	page,.	exporting	/	Exporting	as	a	web	page



X
Xbox	360	controller,	for	Windows

setting	up	/	Windows	setup
connecting	/	Connecting	your	controller
reference	/	Connecting	your	controller
Greenfoot	gamepad	software	/	Greenfoot	gamepad	software



Z
zombie	horde

obstacles,	creating	for	/	Creating	obstacles
ZombieInvasion	interactive	simulation

about	/	ZombieInvasion	interactive	simulation
URL,	for	initial	version	/	ZombieInvasion	interactive	simulation
actors,	creating	/	Dynamically	creating	actors	in	ZombieInvasionWorld
obstacles,	creating	for	zombie	horde	/	Creating	obstacles
main	actor	framework,	creating	/	Creating	our	main	actor	framework
explosion,	creating	/	Creating	an	explosion
testing	/	Test	it	out,	Time	to	test	it	out


	Creative Greenfoot
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Let's Dive Right in…
	The Avoider Game tutorial
	Basic game elements
	Creating a scenario
	Creating our world
	Creating our hero
	What have we just done?
	Adding our hero
	Using the mouse as a game controller
	Creating the followMouse function
	Breaking down the code
	Adding enemies
	Enemy code
	Creating an army
	Unbounding the world
	Memory management
	Your assignment
	Next…
	Making it a game
	Detecting collisions
	Adding a game-over screen
	Switching scenes
	Adding a "play again" button
	Adding an introduction screen
	Setting the initial screen
	Adding a "play" button
	Adding background music
	Writing the music code
	Analyzing the music code
	Stop the music
	Your assignment
	Next…
	Enhancing playability
	Game scoring
	Adding the Counter class
	Increasing the score over time
	Adding levels
	Increasing spawn rates and enemy speed
	Increasing difficulty based on the score
	Implementing enemy speed increases
	Your assignment
	Next…
	Summary
	2. Animation
	Revisiting Avoider Game
	Image swapping and movement
	Using setImage()
	Making enemies less happy
	Finding assets
	Calling setImage() based on Actor location
	Using setLocation()
	Creating a star field
	A blank slate
	The Star class
	Creating a moving field
	Using parallax
	Using GreenfootImage
	Timing and synchronization
	Delay variables
	Hurting the avatar
	Random actions
	Blinking
	Triggered events
	Adding eyes
	Giving our hero sight
	Easing
	Power-ups and power-downs
	Base class
	Linear easing
	Exponential easing
	Sinusoidal easing
	Changes to the Avatar class
	Changes to the AvoiderWorld class
	Avoider Game
	Your assignment
	Summary
	3. Collision Detection
	ZombieInvasion interactive simulation
	Dynamically creating actors in ZombieInvasionWorld
	Creating obstacles
	Creating our main actor framework
	Creating an explosion
	Test it out
	Built-in collision detection methods
	Detecting a collision with a single object
	isTouching() and removeTouching()
	Detecting a collision with multiple objects
	Detecting multiple objects in range
	Time to test it out
	Border-based collision detection methods
	Detecting single-object collisions at an offset
	Detecting multiple-object collisions at an offset
	Hidden-sprite collision detection methods
	Challenge
	Summary
	4. Projectiles
	Cupcake Counter
	How to play
	Implementing Cupcake Counter
	The CupcakeWorld class
	Enemies
	Fountains
	Turrets
	Rewards
	Jumpers
	Platforms
	Test it out
	Your assignment
	Launching actors
	Gravity and jumping
	Bouncing
	Particle effects
	Bullets and turrets
	Your assignment
	Challenge
	Summary
	5. Interactive Application Design and Theory
	Meaningful play
	Complexity
	Goals
	User conditioning
	Storytelling
	Fictional worlds
	Narrative descriptors
	The interactive entertainment iterative development process
	Game pitch and initial design
	Prototype
	Playtest
	Evaluation
	Refinement
	Benefits
	Avoider Game
	Avoider Game recap
	High-score list
	Achievement badges
	Player conditioning
	Storytelling
	Adding a story screen
	Changing the score
	Adding sound effects
	Playtesting
	Challenge
	Additional readings
	Summary
	6. Scrolling and Mapped Worlds
	Chapter scenario examples
	Dynamically generated worlds
	Side-scrolling
	The Rocket class
	The CloudsWorld class
	Side-scrolling actors
	Clouds
	Walls
	Try it out
	Mapped worlds
	Side-scrolling
	The HikingWorld class
	The Hiker class
	The ScrollingActor class
	Try it out
	2D scrolling
	The HikingWorld2D class
	The Hiker class
	The ScrollingActor class
	Try it out
	Tile-based worlds
	Actors as tiles
	The HikingWorld class
	The Hiker class
	The ScrollingActor class
	Tiles
	The Lake class
	Try it out
	Other game sprites
	Summary
	7. Artificial Intelligence
	The MazeWorld scenario
	The MazeWorld class
	The Hiker class
	Scrolling actor
	The ScrollingObstacle class
	Intelligently behaving actors
	The ScrollingEnemy class
	Randomness
	Spider
	Behavior heuristics
	The Snake class
	A* pathfinding
	Overview
	Algorithm
	The Mouse class
	Play test
	Summary
	8. User Interfaces
	UIWorld
	The Button class
	The TextBox class
	The Menu class
	Heads-up display
	Adding a UI to MazeWorld
	Adding menus and buttons
	Adding a HUD
	Implementing game difficulty settings and HUD controls
	Summary
	9. Gamepads in Greenfoot
	Gamepad overview
	Windows setup
	Connecting your controller
	Greenfoot gamepad software
	The Greenfoot Gamepad API
	Overview
	The GamePad and Direction classes
	Avoider Game with Gamepad
	Try it out
	OS X setup/workarounds
	Gamepad mapper software
	Exporting games with gamepads
	Summary
	10. What to Dive into Next…
	Build something larger
	Share your work
	Publishing on Greenfoot.org
	Desktop application
	Exporting as a web page
	Explore other input devices
	Learn more Java
	Summary
	Index

