

JAVA
PROGRAMMING

FOR
KIDS

AGES 12 - 18

Copyright © 2021 S Basu
All rights reserved.

Disclaimer :

The information and materials presented here are for educational
purposes only. Every effort has been made to make this book as
complete and as accurate as possible but no warranty or fitness is
implied. The information provided is on an "as is" basis. The ideas
and opinions expressed are of the author's own imagination and the
author is not affiliated to any organization, school or educational
discipline and will not be held accountable or liable for any
inadvertent misrepresentation.

Contents
Chapter 1 : Introduction

What is Java?
What is object oriented programming or OOP?
What is JDK?
What is JRE?
What is JVM?

JVM Architecture
Chapter 2 : Java JDK and Eclipse IDE Installation

2.1: JDK download
2.2: Download and install Eclipse IDE

Chapter 3 : Class, Object, Variables and Data types
3.1: What is a Java Class & Object?
3.2: What is Java Variable?
3.3: Java Data Types
3.4: What are access modifiers?
3.5: What is Java package?
3.6: Examples

Example 1
Example 2

Chapter 4: Constructors & Methods
4.1: Constructor

Example
4.2: Method

Example
4.3: What is public static void main (String[] args)?
4.4: Mathematical Operators in Java

Chapter 5: Conditional Statements & Loops
5.1: Conditional Statements

Example
5.2: Loops

5.2.1: for loop
Example

5.2.2: while loop
Example

5.3: Break statement
Example

Chapter 6: Array
Example 1
Example 2

Chapter 7: Object Oriented Programming Concepts
7.1: Encapsulation

Example
7.2: Inheritance

Example
7.3: Polymorphism

7.3.1: Dynamic Polymorphism
Example
7.3.2: Static Polymorphism
Example

TEST
Answers

Chapter 1 : Introduction
Java is the most important programming language. If you have the
full grasp of Java basics, then you can easily learn any object
oriented programming language in this world.

What is Java?

Important points to note are:

Java is an object oriented programming (OOP)
language .

Java is platform independent meaning that it can run on
any machine containing JVM .

In order to code and execute a Java code, JDK is needed.

What is object oriented programming or OOP?

Object oriented programming or OOP is all about working
with classes , objects , methods and variables
(explained in Chapter 3).

The most important concepts of OOP are: Encapsulation ,
Inheritance and Polymorphism (explained in Chapter 7
).

What is JDK?

JDK stands for Java Development Kit which is needed to
code and execute Java .

JDK includes both JVM and JRE.

What is JRE?

JRE stands for Java Runtime Environment .

JRE contains classes , libraries and software that a Java
program needs in order to run successfully.

JRE also contains JVM .

What is JVM?

JVM stands for Java virtual machine .

JVM is responsible for converting the byte code present in
.class file into machine depended code which is
understood by that specific processor or operating system
or machine.

JVM Architecture
Java files are saved with a .java extension. When we compile the
.java file, .class file is generated and this .class file contains byte

code. JVM handles the .class file and generates the desired output
of the Java program.

What does compilation mean in Java?

Java compilation is the process of converting a .java file (which
contains readable text Java code) into a .class file (which contains
byte code).

What is byte code?

Byte codes are sequence of 0s and 1s.

Let’s look into JVM Architecture .
JVM architecture is divided into three main sections:

1. Class Loader
2. JVM Memory
3. Execution Engine

Class Loader
It is responsible for loading the .class file to the JVM memory .

JVM Memory
It is further divided into:

Method area – It stores all the methods information.
(methods explained in chapter 4).

Heap area – It stores all the objects and its corresponding
instance variables (objects and variables explained in
chapter 3).

Stack Area – It stores all the local variables and the
results of the methods (local variables explained in
chapter 3).

PC Register – PC register store the address of the
currently executing Java virtual machine instruction.

Native Method Stacks - Native method stacks contains
native codes which are written in another language instead
of Java .

Execution Engine
It is further divided into:

Interpreter – It converts the byte code to machine
dependent code which is understood by the machine and
desired output is generated.

JIT Compiler – JIT stands for Just in Time compiler and
its main task is to increases the performance and efficiency
of Interpreter .

Now let’s summarize the Java program execution process

Before we start coding, we need to download and install JDK and an
IDE .

What is Java IDE?

IDE stands for Integrated Development Environment . It is a
software application needed to write programs in Java.

There are multiple IDE present but we will be using Eclipse IDE to
write our Java code.

Chapter 2 : Java JDK and
Eclipse IDE Installation
2.1: JDK download

Open Google chrome browser (or any browser you like) and
search for java jdk download and select the oracle website
highlighted in the screen shot below.

Download the latest JDK version.

Select your operating system. (since I am using windows, so
downloading windows-x64 installer highlighted in the screen
shot below)

Check on review box, click download and install.

Click close.

Now check whether the Java PATH is automatically added to
your Environment Variables or not.

What is Java PATH?

Java PATH is an environment variable which helps us to locate the
JDK bin directory or folder which contains all the important files
needed to execute a Java program.

Let’s access the Environment Variables.

➢ Open control panel -> click on System and Security .

➢ Click on System

➢ Click on Advanced system settings.

➢ Click on Environment Variables.

➢ Under System variables , select Path -> click Edit

➢ Javapath shows highlighted in the screen shot below.

➢ Click ok and exit.

We have successfully installed JDK in our machine. Now let’s
download and install Eclipse IDE.

2.2: Download and install Eclipse IDE

Go to website https://www.eclipse.org/downloads/packages/
and download the latest version of Eclipse IDE .

(since I am using windows operating system, so downloaded
Eclipse IDE for Windows)

After finish downloading, open the download folder in your
machine.

https://www.eclipse.org/downloads/packages/

The downloaded folder is a ZIP folder and we need to extract it in
order to access Eclipse application.
So right click on ZIP folder and click extract all.

Browse for your extract location and click on Extract .

Now open the eclipse folder and look for the eclipse application
highlighted in the screen shot below.

Click and open the eclipse application.

Select a workspace and click on launch

We have now successfully installed Eclipse IDE .

Let’s begin coding..

Chapter 3 : Class, Object,
Variables and Data types
3.1: What is a Java Class & Object?

Class
Important points to note are:

Java class is a blueprint for creating an object .

Java class contains methods and variables .

The syntax for creating a Java class is:

access_modifier class class_name {
……..
}

Object

An object instance of a class .

An object contains the copy of methods and variables present
inside its class .

The syntax for creating a Java object is:

type object_name = new class_name ()

The type denotes the type of object declared.
The new keyword is used to create an object .
The new keyword is followed by call to a constructor (constructor
explained in chapter 4).

For example: Animal a = new Animal() , here a is an object of type
Animal (Class name) and the new keyword is followed by call to
Animal default constructor .

I know it all sounds extremely complicated, let’s try to simplify a little bit
below.
Let us consider a class room containing three students, John , Ram
and Katy . These three students have few things in common and they
are as follows:

1. All three are students of a class room.
2. They each have a name.
3. They each have a student_ID.
4. They each have an age.
5. They each have a gender.
6. They each have their home address.

These six things listed above are called attributes of a student. In Java
world, we can depict these attributes in the form of a variable .
A student performs multiple functions like studying, eating, playing etc.
In Java world, these functions can be depicted by methods .
We have successfully stated the attributes and functions of a
Student. Now the big question is where we can store these
information?. Well we can store this information in a class .
The students John , Ram and Katy have their own individual
characteristics and they all fall under the student category. In Java
world, these three students are referred as objects of class student
and the objects will contain a copy of all variables and methods
declared within its class .

Let’s summarize the concept:

Student is a class .
John , Ram and Katy are objects which belong to class
Student .
Name, Gender, Age, Student_ID, Address are variables of
class Student .

We will look into another example of Java class and object .

There are multiple animals which belong to the animal kingdom. There
are dogs , tigers , monkeys , lion etc. All animals have few things in
common like they all fall under the animal category, they all have a
name, weight, age and they also perform some common functions like
eating, playing and many more.
In Java world, we can write all the above information in a class Animal
and the objects of class Animal will be dog , tiger , monkey .
In other words we can say an object is a small miniscule entity of the
vast class which has its own properties and characteristic.

3.2: What is Java Variable?

Important points to note are:

Java variables act as a container to hold data.

The variables are declared with a Data type .
Example: int age

Here age is a variable name whose data type is int or integer
meaning that the variable age can hold only numeric whole numbers.

Java variables are of three types:

1. Local variable – These variables are declared within
methods (methods discussed in chapter 4) and the
variables get destroyed soon after exiting the method .

2. Instance variable – These variables are declared within the
class .

3. Static variables – The values of these variables remains
constant or static and it also does not require any object to
access it.

3.3: Java Data Types

Java data types are divided into two categories:

1. Primitive Data Type – It contains such as boolean, char, int,
short, byte, long, float, and double.

2. Non-Primitive Data Type : It contains String, Array, etc.

Data type Description

int This data type stores integer
values like 1,2,3,4 ….50..80

float This data type stores fractional
numbers like 123.50

char
This data type stores a single

character value like ‘A ’ or ‘B’ or
‘C’

boolean
This data type returns TRUE or

FALSE of any given expression or
condition.

String String is a Java class which is
used to stores group of
characters. Example: “John ” or
“Hello students ” etc

In the above Student class example of section 3.1:

Variable Name will be of data types String.

Variable Gender is usually denoted by a single character M
(for male) or F (for female) so its data types will be char.

Variable Age will be of data type int.

Variable Student_ID may contain numbers and character
values together, so let’s assign a data type of String to it.

Variable Address will be of data types String.

3.4: What are access modifiers?

Access modifiers denote the accessibility of a class or a method . It is
broadly divided into 4 types:

1: Public access modifiers – This means that the class or method is
accessible from everywhere.

2: Private access modifiers – This means that the class or method is
accessible only from within.

3: Default access modifiers – This means that the class or method is
accessible only from within its package .

4: Protected access modifiers – This means that the class or
method is accessible from within its package or any package other
than its own package through inheritance only (inheritance discussed
in chapter 7).

3.5: What is Java package?

A Java package contain group of Java classes .

Java packages are mainly done to avoid name conflicts.

If a package contains two Java class files of the same name, it will
lead to name conflict and error in the Java project may occur in
future. In order to prevent that from happening, separate packages
should be created for storing the class file which has the same
name.

Now let’s code..

3.6: Examples

Example 1
Launch Eclipse IDE and create a new Java project .

Click on File -> New -> Java Project .

Give the Project name (I named hello_world) and click on
Finish .

On Create module-info.java window, for now I will be clicking
on Don’t Create .

Our hello_world Java project is created.

Right click on the src folder -> Click New -> Package (we are
creating a new package) .

What is the default src folder of Eclipse IDE?

Default src folder is the source folder which contains the source code
or the main code of our project.

Click Finish

Right click on the hello_world package -> click New -> Click
Class (we are creating a new Java class)

Give the Class name (I gave Hello) starting with a capital letter ->
check on public static void main(String[] args) box -> click Finish .

In Hello.java , write one line of code highlighted in the screen
shot below and execute the program by clicking on the run
button.

Code explanation:

System.out.print is used to display or print output.

System.put.println is same as System.out.print but the println
displays output in separate lines.

At line 5, you will notice a very important line of code that is
public static void main(String[] args). It is the Java main
method and it acts as an entry point to our Java Program. Any
Java program will only start execution process after it
encounters this very important line of code. (We will discuss
more about this line of code in Chapter 4).

Example 2
Let’s create another Java class .

Right click on hello_world package -> New -> Class (I named
my class file students)

In students.java , write the following lines of code.

Code explanation:

At line 5, we declared an instance variable (explained in
section 3.2) name whose data type (explained in section 3.3) is
String .

At line 8, the very important line of code public static void
main(String[] args) is written.

Please Note: Always remember Java objects must be declared only
after typing this very important line of code.

At line 9, 10, 11 different objects of class Students are
created.

With the help of dot (.) operator , we access the variable name
from class Students.

Please Note: To access any variable or method of a class from an
object , dot operator is used.

At line 13, 14, 15, we pass values or data into the name
variable of each object .

At line 17, 18, 19, we print out the values.

Now let’s run the above piece of code

Chapter 4: Constructors &
Methods
In previous chapter we learnt about the basic idea of a method . In this
chapter we will create a Java program containing constructors and
methods .

4.1: Constructor

We learnt about Java object syntax in chapter 3, section 3.1 and we
learnt that the new keyword is followed by call to a constructor so
what is Java constructor? .

Java constructor is a special Java method that is used to
initialize Java objects .

Java constructor’ s name must match with the Java class
name.

Java constructor does not have a return type (return type
discussed in section 4.2).

Java constructor is always called during object creation. If a
class does not contain any constructor , then Java compiler
automatically created a default constructor and executes the
program.

Java constructor is of two types:

1. Default constructor
2. Parameterized constructor

Default constructor
Default constructor does not contain any parameter .

Parameterized constructor
Parameterized constructor contains parameters .

What is Parameter?

Parameter is a variable which is passed to a method or constructor
. A method or constructor can have one parameter or multiple
parameters .

Example

➢ Launch Eclipse IDE -> create a new class (I named my class
Multiply)

Code explanation:
At line 4, instance variable (instance variable discussed in
chapter 3, section 3.2) value1 and value 2 are declared.

At line 6, we created our default constructor .

At line 10, we created our parameterized constructor and it
takes two parameters x and y .

At line 12, we passed x to value1 meaning that when we will
assign a value to variable x , that value will in turn get assigned

to variable value1 .

At line 13, we passed y to value2 meaning that when we will
assign a value to variable y , that value will in turn get assigned
to variable value2 .

At line 16, method multiply is declared and this method will
return the multiplication result.

At line 21, Java main method is declared (we have discussed
about this very important line of code in chapter 3 and we will
discuss more about this method as we proceed further).

At line 22, object m is created and values are passed to
Multiply constructor (parameterized constructor created in line
10. Value 10 is assigned to instance variable value1 and other
value 10 is assigned to value2)

At line 23, method multiply is called.

Now let’s run the above piece of code

4.2: Method
A Java method is a block of code performing some task.

For example: Let us consider a Math class , Math contains
numbers and with those numbers we can perform multiple
functions like addition, subtraction, multiplication, division etc. In
Java , we can write these functions in a method .

The signature of a Java method is:

access_modifier return_type method_name {
……………
}

(access_modifier discussed in section 3.4 of chapter 3)

What is return type in Java?

Return type is the data type of the value returned by the method .

Example: Let us consider the method signature written below:

public int addition () {

}

In the above method signature , the method ’s name is addition
and its return type is int . This means that the addition method will
return a value of data type int .

In order to return the value of a method return keyword is used.

Let us consider another method signature written below:

public void show () {

}

In the above method signat ure, the method ’s name is show and
its return type is void . This means that the show method will return
no value.

Example

Launch Eclipse IDE -> create a new Class within the
hello_world package (created in chapter 3)

(I named my Class Math)

In Math.java write the following lines of code.

Code explanation:

At Line 3, Math class is declared and this class contains two
methods addition and subtraction .

At line 5, addition method is declared.

Let’s look into its signature.

At line 6, we declared a local variable z (local variable
discussed in chapter 3, section 3.2).

At line 7, we perform the arithmetic operation.

At line 8, we return the value of z with the help of return
keyword .

Line 11 – 14, contains method subtraction and it follows the
same process of method addition .

Line 17 contains the main line of code which will start the
execution process and will act as an entry point to Math.java .

At line 19, object m of class Math is created. This object will
contain a copy of all methods and variables of class Math . In
order to access those information dot (.) operator is used.

At line 20 and 21, the methods of class Math are accessed
and arguments are passed into those methods (In addition
method , value 10 is assigned to variable x and other value 10
is assigned to variable y . In subtraction method, the value 10
is assigned to variable x and other value 5 is assigned to
variable y) . Then the results of those methods are printed by
System.out.println .

What is Argument?

Arguments are data values which are passed to the method
parameters .

Now let’s run the above piece of code

4.3: What is public static void main (String[] args)?

We have learnt in chapter 3 as well as in this chapter that public static
void main (String[] args) is the most important line of code in any
Java program. This line of code acts as an entry point or starting point
of any Java program.

Please Note: JVM accesses the Java main method . (JVM
discussed in chapter 1)

4.4: Mathematical Operators in Java

Arithmetic Operator Description
+ Addition
- Subtraction
* Multiplication
/ Division

% Returns the Division remainder

++

Increments a variable by 1.
Example x = x + 1. If value of x is
5, then the new value of x will be

5 + 1 = 6.

--

Decrements a variable by 1.
Example x = x – 1. If value of x is
4, then the new value of x will be

4 – 1 = 3.

Chapter 5: Conditional
Statements & Loops
5.1: Conditional Statements

Java contains multiple conditional statements and they are:

1. if
2. else
3. else if

The syntax of if and else is:

if (condition) {
……………. code ………
}
else {
………….. code ………………
}

The syntax of if , else if and else is:

if (condition) {
…….. code ……………….
}
else if (condition) {
……….. code ………………..
}
else {
……………….. code ……………
}

These conditional statements check where a certain condition returns
Boolean value TRUE or FALSE . If the condition returns TRUE , a
block of code executes, else another block of code executes.

Execution flow of if and else

Execution flow of if , else if and else

Logical operations available in Java

Operator Description

x > y Checks whether the value of x is
greater than the value of y

x < y Checks whether the value of x is
less than the value of y

x == y Checks whether value of x is
equal to the value of y

x != y Checks whether the value of x is
NOT equal to the value of y

x >= y
Checks whether the value of x is

greater than and equal to the
value of y

x <= y
Checks whether the value of x is
less than and equal to the value

of y

Let’s code..

Example

Launch Eclipse IDE and create a new Java Class (I named my
class ConditionalStatements) and write the following lines of
code shown in the screen shot below.

Code explanation:

At line 3, Class ConditionalStatements is declared.

At line 5, public static void main (String[] args) is written
(this line of code was discussed in chapter 3 and chapter 4).

At lines 7 and 8, instance variables (discussed in section 3.2 of
chapter 3) x and y are declared and values 5 and 10 are
assigned to it.

At line 10, if condition is declared. It checks whether the value
of x is greater than the value of y . If the condition is satisfied or
return Boolean value TRUE , line 11 executes .

At line 13, else if condition is declared. It checks whether the
value of x is equal to the value of y . If both values are equal,
line 14 executes.

At line 16, else condition is declared and this block of code runs
if both if and else if condition is not satisfied.

In this example, the value of x is 5 and the value of y is 10, so the value
of x is not greater than the value of y and hence the condition will return
FALSE and line 11 will not execute. The value of x is obviously not
equal to the value of y, so the condition will return FALSE and the line
14 will not execute.
Value of x was not greater than y (stated in if condition) and value of x
was not equal to the value of y (stated in else if condition), so this
means that x is less than y and else block of code executes.

Now let’s run the above piece of code.

5.2: Loops

There are two types of loop:

1. for loop
2. while loop

These loops are used to loop through a block of code to test
whether a certain condition is satisfied or not.

for loop works best with Arrays (we will learn about Array
basics in Chapter 6).

5.2.1: for loop

The syntax is:
for (initialization , condition , increment) {
……… code ………………
}

The initialization part initialize a variable and it executes
only once in the for loop lifecycle.

The condition part contains a logical operation.

The increment part increments the variable and it
executes every time after the block of code executes.

Execution flow of a for loop

Example
Launch Eclipse IDE and create a new Class (I named my
class Loops).

Write the following lines of code in Loops.java .

Code explanation:

At line 3, class Loops is declared.

At line 5, the main method is written (this line of code is
discussed in chapter 3 and 4) .

At line 7, the for loop is stated.

In initialization part, the variable i is declared and a value of 0
is assigned to it.

In condition part , the condition of i <= 5 is set.

In increment part , we increment the value of i by 1. The
value of i will increment by 1 every time the condition is
satisfied or returns TRUE and the block of code executes.

At line 8, the value of i is printed.

Execution process of the above piece of code:

i = 0 -> the condition is checked (i is indeed less than 5, so
the condition returns TRUE) -> line 8 runs -> i is incremented

1.

Present value of i is 1.

i = 1 -> the condition is checked (i is indeed less than 5, so
the condition returns TRUE) -> lines 8 runs -> i is
incremented 1.

Present value of i is 2.

i = 2 -> the condition is checked (i is indeed less than 5, so
the condition returns TRUE) -> lines 8 runs -> i is
incremented 1.

Present value of i is 3.

i = 3 -> the condition is checked (i is indeed less than 5, so
the condition returns TRUE) -> lines 8 runs -> i is
incremented 1.

Present value of i is 4.

i = 4 -> the condition is checked (i is indeed less than 5, so
the condition returns TRUE) -> lines 8 runs -> i is
incremented 1.

Present value of i is 5.

i = 5 -> the condition is checked (i is indeed equal to 5, so
the condition returns TRUE) -> lines 8 runs -> i is
incremented 1.

Present value of i is 6.

i = 6 -> the condition is checked (i is NOT less than or equal
to 5, so the condition is FALSE) -> EXIT out of the loop.

Now let’s run the above piece of code:

5.2.2: while loop
while loop keeps on executing a block of code as long as the condition
is TRUE .
The syntax is:

while (condition) {
………. code …………..
}

Example

Code explanation:

At line 7, instance variable (instance variable discussed in
chapter 3, section 3.2) i is declared and a value 0 is assigned to
it.

At line 9, while loop is declared with a condition . This loop will
go on till the value of i is less than 5.

Please note: It is very important to increment the value of i as we did
on line 11 of the above piece of code. If we do not increment, the
while loop will never stop.

5.3: Break statement

Break statements are used to break out of a loop if certain condition is
satisfied.

Example

➢ In Eclipse IDE , create a new Class (I named my class
BreakExample)

Execution flow of the above piece of code:

Chapter 6: Array
An Array is a collection of elements all having the same data
type .

The syntax for Array declaration is:

data_type[] array_name

or

data_type[] array_name = { element1 , element2 …….}

or

data_type[] array_name = new data_type[array size]

Let us consider the Fruits category. Fruits can be divided into apple
, orange , banana , strawberry etc.

In Java , we can store all the fruits items or elements (shown in the
screen shot above) into a single variable using array .

For example:
String[] fruits = { “apple”, “orange”, “banana” }

fruits is an array which holds or stores elements of data type String
and fruits stores elements apple , orange and banana .

How to access any value from an Array?

An array element can only be accessed from its index value
.

The syntax for accessing an element from an array is:

array_name [index_value]

In the above fruits example, apple is present at index value 0.
orange is present at index value 1 and banana is present at index
value 2.

In order to access apple from the fruits array , we need to
write fruits[0].

In order to access orange from the fruits array , we need to
write fruits[1].
In order to access banana from the fruits array , we need
to write fruits[2].

Please note: The index value always starts with 0.

Example 1

1. Without using for loop

➢ Launch Eclipse IDE -> create a new Class (I named my class
ArrayFruits)

Now let’s run the above piece of code:

2. Using for loop

(for loop discussed in chapter 5)

Code explanation:

In line 9, you will notice the condition i < fruits.length ;

What is length?

length is a special variable which returns the length of an array . In
this example, the length of array fruits is 3 because it contains 3

elements apple , orange and banana .

This condition states to continue the for loop till i is less than
the length of the array . Since the length of the array is 3, the
for loop will loop 3 times.

Execution flow of the above piece of code:

Example 2
➢ Let’s create another class (I named my class Car)

Code explanation:
At line 5, we declared an array show whose data type is
string . We also set its size meaning that this array will only
hold 2 elements.

At line 7, we declared a method car_info with two
parameters make and model .

(This method will return an array of data type string).

At line 9, we store make at array position 0.

At line 10, we store model at array position 1.

At line 11, we return the array show .

At line 18, we access the car_info method and pass values
into it.

car_info returns an array of data type string and that result gets
stored in another array x .

From line 20 to 21, we print out the elements from array x .

Let’s run the above piece of code:

Please note: In order to return multiple values from a method ,
we can use array as we did in above example.

Chapter 7: Object Oriented
Programming Concepts
The most important Object Oriented Programming or OOP concepts
are:-

1. Encapsulation
2. Inheritance
3. Polymorphism

7.1: Encapsulation

Encapsulation is the mechanism in which all the Java
methods and variable are wrapped up into a single unit (
Class) .

Encapsulation helps to protect the data present inside the unit
and prevents any malicious activity.

In Encapsulation, the variables of a class is declared private
(private access modifiers explained in chapter 3, section 3.4)

.

In order to access the private variable from outside the class ,
get and set methods are used.
set method is used to set a value and get method is used to get
the value.

Example
➢ Launch Eclipse IDE -> create a new Class (I named my class

Encap).

In Encap class , I declared two variables username and password
.
Since both username and password carries very important and
sensitive data (sensitive data are those data which must be hidden
and protected at any cost) , so we declared its access modifier as
private meaning that no class outside Encap class can access
these variables . In order to access these private variables , we
need get and set methods .

➢ To generate get and set methods of variables username and
password , click on the yellow bulb like icon beside username
and password and select Create getter and setter for ‘username’
and Create getter and setter for ‘password’ respectively.

What is this keyword ?

this keyword refers to the current object .

In the above example, Class Encap is public meaning that any
other class can access Class Encap but its variables are private
meaning no other class can access these variables except for
Class Encap . The get and set methods are public meaning that
any other class can access these methods .

➢ Let’s create another class (I named my class Encap2) and
access the get and set method declared in class Encap .

Code explanation:

Since Class Encap was public , Class Encap2 can access
it easily.

In line 6, an object of class Encap is created and its set and get
methods are accessed.

First we pass a value to variable username using its set method at
line 8 and then we get and print out the value using its get method
at line 9.
Then we pass a value to variable password using its set method at
line11 and then we get and print out the value using its get method
at line 12.

Let’s run the above piece of code:

7.2: Inheritance

Important points to note are:

Inheritance is a mechanism in which a subclass or child
class inherits all the properties from superclass or parent
class .

The main usage of Inheritance is code reusability.

The subclass or child class inherits properties from its
parent class using extends keyword .

class Parent {
………………..code…………
}
class Child extends Parent {
……………….code………………
}

A subclass can contain its own properties as well as its
parent class properties.

Example: Let us consider a school district XYZ contains three
schools, elementary school , middle school and high school and all
the three schools are built on the same street and on the same
location. The common attribute between these schools are:

1. They all are schools or educational institution.
2. They all are built on the same street but have different

building names and numbers.
3. They all fall under the same school district.

While coding, instead of writing these common information for each
school again and again, we can write them once in a single place (in
a superclass or parent class) and call them whenever any other
class needs them.

Example
➢ Launch Eclipse IDE , create a new class (I named my class

SchoolSuperClass) and this class will act as a superclass .

➢ Create three more classes , one for elementary school (I
named my class ElementaryChild) , one for middle school (I
named my class MiddleChild) and one for high school (I named
my class HighChild). These three classes will act as a child
class of superclass SchoolSuperClass.java .

➢ In superclass SchoolSuperClass.java, write the following
lines of code:

In this class , we declared all the variables and methods which are
common to all three schools.

Open ElementaryChild.java, and write the following lines of
code

Code explanation:

At line 3, with the help of extends keyword , all properties of
superclass SchoolSuperClass are incorporated into child

class ElementaryChild.

At line 7, object e of ElementaryChild class is created.

At line 9 and line 10, the variables school_Id and
building_num are accessed from superclass and values
are passed into it.

At line 12 and 13, the values of the variables are printed.

At line 14, the street_address() method present in
superclass is called.

Now let’s run the above piece of code:

Open the second class file MiddleChild.java and write the
following lines of code:

The above piece of code is very similar to ElementaryChild.java,
only data is different.

Let’s run the above piece of code:

We followed the same process above for HighChild.java.

7.3: Polymorphism

Polymorphism is a mechanism in which a method can be executed
in many forms based on the object that is acting upon it.

Polymorphism is of 2 types:

1. Dynamic Polymorphism or Run Time polymorphism
2. Static Polymorphism or Compile time polymorphism

7.3.1: Dynamic Polymorphism

The most important example of this type of Polymorphism is Method
overriding .

When superclass and subclass have method with same
name and signature , the method of the subclass tends to
overrides the method of the superclass . This mechanism is
called Method overriding .

When method of the superclass and subclass have same
method (with same name and signature), the compiler does
not understand which method to execute. This type of
conflict is resolved at run time and due to this Dynamic
Polymorphism is also called Run time polymorphism .

Example

Let’s create a Method overriding scenario.

➢ Launch Eclipse IDE and create a new Superclass (I named
my class Animal)

➢ Create two subclasses (I named one subclass Cow and
other subclass Lion)

Cow.java

Lion.java

Superclass Animal have an eat method and both subclasses
Cow and Lion also have the same method with same name and
signature (highlighted in the screen shot above) .

In Class Cow.java , at line 10, we created object c of type Animal
and a call was made to the Cow constructor .
At line 11, we called the eat method .

After running Cow.java we get an output of

In Class Lion.java , at line 10, we created object l of type Animal
and a call was made to the Lion constructor .
At line 11, we called the eat method .

After running Lion.java we get an output of

In both cases we see that the eat method of each subclass (Cow
and Lion) overrides the eat method of superclass (Animal).

7.3.2: Static Polymorphism

The most important example of this type of Polymorphism is Method
Overloading .

In Method Overloading , a class can contain multiple
methods with same name with different signature .

Static Polymorphism is also called Compile time
Polymorphism because in this case the compiler knows
which method to execute based on the method signature
and the conflict is resolved at compile time.

Example

➢ Launch Eclipse IDE -> create a new class (I named my class
SPExample)

Code explanation:

At line 5, a method named show is declared.

At line 9, another method named show is declared with a
parameter .

At line 15, show() method is called.

At line 16, the other show() method is called and an
argument is passed into it.

Now let’s run the above piece of code

In the above example, we see there are two methods , both have
the same name (show) but have different signature (one without
parameter and other with parameter) .
When we run the above piece of code, it runs perfectly because the
compiler was able to distinguish between the two methods based
on their signature .

TEST
1. Write a program which will print even and odd numbers from

1 to 10.

When a number is divided by 2, if its remainder returns 0, then the
number is even .
When a number is divided by 2, if its remainder does not returns 0,
then the number is odd .

2. Write a program that will loop through an array and will break
out of the loop once a condition is satisfied.

Given: Array car containing 5 elements Toyota, Kia, Ford, Tesla,
Truck.
Exit out of the loop once car equal to Tesla.

3. Write a program which will contain two methods with
parameters and these methods will return values once
called and arguments are passed into it.

Method 1 should return an integer result after performing arithmetic
multiply operation.
Method 2 should return an integer result after performing arithmetic
division operation.

4. Write a program which will contain one method with a
parameter and this method will return the result once called
and an argument is passed into it.

The method much have a parameter whose data type is string and
this method must return the string value once called and an
argument is passed into it.

Answers

1.

2.

3.

4.

Wish you all the best and thank you very
much for buying this book.

Always remember, the most important
learning is Self-Learning..

	Chapter 1 : Introduction
	What is Java?
	What is object oriented programming or OOP?
	What is JDK?
	What is JRE?
	What is JVM?
	JVM Architecture

	Chapter 2 : Java JDK and Eclipse IDE Installation
	2.1: JDK download
	2.2: Download and install Eclipse IDE

	Chapter 3 : Class, Object, Variables and Data types
	3.1: What is a Java Class & Object?
	3.2: What is Java Variable?
	3.3: Java Data Types
	3.4: What are access modifiers?
	3.5: What is Java package?
	3.6: Examples
	Example 1
	Example 2

	Chapter 4: Constructors & Methods
	4.1: Constructor
	Example

	4.2: Method
	Example

	4.3: What is public static void main (String[] args)?
	4.4: Mathematical Operators in Java

	Chapter 5: Conditional Statements & Loops
	5.1: Conditional Statements
	Example

	5.2: Loops
	5.2.1: for loop
	Example
	5.2.2: while loop
	Example

	Chapter 6: Array
	Example 1
	Example 2

	Chapter 7: Object Oriented Programming Concepts
	7.1: Encapsulation
	Example

	7.2: Inheritance
	Example

	TEST
	Answers

	5.3: Break statement
	Example

	7.3: Polymorphism
	7.3.1: Dynamic Polymorphism
	Example
	7.3.2: Static Polymorphism
	Example

