JAVA

PROGRAMMING
FOR

KT DS

AGES 12 - 18

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
GGGGGGGGGGGGGGGGGGG

JAVA

PROGRAMMING
FOR

KIDS

AGES 12 - 18

EEEEEEEEEEEEEEEEEEEEEEEEEEEEE
PROGRAMMING LANGUAGE

JAVA

PROGRAMMING
FOR
KIDS
AGES 12 - 18

Copyright © 2021 S Basu
All rights reserved.

Disclaimer :

The information and materials presented here are for educational
purposes only. Every effort has been made to make this book as
complete and as accurate as possible but no warranty or fitness is
implied. The information provided is on an "as is" basis. The ideas
and opinions expressed are of the author's own imagination and the
author is not affiliated to any organization, school or educational
discipline and will not be held accountable or liable for any
inadvertent misrepresentation.

Contents

Chapter 1 : Introduction
What is Java?
What is object oriented programming_or OOP?
What is JDK?
What is JRE?
What is JVM?
JVM Architecture
Chapter 2 : Java JDK and Eclipse IDE Installation
2.1: JDK download
2.2: Download and install Eclipse IDE
Chapter 3 : Class, Object, Variables and Data types
3.1: What is a Java Class & Object?
3.2: What is Java Variable?
3.3: Java Data Types
3.4: What are access modifiers?
3.5: What is Java package?
3.6: Examples
Example 1
Example 2
Chapter 4: Constructors & Methods
4.1: Constructor
Example
4.2: Method
Example
4.3: What is public static void main (String[].args)?
4.4: Mathematical Operators in Java
Chapter 5: Conditional Statements & Loops
5.1: Conditional Statements
Example
5.2: Loops
5.2.1: for loop
Example

5.2.2: while loop
Example
5.3: Break statement
Example
Chapter 6: Array.
Example 1
Example 2
Chapter 7: Object Oriented Programming_Concepts
7.1: Encapsulation
Example
7.2: Inheritance

Example

7.3: Polymorphism
7.3.1: Dynamic Polymorphism
Example
7.3.2: Static Polymorphism
Example

TEST
Answers

Chapter 1 : Introduction

Java is the most important programming language. If you have the
full grasp of Java basics, then you can easily learn any object
oriented programming language in this world.

What is Java?

Important points to note are:

e Java is an object oriented programming (OOP)
language .

e Java is platform independent meaning that it can run on
any machine containing JVM .

e |n order to code and execute a Java code, JDK is needed.

What is object oriented programming or OOP?

e Object oriented programming or OOP is all about working
with classes , objects , methods and variables
(explained in Chapter 3).

e The most important concepts of OOP are: Encapsulation ,
Inheritance and Polymorphism (explained in Chapter 7

)-
What is JDK?

» JDK stands for Java Development Kit which is needed to
code and execute Java .

e JDK includes both JVM and JRE.

What is JRE?

e JRE stands for Java Runtime Environment .

e JRE contains classes , libraries and software that a Java
program needs in order to run successfully.

e JRE also contains JVM .

What is JVM?

e JVM stands for Java virtual machine .

 JVM is responsible for converting the byte code present in
.class file into machine depended code which is
understood by that specific processor or operating system
or machine.

JVM Architecture

Java files are saved with a .java extension. When we compile the
Java file, .class file is generated and this .class file contains byte

code. JVM handles the .class file and generates the desired output
of the Java program.

hello_world.java | welie Jicllo world.class
compile

JVM

output

What does compilation mean in Java?

Java compilation is the process of converting a .java file (which
contains readable text Java code) into a .class file (which contains
byte code).

What is byte code?

Byte codes are sequence of Os and 1s.

00001100
1000011
110100

Let’s look into JVM Architecture .
JVM architecture is divided into three main sections:
1. Class Loader

2. JVM Memory
3. Execution Engine

CLASS
LOADER

JVM MEMORY

Method Heap Stack Native Method

Area

i i o PC Register | g1

EXECUTION ENGINE

JIT Compiler

Class Loader

It is responsible for loading the .class file to the JVM memory .

JVM Memory
It is further divided into:

Method area — It stores all the methods information.
(methods explained in chapter 4).

Heap area - It stores all the objects and its corresponding
instance variables (objects and variables explained in
chapter 3).

Stack Area - It stores all the local variables and the
results of the methods (local variables explained in
chapter 3).

e PC Register — PC register store the address of the
currently executing Java virtual machine instruction.

 Native Method Stacks - Native method stacks contains
native codes which are written in another language instead
of Java .

Execution Engine
It is further divided into:
e Interpreter — It converts the byte code to machine

dependent code which is understood by the machine and
desired output is generated.

o JIT Compiler — JIT stands for Just in Time compiler and
its main task is to increases the performance and efficiency
of Interpreter .

Now let’s summarize the Java program execution process

Java File { where Java code is written }

‘ compile

Class File { it contains byte code }

VM '

Class Loader

'

JVM Memory

l

Execution
Engine

!

Output { resuit of the Java program }

Before we start coding, we need to download and install JDK and an
IDE .

What is Java IDE?

IDE stands for Integrated Development Environment . It is a
software application needed to write programs in Java.

There are multiple IDE present but we will be using Eclipse IDE to
write our Java code.

Chapter 2 : Java JDK and
Eclipse IDE Installation

2.1: JDK download

jle

Open Google chrome browser (or any browser you like) and
search for java jdk download and select the oracle website
highlighted in the screen shot below.

java jdk download

Q Al [Books [JVideos [News ¢ Shopping i More

About 15,500,000 results (0.55 seconds)

www.oracle.com » java » technologies » javase-downlo. .

Java SE - Downloads | Oracle Technology Network | Oracle
Oracle JDK - Oracle Customers and 1SVs targeting Oracle LTS releases: Oracle JDK is
supported Java SE version for customers and for developing, ...

You've visited this page 3 times. Last visit: 2/3/21

Java SE Development Kit 8 Oracle JDK
Java SE Development Kit & - JDK Java SE Development Kit 11
8 - Checksum - Events - ... Downloads - Important Oracle ..

Java SE Development Kit 15 Java SE Runtime Envir

Download the latest JDK version.

Java SE 15

Java SE 15.0.2 is the latest release for the Java SE Platform

* Documentation Oracle JDK
* Installation Instructions \I,I JDK Download I
Release Notes

Oracle License
* Binary License

* Documentation License

Java SE Licensing Information User Manual

* |ncludes Third Party Licenses

o Martifiad Quctam Canficiiratinne

J, Documentation Download
| -

o Select your operating system. (since | am using windows, so
downloading windows-x64 installer highlighted in the screen

shot below)

e g £ e e v ot
Windows x64 Installer 159.71 MB) jdk-15.0.2_windows-x64_bin.exe
Windows x64 Compressed Archive 179.28 MB W, jdk-15.0.2_windows-x64_bin.zip

e Check on review box, click download and install.

X

You must accept the Oracle Technology Network License Agreement for Oracle Java SE to download this software.

E | reviewed and accept the Oracle Technology Network License Agreement for Oracle Java SE

Download jdk-15.0.2_windows-x64_bin.exe ¥

34

¥4

B

|

1AE071 MAD Jr AL 1R N2 wiimdAuie

ﬂ Java(TM) 5E Development Kit 15.0.2 (64-bit) - Setup oo

Welcome to the Installation Wizard for Java SE Development Kit 15.0.2

This wizard will guide you through the installation process for the Java SE Development
Kit 15.0.2.

[Next> || Cancel |

ﬂ Java(TM) 5E Development Kit 15.0.2 (B4-bit) - Destination Folder b4

Java(TM) SE Development Kit 15.0.2 (64-bit), induding a private JRE and src.zip.
This will require 420MB on your hard drive. Click the "Change” button to change
the installation folder,

Install Java(TM) SE Development Kit 15.0.2 (64-hit) to:

C:Program Files\Javaljdk-15.0.24 | Change...

Back || Mext I | Cancel

L d

ﬁ Java(TM] 5E Development Kit 15.0.2 (84-bit) - Complete *

Java(TM) SE Development Kit 15,0, 2 (64-bit) Successfully Installed

Click Mext Steps to access tutorials, API documentation, developer guides, release notes
and mare to help you get started with the JDK.

Mext Steps

Close

e Click close.

 Now check whether the Java PATH is automatically added to
your Environment Variables or not.

What is Java PATH?

Java PATH is an environment variable which helps us to locate the
JDK bin directory or folder which contains all the important files
needed to execute a Java program.

Let's access the Environment Variables.

> Open control panel -> click on System and Security .

» Control Panel »

Adjust your computer's settings

System and Security
I = - orus

£

Save backup copies ¢ System and Security
Backup and Restore

Network and Int system settings, update your

View and change system and securit
status, back up and restore file and

% View network status { speed, check firewall, and more.

computer, view RAM and processor

Hardware and Sound

Wimas dlmssimme . A i

Click on System

b » Control Panel * Systern and Security »

ome

urity
ernet

cund

Security and Maintenance
Review your computer's status and reschve issues
Troubleshoot commen computer problems

Windows Defender Firewall
Check firewall status | Allow an app through W

— of RAM and processor speed G
See the n System
Wiew information about your

POWET | computer, and change settings for

Change | hardware, performance, and remote
connections,

File History

Save backup copies of your files with File History

Click on Advanced system settings.

[

e

«— v 4 B3 Control Panel » System and Security » System

Control Panel Home : s 5
View basic information about

& Device Manager Windows edition

G Remote seftings Windows 10 Home Single Languat

& System protection £ 2020 Microsoft Corporation, All

Bl Sdvanced system settings

System
Processorn Intel(f
Installed memory (RAM): 400 ¢
System type: B4-bit
Pen and Touch: Mo Pe

> Click on Environment Variables.

Systemn Properties X

Computer Name Hardware Advanced System Protection Femote

fou must be logged on as an Administrator to make most of these changes.

] Performance

Visual effects, processor scheduling, memary usage, and virtual memary

Izer Profiles
3 Desktop settings related to your sign-n
A
Settings...
¥
n
y Startup and Recaoveny
System startup, system failure, and debugging information
n
Settings...

Environment Variables...

QK Cancel Apphy

> Under System variables , select Path -> click Edit

Mew... Edit... Delete
System variables
Variable Value o
Comb5pec CAWINDOWS\system32hemd.exe
DriverData CAWindows\Systemn32\Drivers\ DriverData
MUMBER_OF_PROCESSORS 4
OnlineServices Online Services
05 Windows_NT
C:\Program Files\C
W

Mew... Edit... Delete

> Javapath shows highlighted in the screen shot below.

¢ Edit environment variable

C\Program Files\Common Files\OracletJava\javapath

oy SEMROOT o\ Sy SEMm 32

eSystemRoot%

eSysternRoot 26 System 32 Whem

2eSYSTEMROOT %\ Systern 32\ Wind owsPowerShellw1.0h
chProgram Files (x86)%ATl Technologies ATLACE Core-Static
FSYSTEMROOTI Systerm 324 Open55HY

> Click ok and exit.

We have successfully installed JDK in our machine. Now let’s
download and install Eclipse IDE.

2.2: Download and install Eclipse IDE

e Go to website hitps://www.eclipse.org/downloads/packages/
and download the latest version of Eclipse IDE .

(since | am using windows operating system, so downloaded
Eclipse IDE for Windows)

Eclipse IDE 2020-12 R Packages

Eclipse IDE for Java Developers
Windows x86_64

Ve v |)
l*% 321MB 776,300 DOWNLOADS " Macos x86_64
\ y L B = .
- The essential tools for any Java developer, including a Java IDE, a Git client, XML Linux x86_64 | AArch64

Editor, Maven and Gradle integration

Eclipse IDE for Enterprise Java Developers

/ Downloads / Eclipse downloads - Select a mirror

downloads are provided under the terms and conditions of the Eclipse Foundation Software User Agreement unless ot!
zcified.

Download from: Canada - Rafal Rzeczkowski (htips)

File: >j8 ' SHA-512

>> Select Another Mirror

OR Get It Faster from our Members

e After finish downloading, open the download folder in your
machine.

https://www.eclipse.org/downloads/packages/

l’ » This PC » Downloads »

A Mame

55

~ Today (3)
eclipse-java-2020-12-R-win32-x 86 &4

The downloaded folder is a ZIP folder and we need to extract it in

order to access Eclipse application.
So right click on ZIP folder and click extract all.

» ThisPC » Downloads

Cal Marme

~ Today (3)
: eclipse-java-2020-12-R-win32-x86_64
Open
(S5 jdk-15.0.2_windows-x64_bin Open in new window

v Last week (6) B Share with Skype o

Extract All...
Pin to Start
1 [&f Edit with Notepad-++

™ - o w

Browse for your extract location and click on Extract .

: Extract Compressed (Zipped) Folders

Select a Destination and Extract Files

Files will be extracted to this folder:
| I::"Itecnps.d |

Show extracted files when complete

Il Extract |I Cancel

Now open the eclipse folder and look for the eclipse application
highlighted in the screen shot below.

s ThisPC » Windows (C:) » eclipse » eclipse »

)

Gl Mame

cenfiguration
dropins
features
o pl
o plugins
readme
|j eclipseproduct

|j artifacts
% eclipse
i eclipse
“iles eclipsec

Click and open the eclipse application.

& eclipse IDE

2020-12

Select a workspace and click on launch

% Eclipse IDE Launcher

Select a directory as workspace

Eclipse |DE uses the workspace directory to store its preferences and development artifacts.

Workspace: II}| ChUsersy, " ‘Aeclipse-workspace e Browse...

[] Use this as the default and do not ask again

¢ Recent Workspaces

We have now successfully installed Eclipse IDE .

Let’s begin coding..

Chapter 3 : Class, Object,
Variables and Data types

3.1: What is a Java Class & Object?

Class

Important points to note are:
o Java class is a blueprint for creating an object .
e Java class contains methods and variables .
» The syntax for creating a Java class is:

access_modifier class class_name {

» An object instance of a class .

* An object contains the copy of methods and variables present
inside its class .

» The syntax for creating a Java object is:

type object name = new class_name ()

The type denotes the type of object declared.

The new keyword is used to create an object .

The new keyword is followed by call to a constructor (constructor
explained in chapter 4).

For example: Animal a = new Animal() , here a is an object of type
Animal (Class name) and the new keyword is followed by call to
Animal default constructor .

| know it all sounds extremely complicated, let’s try to simplify a little bit
below.

Let us consider a class room containing three students, John , Ram
and Katy . These three students have few things in common and they
are as follows:

All three are students of a class room.
They each have a name.

They each have a student_|ID.

They each have an age.

They each have a gender.

They each have their home address.

SR LN -~

These six things listed above are called attributes of a student. In Java
world, we can depict these attributes in the form of a variable .

A student performs multiple functions like studying, eating, playing etc.
In Java world, these functions can be depicted by methods .

We have successfully stated the attributes and functions of a
Student. Now the big question is where we can store these
information?. Well we can store this information in a class .

The students John , Ram and Katy have their own individual
characteristics and they all fall under the student category. In Java
world, these three students are referred as objects of class student
and the objects will contain a copy of all variables and methods
declared within its class .

CLASS Attributes:

Name
Sf'I‘U DENT Gender
Age
Student 1D
‘ Address

OBJECT

Let's summarize the concept:

e Studentis aclass .

e John, Ram and Katy are objects which belong to class
Student .

 Name, Gender, Age, Student_ID, Address are variables of
class Student .

We will look into another example of Java class and object .

There are multiple animals which belong to the animal kingdom. There
are dogs , tigers , monkeys , lion etc. All animals have few things in
common like they all fall under the animal category, they all have a
name, weight, age and they also perform some common functions like
eating, playing and many more.

In Java world, we can write all the above information in a class Animal
and the objects of class Animal will be dog , tiger , monkey .

In other words we can say an object is a small miniscule entity of the
vast class which has its own properties and characteristic.

3.2: What is Java Variable?

Important points to note are:
e Java variables act as a container to hold data.

e The variables are declared with a Data type .
Example: int age

Here age is a variable name whose data type is int or integer
meaning that the variable age can hold only numeric whole numbers.

Java variables are of three types:

1. Local variable — These variables are declared within
methods (methods discussed in chapter 4) and the
variables get destroyed soon after exiting the method .

2. Instance variable — These variables are declared within the
class .

3. Static variables — The values of these variables remains

constant or static and it also does not require any object to
access it.

3.3: Java Data Types

Java data types are divided into two categories:

1. Primitive Data Type — It contains such as boolean, char, int,
short, byte, long, float, and double.

2. Non-Primitive Data Type : It contains String, Array, etc.

Data type Description

int This data type stores integer
values like 1,2,3,450..80

float This data type stores fractional

numbers like 123.50

This data type stores a single

char character value like ‘A’ or ‘B’ or

‘c’
This data type returns TRUE or
boolean FALSE of any given expression or
condition.

String String is a Java class which is
used to stores group of
characters. Example: “John ” or
“Hello students ” etc

In the above Student class example of section 3.1:
o Variable Name will be of data types String.

o Variable Gender is usually denoted by a single character M
(for male) or F (for female) so its data types will be char.

o Variable Age will be of data type int.

o Variable Student_ID may contain numbers and character
values together, so let’s assign a data type of String to it.

o Variable Address will be of data types String.

3.4: What are access modifiers?

Access modifiers denote the accessibility of a class or a method . It is
broadly divided into 4 types:

1: Public access modifiers — This means that the class or method is
accessible from everywhere.

2: Private access modifiers — This means that the class or method is
accessible only from within.

3: Default access modifiers — This means that the class or method is
accessible only from within its package .

4: Protected access modifiers — This means that the class or
method is accessible from within its package or any package other
than its own package through inheritance only (inheritance discussed
in chapter 7).

3.5: What is Java package?

» A Java package contain group of Java classes .
e Java packages are mainly done to avoid name conflicts.

If a package contains two Java class files of the same name, it will
lead to name conflict and error in the Java project may occur in
future. In order to prevent that from happening, separate packages
should be created for storing the class file which has the same
name.

Package
Hello java X
Name conflict
Hello.java
Packagel Package 2

Hello.java
Hello.java

Now let’s code..

3.6: Examples

Example 1
Launch Eclipse IDE and create a new Java project .

e Click onFile -> New -> Java Project .

= cclipse-workspace - hello/src/hellol/Hello_world.java - Eclipse IDE

File IEdit Source Refactor Mavigate Search Project Run Window Help
New Alt+Shift+N > ,E Java Project

Open File... [Project.. Create a Java |

[} Open Projects from File System... B Package
Recent Files @ Class

o

» Give the Project name (/ named hello_world) and click on
Finish .

= Mew Java Project O *

Create a Java Project S I

Create a Java project in the workspace or in an external location. J,f-"'

Project name: | hello_world |

[+] Use default location

Ch\Users\Potlu'\eclipse-workspaceihello_world Browse...
IRE
(®) Use an execution environment JRE: JavaSE-15 ~
() Use a project specific JRE: jre
() Use default JRE 'jre' and workspace compiler preferences Configure JREs...

Project layout

() Use project folder as root for sources and class files

(®) Create separate folders for sources and class files Configure default...

Working sets

(] Add project to working sets MNew...
Select...

@ < Back Mext » Cancel

 On Create module-info.java window, for now | will be clicking
on Don’t Create .

{ = New module-info.java O X
Create module-info.java n

i
Create a new module-info.java file. .

Module name: |m |

] Generate comments (configure templates and default value here

Our hello_world Java project is created.

= eclipse-workspace - Eclipse IDE
File Edit Source Refactor Mavigate Search Project
= H-0-Q-Q-WES
[# Package Explorer &3 B 2 =2 O
& helio worid: |

B\ JRE Systern Library [JavaSE-15]

22 src

» Right click on the src folder -> Click New -> Package (we are
creating a new package) .

What is the default src folder of Eclipse IDE?

Default src folder is the source folder which contains the source code
or the main code of our project.

= ceclipse-workspace - Eclipse IDE

File Edit Source Refactor Mavigate Search Project Run Window Help

ﬁv = = ﬁvﬂv&v%v:%@vgq{v E\Q' X - -
f Package Explorer &3 =0 = 0

v'[;_'—‘,,"- hello_world

» Bl JRE System Library [JavaSE-15]

MNew H ﬁ lava Project
Open in Mew Window] Project..
Open Type Hierarchy F4 |5 Package
Show In Alt+Shift+W > (& Class
B Copy e € Interface
it s ot i Fnum
s MNew Java Package O

Java Package r
Create a new Java package.

Creates folders corresponding to packages.

Source folder: | helle_world/src | Browse...

Mame: | hello_world| |

[] Create package-info.java

Generate comments (configure termnplates and default value here)

@ o
Click Finish

* Right click on the hello_world package -> click New -> Click
Class (we are creating a new Java class)

= eclipse-workspace - hello_world/src/hello_world/Hello java - Eclipse IDE

File Edit Source Refactor Mavigate Search Project Run Window Help
L= Binitt~0-"Q-Q-H G- B V~F
{2 Package Explorer 331 %S § = 8 [mod

v 22 helle_world pa
B\ JRE System Library [JavaSE-15]

w (B sre i
[J] medule Mew » 22 JavaProject
Go Into ™ Project..
Open in New Window B Package
COpen Type Hierarchy F4 | Class
Show In Alt+Shift+W » {F Interface
Show in Lecal Terminal > | & Enum E
(=] Copy Ctrl+C @ Record
E= Copy Qualified Name @ Annotation

Give the Class name (/ gave Hello) starting with a capital letter ->
check on public static void main(String[] args) box -> click Finish .

& MNew Java Class O >

Java Class
Create a new lava class, L

Source folder | hello_world/src | Browse...

Package: | hello_world | Browse...

[Enclosing type: Browse...

Mame: | Hello |

Modifiers: (®) public () package private protected

[]abstract []final ctatic

Superclass: |java.|ang.0bject | Browse...

Interfaces: W
Remove

Which method stubs would you like to create?
public static void main(5tring[] args) I
| Constructors from superclass
[Inherited abstract methods

Do you want to add comments? (Configure templates and default value here

|:| Generate comments

@

e In Hello.java , write one line of code highlighted in the screen
shot below and execute the program by clicking on the run
button.

detactor Mawvigate bSearch FProject Hun Window Help

0 Qv‘%vﬂ':lv\@';aaa"ﬁ?ﬂéﬂEL“%"ﬁ'*\bC.r}CﬂY - | =

(i

b E S § = 8 [Hellojava 52

1 package hello_world;

ib [JavasM43]
e un button

Id
ava

public class Hello {

public static void main(String[] args)*{
System.out.print("hello kids"));

|"_ Problems @ Javadoc |_(,=.111 Declaration EConsole o

i lication] Checlipseheclipseplugins\org.eclipse,justj.openjdi.hotspot,jrefull.win32 x 36_64
hello kids

Code explanation:

o System.out.print is used to display or print output.

System.put.println is same as System.out.print but the printin
displays output in separate lines.

e At line 5, you will notice a very important line of code that is
public static void main(String[] args). It is the Java main
method and it acts as an entry point to our Java Program. Any
Java program will only start execution process after it
encounters this very important line of code. (We will discuss
more about this line of code in Chapter 4).

Example 2

Let’s create another Java class .

* Right click on hello_world package -> New -> Class (/ named
my class file students)

= Mew Java Class O 4
Java Class
Create a new Java class.
Source folder | hello_waorld/src | Browse...
Package: | hello_world | Browse...
[Enclosing type: Browse...
Marme: Students |
Madifiers: (®) public () package private protected
[]abstract []final static
Superclass: |java.|ang.0hject | Browse..,
Interfaces: Add..
Remowve

Which method stubs would you like to create?
public static void main(String[] args)
[] Constructors from superclass
[Inherited abstract methods

Do you want to add comments? (Configure termplates and default value here

[] Generate cormments

? T

» In students.java , write the following lines of code.

1 package hello_world,;

2

3 public class Students {

4
5
e
7
8_
S

10

e |

12

13

14

15

16

17

18

195

20
23

String name;

public static void main(String[] args) {

}
}

Students studentl = new Students();
Students student2 = new Students();
Students student3 new Students();

studentl.name = "John";
student2.name = "Ram";
student3.name “Katy™:

System.out.println(studentl.name);
System.out.println(student2.name);
System.out.println(student3.name);

Code explanation:

At line 5, we declared an instance variable (explained in
section 3.2) name whose data type (explained in section 3.3) is

String .

At line 8, the very important line of code public static void
main(String[] args) is written.

Please Note: Always remember Java objects must be declared only
after typing this very important line of code.

At line 9, 10, 11 different objects of class Students are

created.

o With the help of dot (.) operator , we access the variable name
from class Students.

Please Note: To access any variable or method of a class from an
object , dot operator is used.

 Atline 13, 14, 15, we pass values or data into the name
variable of each object .

e Atline 17,18, 19, we print out the values.

Now let’s run the above piece of code

(2 Problems @ Javadoc [&), Declaration B Console &3
<terminated> Students [Java Application] Checlipse\eclipsetplug

John
Ram
Katy

Chapter 4: Constructors &
Methods

In previous chapter we learnt about the basic idea of a method . In this
chapter we will create a Java program containing constructors and
methods .

4.1: Constructor

We learnt about Java object syntax in chapter 3, section 3.1 and we
learnt that the new keyword is followed by call to a constructor so
what is Java constructor? .

e Java constructor is a special Java method that is used to
initialize Java objects .

e Java constructor’ s name must match with the Java class
name.

 Java constructor does not have a return type (return type
discussed in section 4.2).

e Java constructor is always called during object creation. If a
class does not contain any constructor , then Java compiler
automatically created a default constructor and executes the
program.

Java constructor is of two types:
1. Default constructor
2. Parameterized constructor

Default constructor
Default constructor does not contain any parameter .

Parameterized constructor

Parameterized constructor contains parameters .

What is Parameter?

Parameter is a variable which is passed to a method or constructor
. A method or constructor can have one parameter or multiple
parameters .

Example

> Launch Eclipse IDE -> create a new class (/| named my class
Multiply)

1 package hello_world;

2

3 public class Multiply {

4 int valuel, value2;

5

6° Multiply() {

7 // default constructor

8 }

9

10= Multiply(int x, int y) {

11 // parameterized constructor

12 valuel = x;

13 value2 = vy;

14 }

15

16e public int multiply() {

17 int z = valuel * value2;

18 return z;

19 }

20

21e public static void main(String[] args) {
22 Multiply m = new Multiply(1e, 10);
23 System.out.println(m.multiply());
24

25 }

26

27 }

Code explanation:

= At line 4, instance variable (instance variable discussed in
chapter 3, section 3.2) valuel and value 2 are declared.

= At line 6, we created our default constructor .

= At line 10, we created our parameterized constructor and it
takes two parameters xand y .

= At line 12, we passed x to valuel meaning that when we will
assign a value to variable x , that value will in turn get assigned

to variable valuet .

» At line 13, we passed y to value2 meaning that when we will
assign a value to variable y , that value will in turn get assigned
to variable value2 .

= At line 16, method multiply is declared and this method will
return the multiplication result.

= Atline 21, Java main method is declared (we have discussed
about this very important line of code in chapter 3 and we will
discuss more about this method as we proceed further).

= At line 22, object m is created and values are passed to
Multiply constructor (parameterized constructor created in line
10. Value 10 is assigned to instance variable valuel and other
value 10 is assigned to value2)

» Atline 23, method multiply is called.

Now let’s run the above piece of code

(2 Problems @ Javadoc [&) Declaration [Console 3
<terminated= Multiply [Java Application] Checlipseheclipseplucg

1ee

4.2: Method

A Java method is a block of code performing some task.

For example: Let us consider a Math class , Math contains
numbers and with those numbers we can perform multiple
functions like addition, subtraction, multiplication, division etc. In
Java , we can write these functions in a method .

e The signature of a Java method is:

access_modifier return_type method name {

(access_modifier discussed in section 3.4 of chapter 3)

What is return type in Java?

Return type is the data type of the value returned by the method .

Example: Let us consider the method signature written below:

public int addition () {
}

In the above method signature , the method 's name is addition
and its return type is int . This means that the addition method will
return a value of data type int .

In order to return the value of a method return keyword is used.

Let us consider another method signature written below:

public void show () {
}

In the above method signat ure, the method ’s name is show and
its return type is void . This means that the show method will return
no value.

Example

e Launch Eclipse IDE -> create a new Class within the
hello_world package (created in chapter 3)

(I named my Class Math)

= Mew lava Class O *
Java Class
Create a new Java class. @
Source folder: | hello_world/src | Browse...
Package: | hello_werld | Browse...
[Enclasing type: Browse...
|
Maedifiers: (®) public () package private protected
[]abstract []final static
Superclass: | java.lang.Object | Browse...
Interfaces: Add.
Remove

Which method st i 7
public static void main(5tring[] args)

[] Constructors from superclass
[Inherited abstract methods
Do you want to add comments? (Configure templates and default value here

|:| Generate comments

* In Math.java write the following lines of code.

1 package hello_world,;

2
3 public class Math {
4
5e public int addition(int x, int y) {
6 inkE =
7 £ = Fok Y
8 return z;
S }
10
11e public int subtraction(int x, int y) {
12 inE =
13 £ B ko= ¥
14 return z,;
15 }
16
17e public static void main(String[] args) {
18
19 Math m = new Math();
20 System.out.println(m.addition(10, 18));
2 System.out.println(m.subtraction(10, 5));
22
23 }
24
25}

Code explanation:

e At Line 3, Math class is declared and this class contains two
methods addition and subtraction .

e Atline 5, addition method is declared.

Let’s look into its signature.

refurn type paramerers

] :

public int addition(int x, int y)

i

access modifiers method name

o At line 6, we declared a local variable z (local variable
discussed in chapter 3, section 3.2).

o Atline 7, we perform the arithmetic operation.

o At line 8, we return the value of z with the help of return
keyword .

e Line 11 — 14, contains method subtraction and it follows the
same process of method addition .

e Line 17 contains the main line of code which will start the
execution process and will act as an entry point to Math.java .

o Atline 19, object m of class Math is created. This object will
contain a copy of all methods and variables of class Math . In
order to access those information dot (.) operator is used.

e At line 20 and 21, the methods of class Math are accessed
and arguments are passed into those methods (In addition
method , value 10 is assigned to variable x and other value 10
is assigned to variable y . In subtraction method, the value 10
is assigned to variable x and other value 5 is assigned to
variable y) . Then the results of those methods are printed by
System.out.printin .

What is Argument?

Arguments are data values which are passed to the method
parameters .

Now let’s run the above piece of code
<

(21 Problems @ Javadoc @ Declaration B Console &3
<terminated=> Math [Java Application] Checlipse\eclipse\pluginst

20
5

4.3: What is public static void main (String[] args)?

We have learnt in chapter 3 as well as in this chapter that public static
void main (String[] args) is the most important line of code in any
Java program. This line of code acts as an entry point or starting point
of any Java program.

_ _ Array of data tvpe
access modifier ~ TeIUIMIPe Quipng

l ’ ‘ ‘—name of String[]

public static void main (String [] args)
static keyword method Paramerer o
means that the name fo the main method

method does not
require any
object to access it.

discussed in chapter1)

Please Note: JVM accesses the Java main method . (WM

4.4: Mathematical Operators in Java

Arithmetic Operator Description
+ Addition
- Subtraction
* Multiplication
/ Division
% Returns the Division remainder
Increments a variable by 1.
+ Example x= x+ 1. If value of x is

5, then the new value of x will be
5+1=6.

Decrements a variable by 1.
Example x= x — 1. If value of x is
4, then the new value of x will be

4-1=3.

Chapter 5: Conditional
Statements & Loops

5.1: Conditional Statements

« Java contains multiple conditional statements and they are:
1. if
2. else
3. else if

e The syntax of if and else is:

if (condition) {

................ code

}

else {

.............. (0700 (=
}

e The syntax of if , else if and else is:

if (condition) {
........ (o700 (= B

........... (0700 /= 2,

These conditional statements check where a certain condition returns
Boolean value TRUE or FALSE . If the condition returns TRUE , a
block of code executes, else another block of code executes.

Execution flow of if and e

IRUE v ocute if block of

if (condition) code

FALSE
execiite else Dlock of

code

Execution flow of if , else if and else

TRUE execute if block
m— - of code

FALSE

TRUE

else if (condition) vee-- execute else if block

of code

FALSE

execiite else block of
code

Logical operations available in Java
I

Operator

Description

Checks whether the value of x is

x>y greater than the value of y
X<y Checks whether the value of x is
less than the value of y
x==y Checks whether value of x is
equal to the value of y
xl=y Checks whether the value of x is
' NOT equal to the value of y
Checks whether the value of x is
X>=y greater than and equal to the
value of y
Checks whether the value of x is
X<=y less than and equal to the value

ofy

Let’s code..

Example

e Launch Eclipse IDE and create a new Java Class (I named my
class ConditionalStatements) and write the following lines of
code shown in the screen shot below.

1 package hello_world,;
2

3 public class ConditionalStatements {

4

5e public static void main(String[] args) {

6

7 int x = b;

8 int y = 16;

9

10 IF ix > E¥ 4

11 System.out.println("x is greater");

12 }

i else if (x == @) {

14 System.out.println("x is equal to y");
15 }

16 else {

17 System.out.println("x is less than y");
18 }
19
20 }
21
22 |3

Code explanation:

o Atline 3, Class ConditionalStatements is declared.

o At line 5, public static void main (String[] args) is written
(this line of code was discussed in chapter 3 and chapter 4).

 Atlines 7 and 8, instance variables (discussed in section 3.2 of
chapter 3) x and y are declared and values 5 and 10 are
assigned to it.

e Atline 10, if condition is declared. It checks whether the value
of x is greater than the value of y . If the condition is satisfied or
return Boolean value TRUE , line 11 executes .

e Atline 13, else if condition is declared. It checks whether the
value of x is equal to the value of y . If both values are equal,
line 14 executes.

e Atline 16, else condition is declared and this block of code runs
if both if and else if condition is not satisfied.

In this example, the value of x is 5 and the value of y is 10, so the value
of x is not greater than the value of y and hence the condition will return
FALSE and line 11 will not execute. The value of x is obviously not
equal to the value of y, so the condition will return FALSE and the line
14 will not execute.

Value of x was not greater than y (stated in if condition) and value of x
was not equal to the value of y (stated in else if condition), so this
means that x is less than y and else block of code executes.

Now let’s run the above piece of code.

(%! Problems @ Javadoc [&), Declaration B Conscle i3

<terminated> ConditionalStatements [Java Application] Checlipse\eclipse\pl

X is less than y

5.2: Loops

e There are two types of loop:

1. for loop
2. while loop

These loops are used to loop through a block of code to test
whether a certain condition is satisfied or not.

o for loop works best with Arrays (we will learn about Array
basics in Chapter6).

5.2.1: for loop

The syntax is:

for (initialization , condition , increment) {
......... COAE .evvrerrnnnrnnnnns

o The initialization part initialize a variable and it executes
only once in the for loop lifecycle.

o The condition part contains a logical operation.

o The increment part increments the variable and it
executes every time after the block of code executes.

Execution flow of a for loop

&=
i

initialization

——cof— condition ‘<—I
FALSE

increment

' TRUE

execute the block of
code inside for loop

Example

e Launch Eclipse IDE and create a new Class (I nhamed my
class Loops).

» Write the following lines of code in Loops.java .

1 package hello_world;

2

3 public class Loops {

4

5e public static void main(String[] args) {
)

7 for (Ant 1 = 8; 1 <= 5; 1++) {
8 System.out.println(i);

S }

18

11 }

12

13 }

Code explanation:

» Atline 3, class Loops is declared.

At line 5, the main method is written (this line of code is
discussed in chapter 3 and 4) .

e Atline 7, the for loop is stated.

o In initialization part, the variable i is declared and a value of 0
is assigned to it.

o In condition part , the condition of i <= 5 is set.

o In increment part , we increment the value of i by 1. The
value of i will increment by 1 every time the condition is
satisfied or returns TRUE and the block of code executes.

» Atline 8, the value of i is printed.

Execution process of the above piece of code:

= j= 0 ->the condition is checked (i is indeed less than 5, so
the condition returns TRUE) -> line 8 runs -> i is incremented

1.

Present value of i is 1.

= j=1->the condition is checked (i is indeed less than 5, so
the condition returns TRUE) -> lines 8 runs -> i is
incremented 1.

Present value of i is 2.

= j= 2 ->the condition is checked (i is indeed less than 5, so
the condition returns TRUE) -> lines 8 runs -> i is
incremented 1.

Present value of i is 3.

» j= 3 ->the condition is checked (i is indeed less than 5, so
the condition returns TRUE) -> lines 8 runs -> i is
incremented 1.

Present value of i is 4.

= j= 4 ->the condition is checked (i is indeed less than 5, so
the condition returns TRUE) -> lines 8 runs -> i is
incremented 1.

Present value of i is 5.

= j= 5 ->the condition is checked (i is indeed equal to 5, so
the condition returns TRUE) -> lines 8 runs -> i is
incremented 1.

Present value of i is 6.

= j= 6 ->the condition is checked (i is NOT less than or equal
to 5, so the condition is FALSE) -> EXIT out of the loop.

el
!

initialization
i=0

——copi— condition ‘<—I
FALSE i=—3

increment

++
' TRUE =

execute the block of
code inside for loop

print i

Now let’s run the above piece of code:

(2 Problems @ Javadoc |3=,:{ Declaration B Conscle 53
<terminated> Loops [Java Application] Checlipseleclipse\pluginshor

e

v bkw NP

5.2.2: while loop

while loop keeps on executing a block of code as long as the condition
is TRUE .

The syntax is:

while (condition) {
.......... COdE ..ovuvinnnnnnn

Example

1 package hello_world,;

2

3 public class Loops {

4

Se public static void main(String[] args) {
6

7 int i = 9;

8

9 while (i < 5) {

10 System.out.println(i);
| G i++;

12 }

15

14 }

5

16 }

Code explanation:

= At line 7, instance variable (instance variable discussed in
chapter 3, section 3.2) i is declared and a value 0 is assigned to
it.

= Atline 9, while loop is declared with a condition . This loop will
go on till the value of i is less than 5.

Please note: It is very important to increment the value of i as we did
on line 11 of the above piece of code. If we do not increment, the
while loop will never stop.

5.3: Break statement

Break statements are used to break out of a loop if certain condition is
satisfied.

Example

> In Eclipse IDE , create a new Class (/| nhamed my class
BreakExample)

1 package hello_world;
2
3 public class BreakExample {
4
5e public static void main(String[] args) {
6
F | System.out.println("Looking for number 3");
8
9 for (int i = @; i <= 5; i++) {
10
11 if (i == 3) {
12 System.out.println("Found 3, so exit the loop");
13 break;
14 }
15
16 System.out.println("The number is " + 1i);
17 }
18
19 }
20
21 3

Execution flow of the above piece of code:

35 ﬁ

i+t
‘ TRUE

FALSE '

i==3 il 7711 i€ 16

‘ TRUE

print line 12 and break out
of the for loop after
encountering the break
Statement

Chapter 6: Array

* An Array is a collection of elements all having the same data
type .

e The syntax for Array declaration is:

data_type[] array_name

or

data_type|[] array_name = { element! , element?2....... }
or

data_type[] array_name = new data_type[array size]

Let us consider the Fruits category. Fruits can be divided into apple
, orange , banana , strawberry etc.

Fruits

element 1 element 2 element 3

In Java , we can store all the fruits items or elements (shown in the
screen shot above) into a single variable using array .

For example:
String[] fruits = { “apple”, “orange”, “banana’ }

fruits is an array which holds or stores elements of data type String
and fruits stores elements apple , orange and banana .

How to access any value from an Array?

* An array element can only be accessed from its index value

e The syntax for accessing an element from an array is:

array _name [index_value]

Index 0 1)
value

apple orange banana

In the above fruits example, apple is present at index value 0.
orange is present at index value 1 and banana is present at index

value 2.

» In order to access apple from the fruits array , we need to
write fruits[0].

* |In order to access orange from the fruits array , we need to
write fruits[1].

» In order to access banana from the fruits array , we need
to write fruits[2].

Please note: The index value always starts with 0.

Example 1

1. Without using for loop

> Launch Eclipse IDE -> create a new Class (| named my class
ArrayFruits)

§ 1 package hello_world;
2
2 public class ArrayFruits {
4
5e public static void main(String[] args) {
6
7 String[] fruits = { "apple", "orange", "banana" };
8
S System.out.println(fruits[@]);
10 System.out.println(fruits[1]);
1 By | System.out.println(fruits[2]);
12
13 }
14
15 }

Now let’s run the above piece of code:

(2! Problems @ Javadoc [Declaration B Console 23
<terminated> ArrayFruits [Java Application] Checlipseleclipse\plugins\c
apple

orange

banana

2. Using for loop

(for loop discussed in chapter 5)

1 package hello_world;
2
2 public class ArrayFruits {
4
5e public static void main(String[] args) {
6
7 String[] fruits = { "apple", "orange", "banana" };
8
S for (int 1 = ©; 1 < fruits.length; i++) {
10 System.out.println(fruits[i]);
11 }
12
13 }
14
153

Code explanation:

e Inline 9, you will notice the condition i < fruits.length

What is length?

length is a special variable which returns the length of an array . In
this example, the length of array fruits is 3 because it contains 3

| elements apple , orange and banana . |

This condition states to continue the for loop till i is less than
the length of the array . Since the length of the array is 3, the
for loop will loop 3 times.

Execution flow of the above piece of code:

EX]T -epmmm i< fruits.length
FALSE I

‘ TRUE f
print '
fruits[i]

Example 2

> Let’s create another class (| named my class Car)

1 package hello_world;

2

3 public class Car {

4

5 String[] show = new String[2];

6

7e public String[] car_info(String make, String model) {
8

9 show[@] = make;

10 show[1] = model;

11 return show;

12 }

13

14s public static void main(String[] args) {

15

16 Car ¢ = new Car();

17

18 String[] x
19

20 for (int i = ©; i < x.length; i++) {
21 System.out.println(x[i]);

22 }

23

24 }

25

26 }

c.car _info("Ford™, "F2021");

Code explanation:

e Atline 5, we declared an array show whose data type is
string . We also set its size meaning that this array will only
hold 2 elements.

e Atline 7, we declared a method car_info with two
parameters make and model .

(This method will return an array of data type string).

o Atline 9, we store make at array position 0.
o Atline 10, we store model at array position 1.

o Atline 11, we return the array show .

At line 18, we access the car_info method and pass values
into it.

car_info returns an array of data type string and that result gets
stored in another array x .

From line 20 to 21, we print out the elements from array x .

Let’s run the above piece of code:

(%! Problems @ Javadoc &), Declaration & Console 3
<terminated> Car [Java Application] Checlipse\eclipse\pluginsho
Ford

F2021

Please note: In order to return multiple values from a method ,
we can use array as we did in above example.

Chapter 7: Object Oriented
Programming Concepts

The most important Object Oriented Programming or OOP concepts
are:-

1. Encapsulation
2. Inheritance
3. Polymorphism

7.1: Encapsulation

e Encapsulation is the mechanism in which all the Java
methods and variable are wrapped up into a single unit (
Class).

Class

variables

data

methods

e Encapsulation helps to protect the data present inside the unit
and prevents any malicious activity.

» In Encapsulation, the variables of a class is declared private
(private access modifiers explained in chapter 3, section 3.4)

In order to access the private variable from outside the class ,

get and set methods are used.
set method is used to set a value and get method is used to get

the value.

Example

> Launch Eclipse IDE -> create a new Class (I named my class
Encap).

1 package hello_world;

.

3 public class Encap {

4

5 private String username;
6 private String password;
7

8

913

In Encap class , | declared two variables username and password

Since both username and password carries very important and
sensitive data (sensitive data are those data which must be hidden
and protected at any cost) , so we declared its access modifier as
private meaning that no class outside Encap class can access
these variables . In order to access these private variables , we
need get and set methods .

> To generate get and set methods of variables username and
password , click on the yellow bulb like icon beside username
and password and select Create getter and setter for ‘username’
and Create getter and setter for ‘password’ respectively.

private String 2
Pr'i\fate Stl"‘iﬂg F 3¢ Remove 'username’, keep assignments witl

i & Create getter and setter for 'username’...
8 TRENETE I e LT T
I Rename in workspace (Alt+Shift+R)
9 } & (Thanne mndifier tn final
= Encapsulate Field O ot
Getter name: | betUsername | (new getter created)
Setter name: | setlsername | (new setter created)

Configure naming conventions...

Field access in declaring type: (®) use setter and getter () keep field reference
Insert new methods after: As first method w

] Generate method comments

Preview = Cancel

private String username;

te field' refactoring t te gett d sett . ¥
R SR L P xRemD\re'passwu:urd', keep assignments

@ {Create getter and setter for 'password'.,

T REmarE M TNE (LT o, o

5 Rename in workspace (Alt+5Shift+R)

= Encapsulate Field O >
Getter name: | getPassword | (new getter created)
Setter name: | setPassword | (new setter created)

Configure naming conventions...

Field access in declaring type: (®) use setter and getter () keep field reference
Insert new methods after: setllsername(String) w

[] Generate method comments

Preview = Cancel

1 ﬁackaéé héilo_world;

2
32 public class Encap {
4
5 private String username;
6 private String password;
7€ public String getUsername() {
8 return username;
S }
10= public void setUsername(String username) {
13 this.username = username;
12 }
13e public String getPassword() {
14 return password;
15 }
ie— public void setPassword(String password) m
ﬁ? this.password = password;
18 i

What is this keyword ?

this keyword refers to the current object .

In the above example, Class Encap is public meaning that any
other class can access Class Encap but its variables are private
meaning no other class can access these variables except for
Class Encap . The get and set methods are public meaning that
any other class can access these methods .

> Let’s create another class (I named my class Encap2) and
access the get and set method declared in class Encap .

1 package hello_world;

2

3 public class Encap2 {

4

56 public static void main(String[] args) {
6 Encap e = new Encap();

7

8 e.setUsername("John");

9 System.out.println(e.getUsername());
10
i 5 e.setPassword("J123");
12 System.out.println(e.getPassword());
E3
14 }
15
16 }

Code explanation:

= Since Class Encap was public , Class Encap2 can access
it easily.

In line 6, an object of class Encap is created and its set and get
methods are accessed.

First we pass a value to variable username using its set method at
line 8 and then we get and print out the value using its get method
at line 9.

Then we pass a value to variable password using its set method at
line11 and then we get and print out the value using its get method
at line12.

Let’s run the above piece of code:

(2 Problems @ Javadoc E Declaration B Console &3
<terminated> Encapd [Java Application] Checlipse\eclipseiplugi

John
J123

7.2: Inheritance

Important points to note are:

e Inheritance is a mechanism in which a subclass or child
class inherits all the properties from superclass or parent
class .

e The main usage of Inheritance is code reusability.

e The subclass or child class inherits properties from its
parent class using extends keyword .

class Parent {

.................... code............

}

class Child extends Parent {
.................. code..................
}

e A subclass can contain its own properties as well as its
parent class properties.

Example: Let us consider a school district XYZ contains three
schools, elementary school , middle school and high school and all
the three schools are built on the same street and on the same
location. The common attribute between these schools are:

1. They all are schools or educational institution.

2. They all are built on the same street but have different
building names and numbers.

3. They all fall under the same school district.

GChOO| superctas
|

i i
[

a ﬁ‘ﬁ

child 1 child 2 child 3

While coding, instead of writing these common information for each
school again and again, we can write them once in a single place (in
a superclass or parent class) and call them whenever any other
class needs them.

Example

> Launch Eclipse IDE , create a new class (/ named my class
SchoolSuperClass) and this class will act as a superclass .

> Create three more classes , one for elementary school (I
named my class ElementaryChild) , one for middle school (|
named my class MiddleChild) and one for high school (| named
my class HighChild). These three classes will act as a child
class of superclass SchoolSuperClass.java .

> In superclass SchoolSuperClass.java, write the following
lines of code:

1 package hello_world;
2
2 public class SchoolSuperClass {

4

5 String schoolld;

6 int building_num;

7

8¢ public void street_address() {

S System.out.println("The street address is XYZ");
10 }
14 13

In this class , we declared all the variables and methods which are
common to all three schools.

* Open ElementaryChild.java, and write the following lines of
code

1 package hello_world;

2

3 public class ElementaryChild extends SchoolSuperClass {
4

Se public static void main(String[] args) {
3]
7 ElementaryChild e = new ElementaryChild();
8
9 e.schoolId = "E123";
18 e.building _num = 222;
e b §
12 System.out.println(e.schoolld);
13 System.out.println(e.building_num);
14 e.street_address();
15 }
16
17 %

Code explanation:

= Atline 3, with the help of extends keyword , all properties of
superclass SchoolSuperClass are incorporated into child

class ElementaryChild.
= Atline 7, object e of ElementaryChild class is created.

= At line 9 and line 10, the variables school Id and
building_num are accessed from superclass and values
are passed into it.

= Atline 12 and 13, the values of the variables are printed.

= At line 14, the street_address() method present in
superclass is called.

Now let’s run the above piece of code:

(%! Problems @ Javadoc &), Declaration) Console i3

<terminated= ElementaryChild [Java Application] Checlipselecl

E123
222
The street address is XYZ

* Open the second class file MiddleChild.java and write the
following lines of code:

1 package hello_world;

.

3 public class MiddleChild extends SchoolSuperClass {
4

5e public static void main(String[] args) {
6 MiddleChild m = new MiddleChild();
7
8 m.schoolId = "M&678";
9 m.building num = 225;
16
11 System.out.println(m.schoolld);
B System.out.println(m.building_num);
13 m.street_address();
14
15 }
16
17 [}

The above piece of code is very similar to ElementaryChild.java,
only data is different.

Let’s run the above piece of code:

(%! Problems @ Javadoc i, Declaration [Console 3
<terminated> MiddleChild [Java Application] Checlipseleclipse

Me78
S
The street address is XYZ

We followed the same process above for HighChild.java.

7.3: Polymorphism

Polymorphism is a mechanism in which a method can be executed
in many forms based on the object that is acting upon it.

Polymorphism is of 2 types:

1. Dynamic Polymorphism or Run Time polymorphism
2. Static Polymorphism or Compile time polymorphism

7.3.1: Dynamic Polymorphism

The most important example of this type of Polymorphism is Method
overriding .

« When superclass and subclass have method with same
name and signature , the method of the subclass tends to
overrides the method of the superclass . This mechanism is
called Method overriding .

« When method of the superclass and subclass have same
method (with same name and signature), the compiler does
not understand which method to execute. This type of
conflict is resolved at run time and due to this Dynamic
Polymorphism is also called Run time polymorphism .

Example

Let’s create a Method overriding scenario.

> Launch Eclipse IDE and create a new Superclass (I named
my class Animal)

1 package hello_world;

2
3 public class Animal {
4
5e public void eat() {
6 System.out.println("Animals eat veg or non-veg");
o }
8
23
> Create two subclasses (I named one subclass Cow and
other subclass Lion)
Cow.java
1 package hello_world,
2
3 public class Cow extends Animal {
4
55- public void eat() {
6 System.out.println("Cows eat grass");
7 }
8
9= public static void main(String[] args) {
10 Animal ¢ = new Cow();
i 5 | c.eat();
12
13 }
14
15 }

Lion.java

1 package hello_world;

2

3 public class Lion extends Animal {
4
5e public void eat() {

6 System.out.println("Lions eat meat");
7 }

8
9e public static void main(String[] args) {
10 Animal 1 = new Lion();

11 l.eat();

12

13 }

14

15 }

Superclass Animal have an eat method and both subclasses
Cow and Lion also have the same method with same name and
signature (highlighted in the screen shot above) .

In Class Cow.java , at line 10, we created object c of type Animal
and a call was made to the Cow constructor .

At line 11, we called the eat method .

After running Cow.java we get an output of

(2 Problems @ Javadoc @ Declaration & Console &3
<terminated> Cow [Java Application] Checlipse\eclipse\plugin

Cows eat grass

In Class Lion.java , at line 10, we created object / of type Animal
and a call was made to the Lion constructor .

At line 11, we called the eat method .

After running Lion.java we get an output of

(2 Problems @ Javadoc [, Declaration B Console i3
<terminated> Lion [Java Application] Checlipseteclipseplugin:

Lions eat meat

In both cases we see that the eat method of each subclass (Cow
and Lion) overrides the eat method of superclass (Animal).

7.3.2: Static Polymorphism

The most important example of this type of Polymorphism is Method
Overloading .

e In Method Overloading , a class can contain multiple
methods with same name with different signature .

Static Polymorphism is also called Compile time
Polymorphism because in this case the compiler knows
which method to execute based on the method signature
and the conflict is resolved at compile time.

M

xample

> Launch Eclipse IDE -> create a new class (I named my class
SPExample)

1 package hello_world;

2

3 public class SPExample {

4

5e public void show() {

6 System.out.println("Hi");

7 }

8

9e public void show(String name) {

16 System.out.println("Hello, " + name);
11 }

12

13e public static void main(String[] args) {
14 SPExample s = new SPExample();

15 s.show();
16 s.show("Katy");
17
18 }
19
20 }

Code explanation:

= Atline 5, a method named show is declared.

= At line 9, another method named show is declared with a
parameter .

= Atline 15, show() method is called.

= At line 16, the other show() method is called and an
argument is passed into it.

Now let’s run the above piece of code

(2! Problems @ Javadoc i, Declaration [Conscle 3
<terminated> SPExample [Java Application] Checlipseleclipsely

Hi
Hello, Katy

In the above example, we see there are two methods , both have
the same name (show) but have different signature (one without

parameter and other with parameter) .

When we run the above piece of code, it runs perfectly because the
compiler was able to distinguish between the two methods based

on their signature .

TEST

1. Write a program which will print even and odd numbers from
1to 10.

When a number is divided by 2, if its remainder returns 0, then the
number is even .

When a number is divided by 2, if its remainder does not returns 0,
then the number is odd .

2. Write a program that will loop through an array and will break
out of the loop once a condition is satisfied.

Given: Array car containing 5 elements Toyota, Kia, Ford, Tesla,
Truck.

Exit out of the loop once car equal to Tesla.

3. Write a program which will contain two methods with
parameters and these methods will return values once
called and arguments are passed into it.

Method 1 should return an integer result after performing arithmetic
multiply operation.

Method 2 should return an integer result after performing arithmetic
division operation.

4. Write a program which will contain one method with a
parameter and this method will return the result once called
and an argument is passed into it.

The method much have a parameter whose data type is string and
this method must return the string value once called and an
argument is passed into it.

Answers

1 package hello_world;

2

3 public class Testl {

4

5e public static void main(String[] args) {

2]

7 for (int i = 1; i <= 10; i++) {

8

9 if (1 % 2 ==8) {

10 System.out.println("Even number:
11 } else {

12 System.out.println("0dd number: " + 1i);
13 }

14 }

15

16 }

17

18 }

+ i);

2,

package hello_world;
public class Test2 {
public static void main(String[] args) {
String[] car = { "Toyota"”, "Kia", "Ford", "Tesla", "Truck" };

for (int i = 8; i < car.length; i++) {

if (car[i] == "Tesla") {
System.out.println("I wish to own Tesla one day");
break;

}

System.out.println("Tesla not found, loop no. " + 1i);

package hello_world;

public class Test3 {
int =;

public int multiply(int x, int y) {
z =X *y;

return z;

}

public int division(int x, int y) {
E= % F oy
return z;

}

public static void main(String[] args) {
Test3 t3 = new Test3();
System.out.println(t3.multiply(26, 10));
System.out.println(t3.division(15, 4));

package hello_world;
public class Test4 {
public String name(String name) {
return name,
}
public static void main(String[] args) {

Testd4 t4 = new Test4();
System.out.println("My name is " + t4.name("Basu"));

Wish you all the best and thank you very
much for buying this book.

Always remember, the most important
learning is Self-Learning..

	Chapter 1 : Introduction
	What is Java?
	What is object oriented programming or OOP?
	What is JDK?
	What is JRE?
	What is JVM?
	JVM Architecture

	Chapter 2 : Java JDK and Eclipse IDE Installation
	2.1: JDK download
	2.2: Download and install Eclipse IDE

	Chapter 3 : Class, Object, Variables and Data types
	3.1: What is a Java Class & Object?
	3.2: What is Java Variable?
	3.3: Java Data Types
	3.4: What are access modifiers?
	3.5: What is Java package?
	3.6: Examples
	Example 1
	Example 2

	Chapter 4: Constructors & Methods
	4.1: Constructor
	Example

	4.2: Method
	Example

	4.3: What is public static void main (String[] args)?
	4.4: Mathematical Operators in Java

	Chapter 5: Conditional Statements & Loops
	5.1: Conditional Statements
	Example

	5.2: Loops
	5.2.1: for loop
	Example
	5.2.2: while loop
	Example

	Chapter 6: Array
	Example 1
	Example 2

	Chapter 7: Object Oriented Programming Concepts
	7.1: Encapsulation
	Example

	7.2: Inheritance
	Example

	TEST
	Answers

	5.3: Break statement
	Example

	7.3: Polymorphism
	7.3.1: Dynamic Polymorphism
	Example
	7.3.2: Static Polymorphism
	Example

